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Nested Support Vector Machines
*Gyemin Lee, Student Member, IEEE, and Clayton Scott, Member, IEEE

Abstract—One-class and cost-sensitive support vector ma-
chines (SVMs) are state-of-the-art machine learning methods for
estimating density level sets and solving weighted classification
problems, respectively. However, the solutions of these SVMs
do not necessarily produce set estimates that are nested as the
parameters controlling the density level or cost-asymmetry are
continuously varied. Such nesting not only reflects the true sets
being estimated, but is also desirable for applications requiring
the simultaneous estimation of multiple sets, including clustering,
anomaly detection, and ranking. We propose new quadratic
programs whose solutions give rise to nested versions of one-class
and cost-sensitive SVMs. Furthermore, like conventional SVMs,
the solution paths in our construction are piecewise linear in the
control parameters, although here the number of breakpoints is
directly controlled by the user. We also describe decomposition
algorithms to solve the quadratic programs. These methods are
compared to conventional (non-nested) SVMs on synthetic and
benchmark data sets, and are shown to exhibit more stable
rankings and decreased sensitivity to parameter settings.

Index Terms—machine learning, pattern classification, one
class support vector machine, cost sensitive support vector
machine, nested set estimation, solution paths.

I. INTRODUCTION

Many statistical learning problems may be characterized as
problems of set estimation. In these problems, the input takes
the form of a random sample of points in a feature space,
while the desired output is a subset G of the feature space.
For example, in density level set estimation, a random sample
from a density is given and G is an estimate of a density level
set. In binary classification, labeled training data are available,
and G is the set of all feature vectors predicted to belong to
one of the classes.

In other statistical learning problems, the desired output
is a family of sets Gθ with the index θ taking values in
a continuum. For example, estimating density level sets at
multiple levels is an important task for many problems in-
cluding clustering [1], outlier ranking [2], minimum volume
set estimation [3], and anomaly detection [4]. Estimating cost-
sensitive classifiers at a range of different cost asymmetries is
important for ranking [5], Neyman-Pearson classification [6],
semi-supervised novelty detection [7], and ROC studies [8].

Support vector machines (SVMs) are powerful nonpara-
metric approaches to set estimation [9]. However, both the
one-class SVM (OC-SVM) for level set estimation and the
standard two-class SVM for classification do not produce set
estimates that are nested as the parameter λ of the OC-SVM or,
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(a) one-class SVM (b) cost-sensitive SVM

Fig. 1. Two decision boundaries from a one-class SVM (a) and a cost-
sensitive SVM (b) at two density levels and cost asymmetries. The shaded
regions indicate the density level set estimate at the higher density level and
the positive decision set estimate at the lower cost asymmetry, respectively.
These regions are not completely contained inside the solid contours corre-
sponding to the smaller density level or the larger cost asymmetry, hence the
two decision sets are not properly nested.

respectively, the misclassification cost of the two-class SVM is
varied. As displayed in Fig. 1, set estimates from the original
SVMs are not properly nested. On the other hand, Fig. 2 shows
nested counterparts obtained from our proposed methods (see
Section III, IV). Since the true sets being estimated are in
fact nested, estimators that enforce the nesting constraint
will not only avoid nonsensical solutions, but should also
be more accurate and less sensitive to parameter settings
and perturbations of the training data. One way to generate
nested SVM classifiers is to train a cost-insensitive SVM and
simply vary the offset. However, this often leads to inferior
performance as demonstrated in [8].

Recently Clémençon and Vayatis [10] developed a method
for bipartite ranking that also involves computing nested
estimates of cost-sensitive classifiers at a finite grid of costs.
Their set estimates are computed individually, and nesting is
imposed subsequently through an explicit process of succes-
sive unions. These sets are then extended to a complete scoring
function through piecewise constant interpolation. Their inter-
est is primarily theoretical, as their estimates entail empirical
risk minimization, and their results assume the underlying
Bayes classifiers lies in a Vapnik-Chervonenkis class.

In this paper, we develop nested variants of one-class and
two-class SVMs by incorporating nesting constraints into
the dual quadratic programs associated with these methods.
Decomposition algorithms for solving these modified duals
are also presented. Like the solution paths for conventional
SVMs [11], [8], [12], nested SVM solution paths are also
piecewise linear in the control parameters, but require far fewer
breakpoints. We compare our nested paths to the unnested
paths on synthetic and benchmark data sets. We also quantify
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(a) nested OC-SVM (b) nested CS-SVM

Fig. 2. Five decision boundaries from our nested OC-SVM (a) and nested
CS-SVM (b) at five different density levels and cost asymmetries, respectively.
These decision boundaries from nested SVMs do not cross each other, unlike
the decision boundaries from the original SVMs (OC-SVM and CS-SVM).
Therefore, the corresponding set estimates are properly nested.

the degree to which standard SVMs are unnested, which is
often quite high. The Matlab implementation of our algo-
rithms is available at http://www.eecs.umich.edu/∼cscott/code/
nestedsvm.zip. A preliminary version of this work appeared in
[13].

A. Motivating Applications

With the multiple set estimates from nested SVMs over
density levels or cost asymmetries, the following applications
are envisioned.

Ranking : In the bipartite ranking problem [14], we are
given labeled examples from two classes, and the goal is
constructing a score function that rates new examples ac-
cording to their likelihood of belonging to the positive class.
If the decision sets are not nested as cost asymmetries or
density levels varies, then the resulting score function leads
to ambiguous ranking. Nested SVMs will make the ranking
unambiguous and less sensitive to perturbations of the data.
See Section VI-C for further discussion.

Clustering : Clusters may be defined as the connected
components of a density level set. The level at which the
density is thresholded determines a tradeoff between cluster
number and cluster coverage. Varying the level from 0 to
∞ yields a “cluster tree” [15] that depicts the bifurcation
of clusters into disjoint components and gives a hierarchical
representation of cluster structure.

Anomaly Detection : Anomaly detection aims to identify
deviations from nominal data when combined observations of
nominal and anomalous data are given. Scott and Kolaczyk [4]
and Scott and Blanchard [7] present approaches to classifying
the contaminated, unlabeled data by solving multiple level set
estimation and multiple cost-sensitive classification problems,
respectively.

II. BACKGROUND ON CS-SVM AND OC-SVM

In this section, we will overview two SVM variants and
show how they can be used to learn set estimates. To establish
notation and basic concepts, we briefly review SVMs.

Suppose that we have a random sample {(xi, yi)}Ni=1 where
xi ∈ Rd is a feature vector and yi ∈ {−1,+1} is its class.
An SVM finds a separating hyperplane with a normal vector
w in a high dimensional space H by solving

min
w,ξ

λ

2
‖w‖2 +

∑
i

ξi

s.t. yi〈w,Φ(xi)〉 ≥ 1− ξi, ξi ≥ 0, ∀i

where λ is a regularization parameter and Φ is a nonlinear
function that maps each data point into H generated by a
positive semi-definite kernel k : Rd × Rd → R. This kernel
corresponds to an inner product in H through k(x,x′) =
〈Φ(x),Φ(x′)〉. Then the two half-spaces of the hyperplane
{Φ(x) : f(x) ≡ 〈w,Φ(x)〉 = 0} form positive and negative
decision sets. Since the offset of the hyperplane is often
omitted when Gaussian or inhomogeneous polynomial kernels
are chosen [16], it is not considered in this formulation. More
detailed discussion on SVMs can be found in [9].

A. Cost-Sensitive SVM

The SVM above, which we call a cost-insensitive SVM
(CI-SVM), penalizes errors in both classes equally. However,
there are many applications where the numbers of data samples
from each class are not balanced, or false positives and false
negatives incur different costs. The cost-sensitive SVM (CS-
SVM) handles this issue by controlling the cost asymmetry
between false positives and false negatives [17].

