
NESTED SUPPORT VECTORMACHINES

Gyemin Lee and Clayton Scott

Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, Michigan, USA

E-mail: {gyemin, cscott}@eecs.umich.edu

ABSTRACT

The one-class and cost-sensitive support vector machines (SVMs)

are state-of-the-art machine learning methods for estimating density

level sets and solving weighted classi�cation problems, respectively.

However, the solutions of these SVMs do not necessarily produce

set estimates that are nested as the parameters controlling the density

level or cost-asymmetry are continuously varied. Such a nesting con-

straint is desirable for applications requiring the simultaneous esti-

mation of multiple sets, including clustering, anomaly detection, and

ranking problems. We propose new quadratic programs whose solu-

tions give rise to nested extensions of the one-class and cost-sensitive

SVMs. Furthermore, like conventional SVMs, the solution paths in

our construction are piecewise linear in the control parameters. We

also describe a decomposition algorithm to solve the quadratic pro-

grams. The results of these methods are demonstrated on synthetic

data sets.

Index Terms� pattern classi�cation, one class support vector

machine, cost sensitive support vector machine, nested set estima-

tion, solution paths

1. INTRODUCTION

Many statistical learning problems may be characterized as prob-

lems of set estimation. In these problems, the input takes the form of

a random sample of points in a feature space, while the desired out-

put is a subset G of the feature space. For example, in density level

set estimation, a random sample from a density is given and G is an

estimate of a density level set. In binary classi�cation, labeled train-

ing data is available, and G is the set of all feature vectors predicted

to belong to one of the classes.

In other statistical learning problems, the desired output is a fam-

ily of sets Gθ with the index θ taking values in a continuum. For

example, estimating density level sets at multiple levels is an impor-

tant task for many problems including clustering [1], outlier ranking,

minimum volume set estimation [2], and anomaly detection [3]. Es-

timating cost-sensitive classi�ers at a range of different cost asym-

metries is important for ranking, Neyman-Pearson classi�cation [4],

transductive anomaly detection [5], and ROC studies.

Support vector machines (SVMs) are powerful nonparametric

approaches to set estimation [6]. However, both the one-class SVM

for level set estimation and the standard two-class SVM for classi�-

cation do not produce set estimates that are nested as the parameter

controlling the density level or, respectively, misclassi�cation cost

is varied. Since the true sets being estimated are in fact nested in

these two applications, estimators that enforce the nesting constraint

will not only avoid nonsensical solutions, but should also be more

accurate and less variable.

In this paper, we develop nested variants of the one-class and

two-class SVMs by incorporating nesting constraints into the dual

quadratic programs de�ning these methods. Decomposition algo-

rithms for solving the modi�ed duals are also presented. Like the

solution paths for the conventional unnested SVMs [7, 8, 9], the

nested SVM solution paths are also piecewise linear in the control

parameters. We compare our nested paths to the unnested paths on

synthetic data sets.

2. SUPPORT VECTORMACHINES

Suppose that we have a random sample {(xi, yi)}N
i=1 where xi ∈

R
d is a d-dimensional feature vector and yi ∈ {−1, +1} is its class;

in one-class classi�cation, all the yi's are the same. The support vec-

tor machine (SVM) �nds a hyperplane that separates data points in

a high dimensional space H based on the maximum margin prin-

ciple. H is the reproducing kernel Hilbert space generated by a

positive semide�nite kernel k. The kernel function k corresponds

to an inner product in H through k(x,x′) = 〈Φ(x), Φ(x′)〉 where
Φ : Rd → H is a function that maps each data point xi into H.

More detailed discussion regarding SVMs can be found in [6].

2.1. One-Class SVMs

The OC-SVM was proposed in [10, 11] to estimate a level set of an

underlying probability density given a data sample from the density.

In particular, the OC-SVM introduced in [10] solves the following

optimization problem:

min
w,�,ρ

1

2
‖w‖2 +

1

νN

NX
i=1

ξi − ρ (1)

s.t. 〈w, Φ(xi)〉 ≥ ρ − ξi, ξi ≥ 0 for i = 1, 2, . . . , N.

The optimal w ∈ H is the normal vector of the hyperplane and ρ
‖w‖

is the margin between the origin and the hyperplane.

In practice the optimization problem is solved via its dual, which

depends only on a set of Lagrange multipliers (one for each xi).