Let I+ = {i : yi = +1} and I− = {i : yi = −1} denote
the two index sets, and γ denote the cost asymmetry. Then a
CS-SVM solves

min
w,ξ

λ

2
‖w‖2 + γ

∑
I+

ξi + (1− γ)
∑
I−

ξi (1)

s.t. yi〈w,Φ(xi)〉 ≥ 1− ξi, ξi ≥ 0, ∀i

where w is the normal vector of the hyperplane. When γ = 1
2 ,

CS-SVMs reduce to CI-SVMs.
In practice this optimization problem is solved via its dual,

which depends only on a set of Lagrange multipliers (one for
each xi):

min
α

1
2λ

∑
i

∑
j

αiαjyiyjKi,j −
∑
i

αi (2)

s.t. 0 ≤ αi ≤ 1{yi<0} + yiγ, ∀i.

where Ki,j = k(xi,xj) and α = (α1, α2, . . . , αN ). The
indicator function 1{A} returns 1 if the condition A is true and
0 otherwise. Since there is no offset term, a linear constraint∑
i αiyi = 0 does not appear in the dual.
Once an optimal solution α∗(γ) = (α∗1(γ), . . . , α∗N (γ)) is

found, the sign of the decision function

fγ(x) =
1
λ

∑
i

α∗i (γ)yik(x,xi) (3)

determines the class of x. If k(·, ·) ≥ 0, then this decision
function takes only non-positive values when γ = 0, and
corresponds to (0, 0) in the ROC. On the other hand, γ = 1
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penalizes only the violations of positive examples, and corre-
sponds to (1, 1) in the ROC.

Bach et al. [8] extended the method of Hastie et al. [11] to
the CS-SVM. They showed that α∗i (γ) are piecewise linear in
γ, and derived an efficient algorithm for computing the entire
path of solutions to (2). Thus, a family of classifiers at a range
of cost asymmetries can be found with a computational cost
comparable to solving (2) for a single γ.

B. One-Class SVM

The OC-SVM was proposed in [18], [19] to estimate a level
set of an underlying probability density given a data sample
from the density. In one-class problems, all the instances are
assumed from the same class. The primal quadratic program
of the OC-SVM is

min
w,ξ

λ

2
‖w‖2 +

1
N

N∑
i=1

ξi (4)

s.t. 〈w,Φ(xi)〉 ≥ 1− ξi, ξi ≥ 0, ∀i.

This problem is again solved via its dual in practice:

min
α

1
2λ

∑
i

∑
j

αiαjKi,j −
∑
i

αi (5)

s.t. 0 ≤ αi ≤
1
N
, ∀i.

This formulation is equivalent to the more common ν
parametrization [18], and is more convenient for our purposes.
We also note that the OC-SVM can be solved by setting
γ = 1/2 and yi = 1 in the CS-SVM. However, our path
algorithm for the OC-SVM, which varies λ, is not a special
case of our path algorithm for the CS-SVM, which varies γ
while holding λ fixed.

A solution α∗(λ) = (α∗1(λ), . . . , α∗N (λ)) defines a decision
function that determines whether a point is an outlier or
not. Here α∗i (λ) are also piecewise linear in λ [12]. From
this property, we can develop a path following algorithm
and generate a family of level set estimates with a small
computational cost. The set estimate conventionally associated
with the OC-SVM is given by

Ĝλ = {x :
∑
i

α∗i (λ)k(xi,x) > λ}. (6)

Vert and Vert [20] showed that by modifying this estimate
slightly, substituting α∗i (ηλ) for α∗i (λ) where η > 1, (6) leads
to a consistent estimate of the true level set when a Gaussian
kernel with a well-calibrated bandwidth is used. Regardless of
whether η = 1 or η > 1, however, the obtained estimates are
not guaranteed to be nested as we will see in Section VI. Note
also that when α∗i (λ) = 1

N , (6) is equivalent to set estimation
based on kernel density estimation.

III. NESTED CS-SVM

In this section, we develop the nested cost-sensitive SVM
(NCS-SVM), which aims to produce nested positive decision
sets Gγ = {x : fγ(x) > 0} as the cost asymmetry γ varies.
Our construction is a two stage process. We first select a finite

number of cost asymmetries 0 = γ1 < γ2 < . . . < γM = 1
a priori and generate a family of nested decision sets at
the preselected cost asymmetries. We achieve this goal by
incorporating nesting constraints into the dual quadratic pro-
gram of CS-SVM. Second, we linearly interpolate the solution
coefficients of the finite nested collection to a continuous
nested family defined for all γ. As an efficient method to
solve the formulated problem, we present a decomposition
algorithm.

A. Finite Family of Nested Sets

Our NCS-SVM finds decision functions at cost asymmetries
γ1, γ2, . . . , γM simultaneously by minimizing the sum of
duals (2) at each γ and by imposing additional constraints
that induce nested sets. For a fixed λ and preselected cost
asymmetries 0 = γ1 < γ2 < · · · < γM = 1, an NCS-SVM
solves

min
α1,...,αM

M∑
m=1

 1
2λ

∑
i,j

αi,mαj,myiyjKi,j −
∑
i

αi,m

 (7)

s.t. 0 ≤ αi,m ≤ 1{yi<0} + yiγm, ∀i,m (8)
yiαi,1 ≤ yiαi,2 ≤ · · · ≤ yiαi,M , ∀i (9)

where αm = (α1,m, . . . , αN,m) and αi,m is a coefficient
for data point xi and cost asymmetry γm. Then its optimal
solution α∗m = (α∗1,m, . . . , α

∗
N,m) defines the decision func-

tion fγm(x) = 1
λ

∑
i α
∗
i,myik(xi,x) and its corresponding

decision set Ĝγm = {x : fγm(x) > 0)} for each m. In
Section VII, the proposed quadratic program for NCS-SVMs
is interpreted as a dual of a corresponding primal quadratic
program.

B. Interpolation

For an intermediate cost asymmetry γ between two cost
asymmetries, say γ1 and γ2 without loss of generality, we can
write γ = εγ1 + (1− ε)γ2 for some ε ∈ [0, 1]. Then we define
new coefficients α∗i (γ) through linear interpolation:

α∗i (γ) = εα∗i,1 + (1− ε)α∗i,2. (10)

Then the positive decision set at cost asymmetry γ is

Ĝγ = {x : fγ(x) =
1
λ

∑
i

α∗i (γ)yik(xi,x) > 0}. (11)

This is motivated by the piecewise linearity of the Lagrange
multipliers of the CS-SVM, and is further justified by the
following result.

Proposition 1. The nested CS-SVM equipped with a kernel
such that k(·, ·) ≥ 0 (e.g., Gaussian kernels or polynomial
kernels of even orders) generates nested decision sets. In other
words, if 0 ≤ γε < γδ ≤ 1, then Ĝγε ⊂ Ĝγδ .

Proof: We prove the proposition in three steps. First, we
show that sets from (7) satisfy Ĝγ1 ⊂ Ĝγ2 ⊂ · · · ⊂ ĜγM .
Second, we show that if γm < γ < γm+1, then Ĝγm ⊂ Ĝγ ⊂
Ĝγm+1 . Finally, we prove that any two sets from the NCS-
SVM are nested.
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Without loss of generality, we show Ĝγ1 ⊂ Ĝγ2 . Let α∗1
and α∗2 denote the optimal solutions for γ1 and γ2. Then
from k(·, ·) ≥ 0 and (9), we have

∑
i α
∗
i,1yik(xi,x) ≤∑

i α
∗
i,2yik(xi,x). Therefore, Ĝγ1 = {x : fγ1(x) > 0} ⊂

Ĝγ2 = {x : fγ2(x) > 0}.
Next, without loss of generality, we show Ĝγ1 ⊂ Ĝγ ⊂ Ĝγ2

when γ1 ≤ γ ≤ γ2. The linear interpolation (10) and the nest-
ing constraints (9) imply yiα

∗
i,1 ≤ yiα

∗
i (γ) ≤ yiα

∗
i,2, which,

in turn, leads to
∑
i α
∗
i,1yik(xi,x) ≤

∑
i α
∗
i (γ)yik(xi,x) ≤∑

i α
∗
i,2yik(xi,x).

Now consider arbitrary 0 ≤ γε < γδ ≤ 1. If γε ≤ γm ≤ γδ
for some m, then Ĝγε ⊂ Ĝγδ by the above results. Thus,
suppose this is not the case and assume γ1 < γε < γδ < γ2

without loss of generality. Then there exist ε > δ such that
γε = εγ1 + (1 − ε)γ2 and γδ = δγ1 + (1 − δ)γ2. Suppose
x ∈ Ĝγε . Then x ∈ Ĝγ2 , hence fγε(x) = 1

λ

∑
i(εα

∗
i,1 + (1−

ε)α∗i,2)yik(xi,x) > 0 and fγ2(x) = 1
λ

∑
i α
∗
i,2yik(xi,x) >

0. By adding δ
ε fγε(x) + (1 − δ

ε )fγ2(x), we have fγδ(x) =∑
i(δα

∗
i,1 + (1− δ)α∗i,2)yik(xi,x) > 0. Thus, Ĝγε ⊂ Ĝγδ .

The assumption that the kernel is positive can in some cases
be attained through pre-processing of the data. For example, a
cubic polynomial kernel can be applied if the data support is
shifted to lie in the positive orthant, so that the kernel function
is in fact always positive.

C. Decomposition Algorithm

The objective function (7) requires optimization over N×M
variables. Due to its large size, standard quadratic program-
ming algorithms are inadequate. Thus, we develop a decompo-
sition algorithm that iteratively divides the large optimization
problem into subproblems and optimizes the smaller problems.
A similar approach also appears in a multi-class classification
algorithm [21], although the algorithm developed there is sub-
stantively different from ours. The decomposition algorithm
follows:

1) Choose an example xi from the data set.
2) Optimize coefficients {αi,m}Mm=1 corresponding to xi

while leaving other variables fixed.
3) Repeat 1 and 2 until the optimality condition error falls

below a predetermined tolerance.

The pseudo code given in Fig. 3 initializes with a feasible
solution αi,m = 1{yi<0} + yiγm, ∀i,m. A simple way
of selection and termination is cycling through all the xi
or picking xi randomly and stopping after a fixed number
of iterations. However, by checking the Karush-Kuhn-Tucker
(KKT) optimality conditions and choosing xi most violating
the conditions [22], the algorithm will converge in far fewer
iterations. In the Appendix, we provide a detailed discussion
of the data point selection scheme and termination criterion
based on the KKT optimality conditions.

In step 2, the algorithm optimizes a set of variables associ-
ated to the chosen data point. Without loss of generality, let
us assume that the data point x1 is chosen and {α1,m}Mm=1
will be optimized while fixing the other αi,m. We rewrite the

Input: {(xi, yi)}Ni=1, {γm}Mm=1

Initialize:

αi,m ← 1{yi<0} + yiγm, ∀i,m

repeat
Choose a data point xi.
Compute:

fi,m ←
1
λ

∑
j

αj,myjKi,j , ∀m

αnew
i,m ← αi,m +

λ(1− yifi,m)
Ki,i

, ∀m

Update {αi,m}Mm=1 with the solution of the subproblem:

min
αi,1,...,αi,M

∑
m

[
1
2
α2
i,m − αi,mαnew

i,m

]
s.t. 0 ≤ αi,m ≤ 1{yi<0} + yiγm, ∀m

yiαi,1 ≤ yiαi,2 ≤ · · · ≤ yiαi,M

until Accuracy conditions are satisfied
Output: Ĝγm = {x :

∑
i αi,myik(xi,x) > 0}, ∀m

Fig. 3. Decomposition algorithm for a nested cost-sensitive SVM. Specific
strategies for data point selection and termination, based on the KKT condi-
tions, are given in the Appendix.

objective function (7) in terms of α1,m:∑
m

[
1

2λ

∑
i,j

αi,mαj,myiyjKi,j −
∑
i

αi,m

]

=
1

λ

∑
m

[
1

2
α2

1,mK1,1 + α1,m

(∑
j 6=1

αj,my1yjK1,j − λ

)]
+ C

=
1

λ

∑
m

[
1

2
α2

1,mK1,1 + α1,m

(
λy1f1,m − αold

1,mK1,1 − λ
)]

+ C

=
K1,1

λ

∑
m

[
1

2
α2

1,m − α1,m

(
αold

1,m +
λ(1− y1f1,m)

K1,1

)]
+ C

where f1,m = 1
λ

(∑
j 6=1 αj,myjK1,j + αold

1,my1K1,1

)
and

αold
1,m denote the output and the variable preceding the update.

These values can be easily computed from the previous
iteration result. C is a collection of terms that do not depend
on α1,m.

Then the algorithm solves the new subproblem with M
variables,

min
α1,1,...,α1,M

∑
m

[
1
2
α2

1,m − α1,mα
new
1,m

]
s.t. 0 ≤ α1,m ≤ 1{y1<0} + y1γm, ∀m

y1α1,1 ≤ y1α1,2 ≤ · · · ≤ y1α1,M

where αnew
1,m = αold

1,m + λ(1−y1f1,m)
K1,1

is the solution if feasible.
This subproblem is much smaller and can be solved efficiently
via standard quadratic program solvers.

IV. NESTED OC-SVM
In this section, we present a nested extension of OC-

SVM. The nested OC-SVM (NOC-SVM) estimates a family
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of nested level sets over a continuum of levels λ. Our approach
here parallels the approach developed for the NCS-SVM.
First, we will introduce an objective function for nested
set estimation, and will develop analogous interpolation and
decomposition algorithms for the NOC-SVM.

A. Finite Family of Nested Sets

For M different density levels of interest λ1 > λ2 > · · · >
λM > 0, an NOC-SVM solves the following optimization
problem

min
α1,...,αM

M∑
m=1

 1
2λm

∑
i,j

αi,mαj,mKi,j −
∑
i

αi,m

 (12)

s.t. 0 ≤ αi,m ≤
1
N
, ∀i,m (13)

αi,1
λ1
≤ αi,2

λ2
≤ · · · ≤ αi,M

λM
, ∀i (14)

where αm = (α1,m, . . . , αN,m) and αi,m corresponds to
data point xi at level λm. Its optimal solution α∗m =
(α∗1,m, . . . , α

∗
N,m) determines a level set estimate Ĝλm =

{x : fλm(x) > 1} where fλm(x) = 1
λm

∑
i α
∗
i,mk(xi,x).

In practice, we can choose λ1 and λM to cover the entire
range of interesting values of density level (see Section VI-B,
Appendix C). In Section VII, this quadratic program for the
NOC-SVM is interpreted as a dual of a corresponding primal
quadratic program.

B. Interpolation and Extrapolation

We construct a density level set estimate at an intermediate
level λ between two preselected levels, say λ1 and λ2. At
λ = ελ1 + (1− ε)λ2 for some ε ∈ [0, 1], we set

α∗i (λ) = εα∗i,1 + (1− ε)α∗i,2.

For λ > λ1, we extrapolate the solution by setting α∗i (λ) =
α∗i,1 for ∀i. These are motivated by the facts that the OC-
SVM solution is piecewise linear in λ and remains constant
for λ > λ1 as presented in Appendix C. Then the level set
estimate becomes

Ĝλ = {x :
∑
i

α∗i (λ)k(xi,x) > λ}. (15)

The level set estimates generated from the above process are
shown to be nested in the next Proposition.

Proposition 2. The nested OC-SVM equipped with a kernel
such that k(·, ·) ≥ 0 (in particular, a Gaussian kernel)
generates nested density level set estimates. That is, if 0 <
λε < λδ <∞, then Ĝλε ⊃ Ĝλδ .

Proof: We prove the proposition in three steps. First, we
show that sets from (12) satisfy Ĝλ1 ⊂ Ĝλ2 ⊂ · · · ⊂ ĜλM .
Second, the interpolated set (15) is shown to satisfy Ĝλm ⊂
Ĝλ ⊂ Ĝλm+1 when λm > λ > λm+1. Finally, we prove the
claim for any two sets from the NOC-SVM.

Without loss of generality, we first show Ĝλ1 ⊂ Ĝλ2 . Let
λ1 > λ2 denote two density levels chosen a priori, and α∗1
and α∗2 denote their corresponding optimal solutions. From

(14), we have
∑
i

α∗i,1
λ1
k(xi,x) ≤

∑
i

α∗i,2
λ2
k(xi,x), so the two

estimated level sets are nested Ĝλ1 ⊂ Ĝλ2 .
Next, without loss of generality, we prove Ĝλ1 ⊂ Ĝλ ⊂

Ĝλ2 for λ1 > λ > λ2. From (14), we have
α∗i,1
λ1
≤ α∗i,2

λ2
and

α∗i,1
λ1

=
λ
α∗i,1
λ1

λ
=
εα∗i,1 + (1− ε)λ2

λ1
α∗i,1

λ

≤
εα∗i,1 + (1− ε)α∗i,2

λ
=
α∗i (λ)
λ

≤
ελ1
λ2
α∗i,2 + (1− ε)α∗i,2

λ
=
λ
α∗i,2
λ2

λ
=
α∗i,2
λ2

.