These Lagrange multipliers de�ne a decision function that deter-

mines whether a point is an outlier or not. Generally, only a frac-

tion of the Lagrange multipliers take non-zero values; associated xi

are called support vectors. The control parameter ν ∈ [0, 1] can be

shown to be an upper bound on the fraction of outliers and a lower

bound on the fraction of support vectors [10]. Thus ν implicitly de-

�nes the corresponding density level .

Our nested SVM uses an alternative formulation of the OC-SVM

involving a different parameter λ, which traces out the same class of



decision functions, and asymptotically has a one-to-one correspon-

dence to the original parameter ν [12]. The dual problem is

min
�

1

2λ

X
i,j

αiαjkij −
X

i

αi (2)

s.t. 0 ≤ αi ≤
1

N
for ∀i

where kij = k(xi,xj) and � = (α1, α2, · · · , αN ). Let �∗(λ) =
(α∗

1(λ), α∗
2(λ), · · · , α∗

N (λ)) denote the optimal solution when the

regularization parameter is λ. An advantage of the λ parameteriza-

tion is that the α∗
i (λ) are piecewise linear in λ [9]. From this result,

level sets at a range of density levels can be estimated with a com-

putational cost comparable to solving (2) for a single λ using the

algorithm in [7].

The set estimate conventionally associated with the OC-SVM is

given by the following formula with η = 1:

bGλ = {x :
X

i

α∗
i (ηλ)k(xi,x) > λ}. (3)

However, Vert and Vert [13] show that for any η > 1, the estimate in

(3) is a consistent estimate of the true level set at level λ as N → ∞,

suggesting that the η = 1 estimate may be inconsistent.

Thus η is a design parameter of the OC-SVM, and we now argue

that it relates to the nesting properties of the solution path. Note that

if all the Lagrange multipliers satisfy the condition α∗
i (ηλ) = 1

N
,

then (3) becomes equivalent to set estimation based on kernel den-

sity estimation (KDE). Indeed from the optimality condition of (2),

we can compute λ0 such that λ > λ0
η

implies α∗
i (ηλ) = 1

N
. Thus

for larger value of η, more of the sets bGλ correspond to thresholded

KDEs. Since a KDE is a proper density function, the estimated level

sets are naturally nested. However, we lose some sparsity and are no

longer implementing the large margin principle. On the other hand,

when η is close to 1, the obtained estimates are not guaranteed to be

nested as can be seen in the experimental results in Section 4. There-

fore, the choice of η affects the trade-off between the nestedness and

the reliance on the large margin principle.

2.2. Cost-Sensitive SVMs

The original SVM penalizes errors in both classes equally. However,

there are many applications where the numbers of data samples from

each class are not balanced, or false positives and false negatives

incur different costs. To handle this issue, the cost-sensitive SVM

(CS-SVM) was introduced [14].

Here we consider the CS-SVM without bias. Let I+ = {i :
yi = +1} and I− = {i : yi = −1}. Then the dual optimization

problem of the CS-SVM is

min
�

1

2λ

X
i,j

αiαjyiyjkij −
X

i

αi (4)

s.t. 0 ≤ αi ≤ γ for i ∈ I+

0 ≤ αi ≤ 1 − γ for i ∈ I−.

where � = (α1, α2, · · · , αN ). γ ∈ [0, 1] controls the cost asym-

metry between false positives and false negatives.

Once an optimal solution�∗(γ) = (α∗
1(γ), α∗

2(γ), · · · , α∗
N (γ))

is found, the sign of the decision function

fγ(x) =
1

λ

X
i

α∗
i (γ)yik(x,xi) (5)

determines the class of a data point x.
Bach et al. [8] extended the method of Hastie et al. [7] to the

CS-SVMs in order to derive the optimal solution path. The α∗
i (γ)

are again piecewise linear in γ.

3. NESTED SUPPORT VECTORMACHINES

In this section, we present nested extensions of the OC-SVM and the

CS-SVM.

3.1. Nested One-Class SVMs

First, we select a �nite number of density levels λ1 ≥ λ2 ≥ · · · ≥
λM > 0 a priori. Then we generate a �nite family of nested level

set estimates corresponding to the preselected levels. We present a

decomposition algorithm as an ef�cient method to �nd these level set

estimates. Finally, we linearly interpolate the solution coef�cients of

the nested �nite collection to extend to a continuous nested family

de�ned for all λ.