Hence, fλ1(x) ≤ fλ(x) ≤ fλ2(x).
Now consider arbitrary λδ > λε > 0. By construction, we

can easily see that Ĝλδ ⊂ Ĝλε ⊂ Ĝλ1 for λδ > λε > λ1, and
ĜλM ⊂ Ĝλδ ⊂ Ĝλε for λM > λδ > λε. Thus we only need
to consider the case λ1 > λδ > λε > λM . Since above results
imply Ĝλδ ⊂ Ĝλε if λδ > λm > λε for some m, we can
safely assume λ1 > λδ > λε > λ2 without loss of generality.
Then there exist δ > ε such that λδ = δλ1 + (1 − δ)λ2 and
λε = ελ1 + (1− ε)λ2. Suppose x ∈ Ĝλδ . Then x ∈ Ĝλ2 and∑

i

(δα∗i,1 + (1− δ)α∗i,2)k(xi,x) > λδ (16)

∑
i

α∗i,2k(xi,x) > λ2. (17)

By ε
δ× (16) + (1 − ε

δ )× (17), we have
∑
i(εα

∗
i,1 + (1 −

ε)α∗i,2)k(xi,x) > λε. Thus, Ĝλδ ⊂ Ĝλε .
The statement of this result focuses on the Gaussian kernel

because this is the primary kernel for which the OC-SVM has
been successfully applied.

C. Decomposition Algorithm

We also use a decomposition algorithm to solve (12). The
general steps are the same as explained in Section III-C for
the NCS-SVM. Fig. 4 shows the outline of the algorithm. In
the algorithm, a feasible solution αi,m = 1

N for ∀i,m is used
as an initial solution.

Here we present how we can divide the large optimization
problem into a collection of smaller problems. Suppose that
the data point x1 is selected and its corresponding coefficients
{α1,m}Mm=1 will be updated. Writing the objective function
only in terms of α1,m, we have∑

m

[
1

2λm

∑
i,j

αi,mαj,mKi,j −
∑
i

αi,m

]

=
∑
m

[
1

2λm
α2

1,mK1,1 + α1,m

(
1

λm

∑
j 6=1

αj,mK1,j − 1

)]
+ C

=
∑
m

[
1

2λm
α2

1,mK1,1 + α1,m

(
f1,m −

αold
1,m

λm
K1,1 − 1

)]
+ C

=K1,1

∑
m

[
1

2λm
α2

1,m −
α1,m

λm

(
αold

1,m +
λm(1− f1,m)

K1,1

)]
+ C

where αold
1,m and f1,m = 1

λm

(∑
j 6=1 αj,mK1,j + αold

1,mK1,1

)
denote the variable from the previous iteration step and the
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Input: {xi}Ni=1, {λm}Mm=1

Initialize:

αi,m ←
1
N
, ∀i,m

repeat
Choose a data point xi.
Compute:

fi,m ←
1
λm

∑
j

αj,mKi,j , ∀m

αnew
i,m ← αi,m +

λm(1− fi,m)
Ki,i

, ∀m

Update {αi,m}Mm=1 with the solution of the subproblem:

min
αi,1,...,αi,M

∑
m

[
1

2λm
α2
i,m −

αi,m
λm

αnew
i,m

]
s.t. 0 ≤ αi,m ≤

1
N
, ∀m

αi,1
λ1
≤ αi,2

λ2
≤ · · · ≤ αi,M

λM

until Accuracy conditions are satisfied
Output: Ĝλm = {x :

∑
i αi,mk(xi,x) > λm}, ∀m

Fig. 4. Decomposition algorithm for a nested one-class SVM. Specific strate-
gies for data point selection and termination, based on the KKT conditions,
are given in the Appendix.

corresponding output, respectively. C is a constant that does
not affect the solution.

Then we obtain the reduced optimization problem of M
variables,

min
α1,1,...,α1,M

∑
m

[
1

2λm
α2

1,m −
α1,m

λm
αnew

1,m

]
(18)

s.t. 0 ≤ α1,m ≤
1
N
, ∀m (19)

α1,1

λ1
≤ α1,2

λ2
≤ · · · ≤ α1,M

λM
(20)

where αnew
1,m = αold

1,m + λm(1−f1,m)
K1,1

. Notice that αnew
1,m becomes

the solution if it is feasible. This reduced optimization problem
can be solved through standard quadratic program solvers.

V. COMPUTATIONAL CONSIDERATIONS

Here we provide guidelines for breakpoint selection and
discuss the effects of interpolation.

A. Breakpoint Selection

The construction of an NCS-SVM begins with the selection
of a finite number of cost asymmetries. Since the cost asym-
metries take values within the range [0, 1], the two breakpoints
γ1 and γM should be at the two extremes so that γ1 = 0 and
γM = 1. Then the rest of the breakpoints γ2, · · · , γM−1 can
be set evenly spaced between γ1 and γM .

On the other hand, the density levels for NOC-SVMs
should be strictly positive. Without covering all positive reals,
however, λ1 and λM can be chosen to cover practically all the

density levels of interest. The largest level λ1 for the NOC-
SVM is set as described in Appendix C where we show that
for λ > λ1, the CS-SVM and OC-SVM remain unchanged.
A very small number greater than 0 is set for λM . Then the
NOC-SVM is trained on evenly spaced breakpoints between
λ1 and λM .

In our experiments, we set the number of breakpoints to
be M = 5 for NCS-SVMs and M = 11 for NOC-SVMs.
These values were chosen because increasing the number of
breakpoints M had diminishing AUC gains while causing
training time increases in our experiments. Thus, the cost
asymmetries for the NCS-SVM are (0, 0.25, 0.5, 0.75, 1) and
the density levels for NOC-SVM are 11 linearly spaced points
from λ1 = 1

N maxi
∑
j Ki,j to λ11 = 10−6.

B. Effects of Interpolation
Nested SVMs are trained on a finite number of cost asym-

metries or density levels and then the solution coefficients are
linearly interpolated over a continuous range of parameters.
Here we illustrate the effectiveness of the linear interpolation
scheme of nested SVMs using the two dimensional banana
data set.

Consider two sets of cost asymmetries, γ̃ = (0 : 0.25 : 1)
and γ = (0 : 0.1 : 1), with different numbers of breakpoints
for the NCS-SVM. Let α̃∗i (γm) denote the linearly interpolated
solution at γm from the solution of the NCS-SVM with γ̃,
and let α∗i (γm) denote the solution from the NCS-SVM with
γ. Fig. 5 compares these two solution coefficients α̃∗i (γm)
and α∗i (γm). The box plots Fig. 5 (a) shows that values
of α̃∗i (γm) − α∗i (γm) tend to be very small. Indeed, for
most γm, the interquartile range on these box plots is not
even visible. Regardless of these minor discrepancies, what is
most important is that the resulting decision sets are almost
indistinguishable as illustrated in Fig. 5 (c) and (e). Similar
results can be observed in the NOC-SVM as well from Fig.
5 (b), (d) and (f). Here we consider two sets of density levels
λ̃ with 11 breakpoints and λ with 16 breakpoints between
λ1 = 1

N maxi
∑
j Ki,j and λM = 10−6.

C. Computational complexity
According to Hastie et al. [11], the (non-nested) path

following algorithm has O(N) breakpoints and complexity
O(m2N + N2m), where m is the maximum number of
points on the margin along the path. On the other hand, our
nested SVMs have a controllable number of breakpoints M .
To assess the complexity of the nested SVMs, we make a
couple of assumptions based on experimental evidence. First,
our experience has shown that the number of iterations of
the decomposition algorithm is proportional to the number
of data points N . Second, we assume that the subproblem,
which has M variables, can be solved in O(M2) operations.
Furthermore, each iteration of the decomposition algorithm
also involves a variable selection step. This involves checking
all variables for KKT condition violations (as detailed in the
Appendices), and thus entails O(MN) operations. Thus, the
computation time of nested SVMs are O(M2N +MN2). In
Section VI-E, we experimentally compare the run times of the
path following algorithms to our methods.
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  0 0.2 0.4 0.6 0.8   1
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banana

(a) α̃∗i (γm)− α∗i (γm)
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(b) α̃∗i (λm)− α∗i (λm)

(c) Ĝγm(α̃∗i (γm)) (d) Ĝλm(α̃∗i (λm))

(e) Ĝγm(α∗i (γm)) (f) Ĝλm(α∗i (λm))

Fig. 5. Simulation results depicting the impact of interpolation on the
coefficients and final set estimates. See Section V-B for details.

Data set dim Ntrain Ntest
banana 2 400 4900
breast-cancer 9 200 77
diabetes 8 468 300
flare-solar 9 666 400
german 20 700 300
heart 13 170 100
ringnorm 20 400 7000
thyroid 5 140 75
titanic 3 150 2051
twonorm 20 400 7000
waveform 21 400 4600
image 18 1300 1010
splice 60 1000 2175

Fig. 6. Description of data sets. dim is the number of features, and Ntrain
and Ntest are the numbers of training and test examples.

VI. EXPERIMENTS AND RESULTS

In order to compare the algorithms described above, we
experimented on 13 benchmark data sets available online 1

[23]. Their brief summary is provided in Fig. 6. Each feature is
standardized with zero mean and unit variance. The first eleven
data sets are randomly permuted 100 times (the last two are

1http://ida.first.fhg.de/projects/bench/

permuted 20 times) and divided into training and test sets. In
all of our experiments, we used the Gaussian kernel k(x,x′) =
exp

(
−‖x−x′‖2

2σ2

)
and searched for the bandwidth σ over 20

logarithmically spaced points from davg/15 to 10 davg where
davg is the average distance between training data points. This
control parameter is selected via 5-fold cross validation on the
first 10 permutations, then the average of these values is used
to train the remaining permutations.

Each algorithm generates a family of decision functions
and set estimates. From these sets, we construct an ROC and
compute its area under the curve (AUC). We use the AUC
averaged across permutations to compare the performance of
algorithms. As shown in Fig. 1, however, the set estimates
from CS-SVMs or OC-SVMs are not properly nested, and
cause ambiguity particularly in ranking. In Section VI-C, we
measure this violation of the nesting by defining the ranking
disagreement of two rank scoring functions. Then in Section
VI-D, we combine this ranking disagreement and the AUC,
and compare the algorithms over multiple data sets using the
Wilcoxon signed ranks test as suggested in [24].

A. Two-class Problems

CS-SVMs and NCS-SVMs are compared in two-class prob-
lems. For NCS-SVMs, we set M = 5 and solved (7) at uni-
formly spaced cost asymmetries γ = (0, 0.25, 0.50, 0.75, 1).

In two-class problems, we also searched for the regulariza-
tion parameter λ over 10 logarithmically spaced points from
0.1 to λmax where λmax is

λmax = max

max
i

∑
j∈I+

yiyjKi,j , max
i

∑
j∈I−

yiyjKi,j

 .

Values of λ > λmax do not produce different solutions in the
CS-SVM (see Appendix C).

We compared the described algorithms by constructing
ROCs and computing their AUCs. The results are collected in
Fig. 7. More statistical treatments of these results are covered
in Section VI-D.

B. One-class Problems

For the NOC-SVM, we selected 11 density levels spaced
evenly from λ1 = 1

N maxi
∑
j Ki,j (see Appendix C) to

λ11 = 10−6. Among the two classes available in each
data set, we chose the negative class for training. Because
the bandwidth selection step requires computing AUCs, we
simulated an artificial second class from a uniform distribution.
For evaluation of the trained decision functions, both the
positive examples in the test sets and a new uniform sample
were used as the alternative class. Fig. 7 reports the results for
both cases (denoted by Positive and Uniform, respectively).

Fig. 8 shows the AUC of the two algorithms over a range
of σ. Throughout the experiments on one-class problems, we
observed that the NOC-SVM is more robust to the kernel
bandwidth selection than the OC-SVM. However, we did not
observe similar results on two-class problems.
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Two-class One-class: Positive One-class: Uniform
Data Set CS NCS OC NOC OC NOC
banana 0.950 ± 0.009 0.963 ± 0.003 0.919 ± 0.009 0.930 ± 0.007 0.906 ± 0.003 0.911 ± 0.003
breast-cancer 0.733 ± 0.054 0.731 ± 0.056 0.647 ± 0.062 0.654 ± 0.061 0.976 ± 0.006 0.976 ± 0.006
diabetes 0.829 ± 0.016 0.825 ± 0.017 0.722 ± 0.023 0.732 ± 0.022 0.996 ± 0.001 0.996 ± 0.001
flare-solar 0.658 ± 0.040 0.580 ± 0.047 0.601 ± 0.042 0.601 ± 0.043 0.998 ± 0.000 0.998 ± 0.000
german 0.796 ± 0.024 0.788 ± 0.024 0.626 ± 0.031 0.626 ± 0.031 0.991 ± 0.003 0.991 ± 0.003
heart 0.908 ± 0.027 0.907 ± 0.027 0.776 ± 0.037 0.782 ± 0.036 0.986 ± 0.005 0.986 ± 0.005
ringnorm 0.982 ± 0.002 0.955 ± 0.011 0.997 ± 0.000 0.997 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
thyroid 0.962 ± 0.037 0.954 ± 0.037 0.986 ± 0.009 0.987 ± 0.008 0.999 ± 0.000 0.999 ± 0.000
titanic 0.599 ± 0.069 0.597 ± 0.070 0.602 ± 0.068 0.588 ± 0.062 0.761 ± 0.051 0.765 ± 0.041
twonorm 0.997 ± 0.000 0.997 ± 0.000 0.910 ± 0.011 0.912 ± 0.009 1.000 ± 0.000 1.000 ± 0.000
waveform 0.969 ± 0.002 0.967 ± 0.003 0.752 ± 0.019 0.762 ± 0.017 1.000 ± 0.000 1.000 ± 0.000
image 0.991 ± 0.002 0.985 ± 0.004 0.872 ± 0.039 0.854 ± 0.039 1.000 ± 0.000 1.000 ± 0.000
splice 0.950 ± 0.003 0.951 ± 0.004 0.416 ± 0.009 0.415 ± 0.009 0.553 ± 0.012 0.554 ± 0.008

Fig. 7. AUC values for the CS-SVM (CS) and NCS-SVM (NCS) in two-class problems, and OC-SVM (OC) and NOC-SVM (NOC) in one-class problems.
In one-class problems, ’Positive’ indicates that the alternative hypotheses are from the positive class examples in the data sets, and ’Uniform’ indicated that
the alternative hypotheses are from a uniform distribution.
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(b) Uniform

Fig. 8. The effect of kernel bandwidth σ on the performance (AUC). The
AUC is evaluated when the alternative class is from the positive class in
the data sets (a) and from a uniform distribution (b). The NOC-SVM is less
sensitive to σ than the OC-SVM.

C. Ranking disagreement

The decision sets from the OC-SVM and the CS-SVM are
not properly nested, as illustrated in Fig. 1. Since larger λ
means higher density level, the density level set estimate of
the OC-SVM is expected to be contained within the density
level set estimate at smaller λ. Likewise, larger γ in the CS-
SVM penalizes misclassification of positive examples more;
thus, its corresponding positive decision set should contain
the decision set at smaller γ, and the two decision boundaries
should not cross. This undesired nature of the algorithms leads
to non-unique ranking score functions.

In the case of the CS-SVM, we can consider the following
two ranking functions:

s+(x) = 1− min
{γ:fγ(x)≥0}

γ, s−(x) = 1− max
{γ:fγ(x)≤0}

γ.

(21)

For the OC-SVM, we consider the next pair of ranking
functions,

s+(x) = max
{λ:x∈Ĝλ}

λ, s−(x) = min
{λ:x∈Ĝλ}

λ. (22)

In words, s+ ranks according to the first set containing a point
x and s− ranks according to the last set containing the point.
In either case, it is easy to see s+(x) ≥ s−(x).

In order to quantify the disagreement of the two ranking
functions, we define the following measure of ranking dis-

Data set d2(s+, s−) dp(s+, s−) du(s+, s−)
banana 0.024 0.498 0.389
breast-cancer 0.013 0.252 0.093
diabetes 0.119 0.020 0.001
flare-solar 0.300 0.657 0.198
german 0.019 0.000 0.000
heart 0.005 0.000 0.000
ringnorm 0.244 0.000 0.000
thyroid 0.002 0.019 0.000
titanic 0.000 0.250 0.231
twonorm 0.006 0.000 0.000
waveform 0.078 0.002 0.001
image 0.307 0.276 0.047
splice 0.105 0.000 0.000

Fig. 9. The measure of disagreement of the two ranking functions from the
CS-SVM and OC-SVM. The meaning of each subscript is explained in the
text. s+ and s− are defined in (21) and (22).

agreement:

d(s+, s−) =
1
N

∑
i

max
j 6=i

1{(s+(xi)−s+(xj))(s−(xi)−s−(xj))<0},

which is the proportion of data points ambiguously ranked,
i.e., ranked differently with respect to at least one other point.
Then d(s+, s−) = 0 if and only if s+ and s− induce the same
ranking.