3.1.1. A Finite Family of Nested Sets

Our nested OC-SVM estimates level sets at levels λ1, λ2, · · · , λM

simultaneously by minimizing the sum of duals (2) corresponding

to different levels and by imposing a constraint that causes the re-

sulting sets to be nested. In particular, for M different levels λ1 ≥
λ2 ≥ · · · ≥ λM > 0, the objective function solves the following

optimization problem:

min
�1,··· ,�M

MX
m=1

"
1

2ηλm

X
i,j

αimαjmkij −
X

i

αim

#
(6)

s.t. 0 ≤ αim ≤ 1

N
for ∀i, m (7)

αi1

λ1
≤ αi2

λ2
≤ · · · ≤ αiM

λM
for ∀i (8)

where �m = (α1m, α2m, · · · , αNm) and αim corresponds to data

point xi and level λm (αim = αi(ηλm)). Then the optimal solu-

tion �∗
m = (α∗

1m, α∗
2m, · · · , α∗

Nm) de�nes the decision boundary

at level λm. The additional inequality constraint (8) makes
αim

λ
monotone, which by (3) implies

bGλ1 ⊂ bGλ2 ⊂ · · · ⊂ bGλM .

3.1.2. Interpolation

For an intermediate level λ between two levels, say λ1 and λ2 with-

out loss of generality, we can write λ = ελ1 + (1 − ε)λ2 for some

ε ∈ [0, 1]. Then we de�ne the parameter α∗
i (λ) through linear inter-

polation:

α∗
i (λ) = εα∗

i (λ1) + (1 − ε)α∗
i (λ2).

This method is motivated from the fact that the Lagrange multipliers

are piecewise linear in λ for the original SVM. A simple calculation

shows that the new level set estimate at level λ

bGλ = {x :
X

i

α∗
i (ηλ)k(xi,x) > λ}

satis�es bGλ1 ⊂ bGλ ⊂ bGλ2 and grows in a nested fashion.



3.1.3. Decomposition Algorithm

The objective function (6) requires optimization over NM param-

eters. Due to its large size, standard quadratic programming algo-

rithms are not ef�cient to solve the nested SVM .

Instead, we use a decomposition algorithm that �rst divides the

large optimization problem into subproblems and then iteratively op-

timizes the smaller problems. A similar idea was proposed for multi-

class classi�cation [15]. Below is the strategy the decomposition

algorithm follows:

1. Choose a point xi from the data set.

2. Solve the subproblem de�ned by the point.

3. Repeat 1 and 2 until the value of objective function changes

by less than a predetermined tolerance.

Currently, we cycle through all the xi. In future work, we will in-

vestigate the use of optimality conditions to facilitate the choice of

xi. As a starting point of the decomposition algorithm, the feasible

point αim = 1
N

for ∀i, m can be used.

Each step of the algorithm optimizes a set of parameters corre-

sponding to a data point. Without loss of generality, we can assume

that the data point is x1 and {α1m}M
m=1 will be optimized while

�xing the other αim. The objective function then can be written in

terms of α1m:

X
m

"
1

2ηλm

X
i,j

αimαjmkij −
X

i

αim

#

=
X
m

24 1

2ηλm
α2

1mk11 + α1m

0@ 1

ηλm

X
j 6=1

αjmk1j − 1

1A35+ C

=
X
m

�
1

2ηλm
α2

1mk11 + α1m

�
f1m − αold

1m

ηλm
k11 − 1

��
+ C

=
k11

η

X
m

�
1

2λm
α2

1m − α1m

λm

�
αold

1m +
ηλm(1 − f1m)

k11

��
+ C

where αold

1m and f1m = 1
ηλm

�P
j 6=1 αjmk1j + αold

1mk11

�
denote

the parameter from the previous iteration step and the corresponding

output, respectively. C is a constant that does not depend on α1m.

Then the algorithm solves the new subproblem

min
α11,α12,··· ,α1M

X
m

�
1

2λm
α2

1m − α1m

λm
αnew

1m

�
(9)

s.t. 0 ≤ α1m ≤ 1

N
for ∀m

α11

λ1
≤ α12

λ2
≤ · · · ≤ α1M

λM

(10)

where αnew

1m = αold

1m + ηλm(1−f1m)
k11

. Notice that αnew

1m becomes the

solution if it is feasible. This subproblem is much smaller and can

be solved via standard quadratic optimization techniques.