With these ranking functions, Fig. 9 reports the ranking
disagreements from the CS-SVM and OC-SVM. In the table,
d2 refers to the ranking disagreement of the CS-SVM, and dp
and du respectively refer to the ranking disagreement of the
OC-SVM when the second class is from the positive samples
and from an artificial uniform distribution. As can be seen in
the table, for some data sets the violation of the nesting causes
severe differences between the above ranking functions.

D. Statistical comparison

We employ the statistical methodology of Demšar [24]
to compare the algorithms across all data sets. Using the
Wilcoxon signed ranks test, we compare the CS-SVM and
the NCS-SVM for two-class problems, and the OC-SVM and
the NOC-SVM for one-class problems.

The Wilcoxon signed ranks test is a non-parametric method
testing the significance of differences between paired observa-
tions, and can be used to compare the performances between
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CS NCS T
78 13 13

Fig. 10. Comparison of the AUCs of the two-class problem algorithms: CS-
SVM (CS) and NCS-SVM (NCS) using the Wilcoxon signed ranks test (see
text for detail.) The test statistic T is greater than the critical difference 9,
hence no significant difference is detected in the test.

OC NOC T
Positive 35 56 35
Uniform 21.5 69.5 21.5

Fig. 11. Comparison of the OC-SVM (OC) and NOC-SVM (NOC). In the
one-class problems, both cases of alternative hypothesis are considered. Here
no significant difference is detected.

two algorithms over multiple data sets. The difference between
the AUCs from the two algorithms are ranked ignoring the
signs, and then the ranks of positive and negative differences
are added. Fig. 10 and Fig. 11 respectively report the com-
parison results of the algorithms for two-class problems and
one-class problems. Here the numbers under NCS or NOC
denote the sums of ranks of the data sets on which the nested
SVMs performed better than the original SVMs; the values
under CS or OC are for the opposite. T is the smaller of
the two sums. For a confidence level of α = 0.01 and 13
data sets, the difference between algorithms is significant if
T is less than or equal to 9 [25]. Therefore, any significant
performance difference between the CS-SVM and the NCS-
SVM was not detected in the test. Likewise, no difference
between the OC-SVM and the NOC-SVM was detected.

However, the AUC alone does not highlight the ranking
disagreement of the algorithms. Therefore, we merge the AUC
and the disorder measurement, and consider AUC−d(s+, s−)
for algorithm comparison. Fig. 12 shows the results of the
Wilcoxon signed-ranks test using this combined performance
measure. From the results, we can observe clearly the perfor-
mance differences between algorithms. Since the test statistic
T is smaller than the critical difference 9, the NCS-SVM out-
performs the CS-SVM. Likewise, the performance difference
between the OC-SVM and the NOC-SVM is also detected by
the Wilcoxon test for both cases of the second class. Therefore,
we can conclude that the nested algorithms perform better than
their unnested counterparts.

E. Run time comparison

Fig. 13 shows the training times for each algorithm. The
results for the CS-SVM and OC-SVM are based on our Matlab
implementation of solution path algorithms [8], [12] avail-
able at http://www.eecs.umich.edu/∼cscott/code/svmpath.zip.
We emphasize here that our decomposition algorithm relies on
Matlab’s quadprog function as the basic subproblem solver,
and that this function is in no way optimized for our particular

CS NCS T
4 87 4

OC NOC T
Positive 5 86 5
Uniform 2.5 88.5 2.5

Fig. 12. Comparison of the algorithms based on the AUC along with the
ranking disagreement. Left: CS-SVM and NCS-SVM. Right: OC-SVM and
NOC-SVM. T is less than the critical values 9, hence the nested SVMs
outperforms the original SVMs.

Data set CS NCS OC NOC
banana 1.01 24.55 0.29 13.03
breast-cancer 0.43 2.42 0.13 9.64
diabetes 2.92 9.80 0.56 75.46
flare-solar 0.17 4.05 0.02 0.85
german 13.25 0.68 4.48 57.69
heart 0.31 7.76 0.07 5.71
ringnorm 3.16 3.43 0.01 2.07
thyroid 0.22 2.74 0.08 6.50
titanic 0.01 0.66 < 0.01 5.69
twonorm 1.89 8.21 0.31 15.29
waveform 1.87 10.42 0.56 26.60
image 40.08 298.98 1.30 64.77
splice 68.43 149.68 0.55 6.06

Fig. 13. Average training times (sec) for the CS-SVM, NCS-SVM, OC-
SVM, and NOC-SVM on benchmark data sets. This result is based on our
implementation of solution path algorithms for the CS-SVM and OC-SVM.

subproblem. A discussion of computational complexity was
given in V-C.

VII. PRIMAL OF NESTED SVMS

Although not essential for our approach, we can find a
primal optimization problem of the NCS-SVM if we think
of (7) as a dual problem:

min
w,ξ

M∑
m=1

λ
2
‖wm‖2 + γm

∑
I+

ξi,m + (1− γm)
∑
I−

ξi,m


s.t.

M∑
k=m

〈wk,Φ(xi)〉 ≥
M∑
k=m

(1− ξi,k), i ∈ I+,∀m

m∑
k=1

〈wk,Φ(xi)〉 ≤ −
m∑
k=1

(1− ξi,k), i ∈ I−,∀m

ξi,m ≥ 0, ∀i,m.

The derivation of (7) from this primal can be found in [26].
Note that the above primal of the NCS-SVM reduces to the
primal of the CS-SVM (1) when M = 1.

Likewise, the primal corresponding to the NOC-SVM is

min
w,ξ

M∑
m=1

[
λm
2
‖wm‖2 +

1
N

∑
i

ξi,m

]
(23)

s.t.
M∑
k=m

λk〈wk,Φ(xi)〉 ≥
M∑
k=m

λk(1− ξi,m), ∀i,m

ξi,m ≥ 0, ∀i,m,

which also boils down to the primal of the OC-SVM (4) when
M = 1.

With these formulations, we can see the geometric meaning
of w and ξ. For simplicity, consider (23) when M = 2:

min
w,ξ

λ2

2
‖w2‖2 +

1
N

∑
i

ξi,2 +
λ1

2
‖w1‖2 +

1
N

∑
i

ξi,1

s.t. 〈λ2w2,Φ(xi)〉 ≥ λ2(1− ξi,2), ∀i
〈λ2w2 + λ1w1,Φ(xi)〉 ≥ λ2(1− ξi,2) + λ1(1− ξi,1), ∀i
ξi,m ≥ 0, ∀i,m.

Here ξi,1 > 0 when xi lies between the hyperplane
Pλ2w2+λ1w1

λ2+λ1

and the origin, and ξi,2 > 0 when the point lies
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between Pw2 and the origin where we used Pw to denote
{Φ(x) : 〈w,Φ(x)〉 = 1}, a hyperplane in H. Note that from
the nesting structure, the hyperplane Pλ2w2+λ1w1

λ2+λ1

is located

between Pw1 and Pw2 . Then we can show that λ1ξi,1+λ2ξi,2
‖λ1w1+λ2w2‖

is the distance between the point xi and the hyperplane
Pλ2w2+λ1w1

λ2+λ1

.

VIII. CONCLUSION

In this paper, we introduced a novel framework for building
a family of nested support vector machines for the tasks of
cost-sensitive classification and density level set estimation.
Our approach involves forming new quadratic programs in-
spired by the cost-sensitive and one-class SVMs, with addi-
tional constraints that enforce nesting structure. Our construc-
tion generates a finite number of nested set estimates at a pre-
selected set of parameter values, and linearly interpolates these
sets to a continuous nested family. We also developed efficient
algorithms to solve the proposed quadratic problems. Thus, the
NCS-SVM yields a family of nested classifiers indexed by cost
asymmetry γ, and the NOC-SVM yields a family of nested
density level set estimates indexed by density level λ. Unlike
the original SVMs, which are not nested, our methods can be
readily applied to problems requiring multiple set estimation
including clustering, ranking, and anomaly detection.

In experimental evaluations, we found that non-nested
SVMs can yield highly ambiguous rankings for many datasets,
and that nested SVMs offer considerable improvements in
this regard. Nested SVMs also exhibit greater stability with
respect to model selection criteria such as cross-validation.
In terms of area under the ROC (AUC), we found that
enforcement of nesting appears to have a bigger impact on
one-class problems. However, neither cost-sensitive nor one-
class classification problems displayed significantly different
AUC values between nested and non-nested methods.

The statistical consistency of our nested SVMs is an inter-
esting open question. Such a result would likely depend on
the consistency of the original CS-SVM or OC-SVM at fixed
values of γ or λ, respectively. We are unaware of consistency
results for the CS-SVM at fixed γ [27]. However, consistency
of the OC-SVM for fixed λ has been established [20]. Thus,
suppose Ĝλ1 , . . . , ĜλM are (non-nested) OC-SVMs at a grid
of points. Since these estimators are each consistent, and the
true levels sets they approximate are nested, it seems plausible
that for a sufficiently large sample size, these OC-SVMs are
also nested. In this case, they would be feasible for the NOC-
SVM, which would suggest that the NOC-SVM estimates
the true level sets at least as well, asymptotically, at these
estimates. Taking the grid of levels {λi} to be increasingly
dense, the error of the interpolation scheme should also vanish.
We leave it as future work to determine whether this intuition
can be formalized.

APPENDIX A
DATA POINT SELECTION AND TERMINATION CONDITION

OF NCS-SVM
On each round, the algorithm in Fig. 3 selects an exam-

ple xi, updates its corresponding variables {αi,m}Mm=1, and

checks the termination condition. In this appendix, we employ
the KKT conditions to derive an efficient variable selection
strategy and a termination condition of NCS-SVM.

We use the KKT conditions to find the necessary conditions
of the optimal solution of (7). Before we proceed, we define
αi,0 = 0 for i ∈ I+ and αi,M+1 = 0 for i ∈ I− for notational
convenience. Then the Lagrangian of the quadratic program is

L(α,u,v) =
∑
m

 1
2λ

∑
i,j

αi,mαj,myiyjKi,j −
∑
i

αi,m


+
∑
m

∑
i

ui,m(αi,m − 1{yi<0} − yiγm)

+
∑
m

∑
i∈I+

vi,m(αi,m−1 − αi,m)

−
∑
m

∑
i∈I−

vi,m(αi,m − αi,m+1)

where ui,m ≥ 0 and vi,m ≥ 0 for ∀i,m. At the global
minimum, the derivative of the Lagrangian with respect to
αi,m vanishes

∂L
∂αi,m

= yifi,m − 1 + ui,m

{
−vi,m + vi,m+1, i ∈ I+
+vi,m−1 − vi,m, i ∈ I−

= 0 (24)

where, recall, fi,m = 1
λ

∑
j αj,myjKi,j and we introduced

auxiliary variables vi,M+1 = 0 for i ∈ I+ and vi,0 = 0 for
i ∈ I−. Then we obtain the following set of constraints from
the KKT conditions

yifi,m − 1 + ui,m =

{
vi,m − vi,m+1, i ∈ I+
−vi,m−1 + vi,m, i ∈ I−

(25)

0 ≤ αi,m ≤ 1{yi<0} + yiγm, ∀i,∀m (26)
yiαi,1 ≤ yiαi,2 ≤ · · · ≤ yiαi,M , ∀i (27)

ui,m
(
αi,m − 1{yi<0} − yiγm

)
= 0, ∀i,∀m (28)

vi,m(αi,m−1 − αi,m) = 0, i ∈ I+,∀m (29)
vi,m(αi,m − αi,m+1) = 0, i ∈ I−,∀m (30)
ui,m ≥ 0, vi,m ≥ 0, ∀i,m. (31)

Since (7) is a convex program, the KKT conditions are also
sufficient [22]. That is, αi,m, ui,m, and vi,m satisfying (25)-
(31) is indeed optimal. Therefore, at the end of each iteration,
we assess a current solution with these conditions and decide
whether to stop or to continue. We evaluate the amount of
error for xi by defining

ei =
∑
m

∣∣∣∣ ∂L
∂αi,m

∣∣∣∣ , ∀i.

An optimal solution makes these quantities zero. In practice,
when their sum

∑
i ei decreases below a predetermined toler-

ance, the algorithm stops and returns the current solution. If
not, the algorithm chooses the example with the largest ei and
continues the loop.

Computing ei involves unknown variables ui,m and vi,m
(see (24)), whereas fi,m can be easily computed from the
known variables αi,m. Fig. 14 and Fig. 15 are for determining
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αi,m−1 < αi,m αi,m−1 = αi,m

αi,m < min(γm, αi,m+1) ui,m = 0 ui,m = 0
vi,m = 0 vi,m = max(fi,m − 1, 0)

αi,m = γm < αi,m+1 ui,m = max(1− fi,m, 0) -
vi,m = 0 -

αi,m = αi,m+1 < γm ui,m = 0 ui,m = 0
vi,m = 0 vi,m = max(fi,m − 1 + vi,m+1, 0)

αi,m = αi,m+1 = γm ui,m = max(1− fi,m − vi,m+1, 0) -
vi,m = 0 -

αi,M−1 < αi,M αi,M−1 = αi,M

αi,M < γM ui,M = 0 ui,M = 0
vi,M = 0 vi,M = max(fi,M − 1, 0)

αi,M = γM ui,M = max(1− fi,M , 0) -
vi,M = 0 -

Fig. 14. The optimality conditions of NCS-SVM when i ∈ I+. (Upper: m = 1, 2, . . . ,M − 1, Lower: m = M .) Assuming αi,m are optimal, ui,m and
vi,m are solved as above from the KKT conditions. Empty entries indicate cases that cannot occur.

αi,m+1 < αi,m αi,m+1 = αi,m

αi,m < min(1− γm, αi,m−1) ui,m = 0 ui,m = 0
vi,m = 0 vi,m = max(−fi,m − 1, 0)

αi,m = 1− γm < αi,m−1 ui,m = max(1 + fi,m, 0) -
vi,m = 0 -

αi,m = αi,m−1 < 1− γm ui,m = 0 ui,m = 0
vi,m = 0 vi,m = max(−fi,m − 1 + vi,m−1, 0)

αi,m = αi,m−1 = 1− γm ui,m = max(1 + fi,m − vi,m−1, 0) -
vi,m = 0 -

αi,2 < αi,1 αi,2 = αi,1

αi,1 < 1− γ1 ui,1 = 0 ui,1 = 0
vi,1 = 0 vi,1 = max(−fi,1 − 1, 0)

αi,1 = 1− γ1 ui,1 = max(1 + fi,1, 0) -
vi,1 = 0 -

Fig. 15. The optimality conditions of NCS-SVM when i ∈ I−. (Upper: m = 2, . . . ,M , Lower: m = 1.)

these ui,m and vi,m. These tables are obtained by firstly
assuming the current solution αi,m is optimal and secondly
solving ui,m and vi,m such that they satisfy the KKT condi-
tions. Thus, depending on the value αi,m between its upper
and lower bounds, ui,m and vi,m can be simply set as directed
in the tables. For example, if i ∈ I+, then we find ui,m and
vi,m by referring Fig. 14 iteratively from m = M down to
m = 1. If i ∈ I−, we use Fig. 15 and iterate from m = 1
up to m = M . Then the obtained ei takes a non-zero value
only when the assumption is false and the current solution is
sub-optimal.

APPENDIX B
DATA POINT SELECTION AND TERMINATION CONDITION

OF NOC-SVM

As in NCS-SVM, we investigate the optimality condition of
NOC-SVM (12) and find a data point selection method and a
termination condition.

With a slight modification, we rewrite (12),

min
α1,...,αM

M∑
m=1

 1
2λm

∑
i,j

αi,mαj,mKi,j −
∑
i

αi,m

 (32)

s.t. αi,m ≤
1
N
, ∀i,m

0 ≤ αi,1
λ1
≤ αi,2

λ2
≤ · · · ≤ αi,M

λM
, ∀i.