3.2. Nested Cost-Sensitive SVMs

Nested cost-sensitive SVMs aim to produce nested positive decision

sets {x : fγ(x) > 0} as the cost asymmetry γ varies. Our approach

here parallels the approach developed for the OC-SVM.

(a) OC-SVM (b) Nested OC-SVM

(c) CS-SVM (d) Nested CS-SVM

Fig. 1. Comparison between SVMs and nested SVMs. Overlapping

of decision boundaries are apparent in the left panels, while right

panels show nested structures.

For a �xed λ and preselected cost asymmetries 0 ≤ γ1 ≤ γ2 ≤
· · · ≤ γM ≤ 1, the nested cost-sensitive SVM minimizes the objec-

tive function

min
�1,�2,··· ,�M

MX
m=1

"
1

2λ

X
i,j

αimαjmyiyjkij −
X

i

αim

#
(11)

s.t. 0 ≤ αim ≤ γm for i ∈ I+, ∀m (12)

0 ≤ αim ≤ 1 − γm for i ∈ I−, ∀m (13)

αi1 ≤ αi2 ≤ · · · ≤ αiM for i ∈ I+ (14)

αi1 ≥ αi2 ≥ · · · ≥ αiM for i ∈ I− (15)

where αim corresponds to data point xi at cost asymmetry γm and

�m = (α1m, α2m, · · · , αNm). Here the constraints (14) and (15)

impose the nesting of set estimates.

An analogous interpolation and decomposition algorithm can be

developed for the nested CS-SVM.

4. EXPERIMENTS

In our implementation, we used M = 30, η = 1.05 and quadprog

provided in Matlab as a QP solver. Throughout the experiments,

we used the normalized Gaussian kernel function

k(x,x′) =
1

(
√

2πσ)d
exp

�
−‖x − x′‖2

2σ2

�
.

Fig. 1 compares the results from the SVM path algorithms and

nested SVMs. The left �gures are obtained from the unnested solu-

tion path algorithms and the right �gures are from the nested SVMs.

As can be seen, the results from the OC-SVM and the CS-SVM are



(a) Nested OC-SVM (σ = 0.5) (b) ROC curve

Fig. 2. Nested OC-SVM on �banana� dataset. Small circles repre-

sent data points and �ve contours depict the decision boundaries.

(a) Nested CS-SVM (λ = 1) (b) ROC curve

Fig. 3. Nested CS-SVM on �banana� dataset. Small circles and

crosses are data points in each class. Decision boundaries for �ve

different values of cost asymmetries are shown.

not nested. On the other hand, the nesting construction is obvious in

the right �gures.

Fig. 2 illustrates a result of the nested OC-SVM on the two

dimensional �banana� dataset1. Here only the negative samples were

used to train the SVM. In the left panel, �ve nested level set estimates

are shown. The result of the nested CS-SVM on the same dataset is

presented in Fig. 3. Five decision boundaries drawn in the �gure

show the nesting structure; that is, a positively classi�ed data point

at γ will be classi�ed positive for any γ′ ≥ γ.

Correctly selecting the bandwidth of the Gaussian kernel is crit-

ical to its performance. A possible choice of bandwidth selection

criteria is the area under the ROC curve (AUC), in which we choose

σ that maximizes the AUC. For one class problems, we can generate

an arti�cal second class according to a uniform distribution. Using

this approach, the right panel in Fig. 2 presents the ROC curves for

three different kernel bandwidth values. Small σ leads to over�t-

ting while large σ leads to overly rigid shapes that fail to capture the

detail of the underlying density.

The nested CS-SVM has one more control parameter: the reg-

ularization parameter λ. A smaller λ penalizes margin errors more

and usually generates a more complex decision boundary. λ could

also be selected by AUCmaximization. Examples of the ROC curves

are drawn in Fig. 3.

1http://ida.first.fhg.de/projects/bench/

5. CONCLUSIONS

In this paper, we introduce a way to impose nesting structures on

families of sets produced by SVMs. The key step involves forming

a new optimization problem with constraints ensuring the desired

structure. A decomposition algorithm is presented to solve the pro-

posed quadratic program. This algorithm generates a �nite number

of nested set estimates at a set of preselected control parameters, and

linear interpolation extends these sets to a continuous nested family.

Similar approaches apply to both the OC-SVM and the CS-SVM.

The nested OC-SVM yields a family of nested density level set es-

timates indexed by density level, while the nested CS-SVM yields a

family of nested classi�ers indexed by cost asymmetry.
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