We then use the KKT conditions to find the necessary condi-

tions of the optimal solution of (32). The Lagrangian is

L(α,u,v) =
M∑
m=1

 1
2λm

∑
i,j

αi,mαj,mKi,j −
∑
i

αi,m


+

M∑
m=1

∑
i

ui,m(αi,m −
1
N

)−
∑
i

vi,1
αi,1
λ1

+
∑
i

M∑
m=2

vi,m

(
αi,m−1

λm−1
− αi,m

λm

)

where ui,m ≥ 0 and vi,m ≥ 0 for ∀i,m. At the global
minimum, the derivative of the Lagrangian with respect to
αi,m vanishes

∂L
∂αi,m

= fi,m − 1 + ui,m

{
−vi,mλm + vi,m+1

λm
, m 6= M

−vi,MλM , m = M

= 0. (33)

where, recall, fi,m = 1
λm

∑
j αj,mKi,j . Then, from the KKT
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conditions, we obtain the following set of constraints for xi:

fi,m − 1 + ui,m =

{
vi,m
λm
− vi,m+1

λm
, m 6= M

vi,M
λM

, m = M
(34)

αi,m ≤
1
N
, ∀m (35)

0 ≤ αi,1
λ1
≤ αi,2

λ2
≤ · · · ≤ αi,M

λM
(36)

ui,m(αi,m −
1
N

) = 0, ∀m (37)

vi,m(
αi,m−1

λm−1
− αi,m

λm
) = 0, ∀m (38)

ui,m ≥ 0, vi,m ≥ 0, ∀m. (39)

Since (32) is a convex program, the KKT conditions are
sufficient [22]. That is, αi,m, ui,m, and vi,m satisfying (34)-
(39) is indeed optimal. Therefore, at the end of each iteration,
we assess a current solution with these conditions and decide
whether to stop or to continue. We evaluate the amount of
error for xi by defining

ei =
∑
m

∣∣∣∣ ∂L
∂αi,m

∣∣∣∣ , ∀i.

An optimal solution makes these quantities zero. In practice,
when their sum

∑
i ei decreases below a predetermined toler-

ance, the algorithm stops and returns the current solution. If
not, the algorithm chooses the example with the largest ei and
continues the loop.

Computing ei involves unknown variables ui,m and vi,m
(see (33)), whereas fi,m can be easily computed from the
known variables αi,m. Fig. 16 are for determining these ui,m
and vi,m. These tables are obtained by firstly assuming the
current solution αi,m is optimal and secondly solving ui,m
and vi,m such that they satisfy the KKT conditions. Thus,
depending on the value αi,m between its upper and lower
bounds, ui,m and vi,m can be simply set by referring Fig. 16
iteratively from m = M down to m = 1. Then the obtained
ei takes a non-zero value only when the assumption is false
and the current solution is not optimal.

APPENDIX C
MAXIMUM VALUE OF λ OF CS-SVM AND OC-SVM

In this appendix, we find the values of the regularization
parameter λ over which OC-SVM or CS-SVM generate the
same solutions.

First, we consider OC-SVM. The decision function of OC-
SVM is fλ(x) = 1

λ

∑
j αjk(xj ,x) and fλ(x) = 1 forms

the margin. For sufficiently large λ, every data point xi falls
inside the margin (fλ(xi) ≤ 1). Since the KKT optimality
conditions of (4) imply αi = 1

N for the data points such that
fλ(xi) < 1, we obtain λ ≥ 1

N

∑
j Ki,j for ∀i. Therefore,

if the maximum row sum of the kernel matrix is denoted as
λOC = maxi 1

N

∑
j Ki,j , then for any λ ≥ λOC , the optimal

solution of OC-SVM becomes αi = 1
N for ∀i.

Next, we consider the regularization parameter λ of in
the formulation (1) of CS-SVM. The decision function of
CS-SVM is fγ(x) = 1

λ

∑
j αjyjk(xj ,x), and the margin

is yfγ(x) = 1. Thus, if λ is sufficiently large, all the

data points are inside the margin and satisfy yifγ(xi) ≤ 1.
Then λ ≥

∑
j∈I+ γyiyjKi,j +

∑
j∈I−(1− γ)yiyjKi,j for ∀i

because αi = 1{yi<0} + yiγ for all the data points such that
yifγ(xi) < 1 from the KKT conditions. For a given γ, let

λCS(γ) = max
i

γ ∑
j∈I+

yiyjKi,j + (1− γ)
∑
j∈I−

yiyjKi,j

 .
Then for λ > λCS(γ), the solution of CS-SVM becomes
αi = 1{yi<0} + yiγ for ∀i. Therefore, since λCS(γ) ≤
(1 − γ)λCS(0) + γλCS(1) for all γ ∈ [0, 1], values of
λ > max (λCS(0), λCS(1)) generate the same solutions in
CS-SVM.
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[10] S. J. Clémençon and N. Vayatis, “Overlaying classifiers: a practical ap-
proach for optimal ranking,” Advances in Neural Information Processing
Systems 21, vol. 21, pp. 313–320, 2009.

[11] T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu, “The entire regularization
path for the support vector machine,” Journal of Machine Learning
Research, vol. 5, pp. 1391–1415, 2004.

[12] G. Lee and C. Scott, “The one class support vector machine solution
path,” in IEEE Intl. Conf. on Acoustics, Speech and Signal Proc.
(ICASSP), vol. 2, 2007, pp. II–521–II–524.

[13] ——, “Nested support vector machines,” in IEEE Intl. Conf. on Acous-
tics, Speech and Signal Proc. (ICASSP), 2008, pp. 1985–1988.

[14] S. Agarwal, T. Graepel, R. Herbrich, S. Har-Peled, and D. Roth,
“Generalization bounds for the area under the roc curve,” Journal of
Machine Learning Research, vol. 6, pp. 393–425, 2005.

[15] W. Stuetzle, “Estimating the cluster tree of a density by analyzing the
minimal spanning tree of a sample,” Journal of Classification, vol. 20,
no. 5, pp. 25–47, 2003.

[16] V. Kecman, Learning and Soft Computing, Support Vector Machines,
Neural Networks, and Fuzzy Logic Models. Cambridge, MA: MIT
Press, 2001.

[17] E. Osuna, R. Freund, and F. Girosi, “Support vector machines: Training
and applications,” MIT Artificial Intelligence Laboratory, Tech. Rep.
AIM-1602, Mar 1997.

[18] B. Schölkopf, J. Platt, J. Shawe-Taylor, A. Smola, and R. Williamson,
“Estimating the support of a high-dimensional distribution,” Neural
Computation, vol. 13, pp. 1443–1472, 2001.

[19] D. Tax and R. Duin, “Support vector domain description,” Pattern
Recognition Letters, vol. 20, pp. 1191–1199, 1999.

[20] R. Vert and J. Vert, “Consistency and convergence rates of one-class
SVMs and related algorithms,” Journal of Machine Learning Research,
vol. 7, pp. 817–854, 2006.

[21] K. Crammer and Y. Singer, “On the algorithmic implementation of
multiclass kernel-based vector machines,” Journal of Machine Learning
Research, vol. 2, pp. 265–292, 2001.



13

λm
λm−1

αi,m−1 < αi,m
λm
λm−1

αi,m−1 = αi,m

αi,m < min( 1
N
, λm
λm+1

αi,m+1) ui,m = 0 ui,m = 0

vi,m = 0 vi,m = max(λm(fi,m − 1), 0)

αi,m = 1
N
< λm

λm+1
αi,m+1 ui,m = max(1− fi,m, 0) -

vi,m = 0 -
αi,m = λm

λm+1
αi,m+1 <

1
N

ui,m = 0 ui,m = 0

vi,m = 0 vi,m = max(λm(fi,m − 1 +
vi,m+1
λm

), 0)

αi,m = λm
λm+1

αi,m+1 = 1
N

ui,m = max(1− fi,m −
vi,m+1
λm

, 0) -
vi,m = 0 -

λM
λM−1

αi,M−1 < αi,M
λM
λM−1

αi,M−1 = αi,M

αi,M < 1
N

ui,M = 0 ui,M = 0
vi,M = 0 vi,M = max(λM (fi,M − 1), 0)

αi,M = 1
N

ui,M = max(1− fi,M , 0) -
vi,M = 0 -

Fig. 16. The optimality conditions of NOC-SVM. (Upper: m = 1, 2, . . . ,M − 1, and Lower: m = M .) Empty entries indicate cases that cannot occur.
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