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ABSTRACT

Information and Decision Theoretic Approaches to Problems in Active Diagnosis

by

Gowtham Bellala

Chair: Clayton D. Scott

In applications such as active learning or disease/fault diagnosis, one often encounters

the problem of identifying an unknown object while minimizing the number of “yes” or

“no” questions (queries) posed about that object. This problem has been commonly

referred to as object/entity identification or active diagnosis in the literature. In this

thesis, we consider several extensions of this fundamental problem that are motivated

by practical considerations in real-world, time-critical identification tasks such as

emergency response.

First, we consider the problem where the objects are partitioned into groups, and

the goal is to identify only the group to which the object belongs. We then consider

the case where the cost of identifying an object grows exponentially in the number

of queries. To address these problems we show that a standard algorithm for object

identification, known as the splitting algorithm or generalized binary search (GBS),

may be viewed as a generalization of Shannon-Fano coding. We then extend this

result to the group-based and the exponential cost settings, leading to new, improved

algorithms.

We then study the problem of active diagnosis under persistent query noise. Pre-

xiii



vious work in this area either assumed that the noise is independent or that the

underlying query noise distribution is completely known. We make no such assump-

tions, and introduce an algorithm that returns a ranked list of objects, such that

the expected rank of the true object is optimized. Finally, we study the problem of

active diagnosis where multiple objects are present, such as in disease/fault diagnosis.

Current algorithms in this area have an exponential time complexity making them

slow and intractable. We address this issue by proposing an extension of our rank-

based approach to the multiple object scenario, where we optimize the area under

the ROC curve of the rank-based output. The AUC criterion allows us to make a

simplifying assumption that significantly reduces the complexity of active diagnosis

(from exponential to near quadratic), with little or no compromise on the perfor-

mance quality. Further, we demonstrate the performance of the proposed algorithms

through extensive experiments on both synthetic and real world datasets.
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CHAPTER I

Introduction

In emergency response applications, as well as other time-critical diagnostic tasks,

there is a need to rapidly identify a cause by selectively acquiring information from

the environment. For example, in the problem of toxic chemical identification, a

first responder may question victims of chemical exposure regarding the symptoms

they experience. Chemicals that are inconsistent with the reported symptoms may

then be eliminated. Because of the importance of this problem, several organizations

have constructed extensive evidence-based databases (e.g., WISER1) that record toxic

chemicals and the acute symptoms which they are known to cause. Unfortunately,

many symptoms tend to be nonspecific (e.g., vomiting can be caused by many different

chemicals), and it is therefore critical for the first responder to pose these questions

in a sequence that leads to chemical identification in as few questions as possible.

This problem has been studied from a mathematical perspective for decades, and

has been described variously as query learning (with membership queries) (Angluin,

2004), active learning (Dasgupta, 2004), active/adaptive diagnosis (Rish et al., 2005)

object/entity identification (Garey , 1970, 1972), and binary testing (Garey , 1972;

Loveland , 1985). In this thesis we will refer to this problem either as object iden-

tification or as active diagnosis. The standard mathematical formulation of object

identification is often idealized relative to many real-world diagnostic tasks, in that

1http://wiser.nlm.nih.gov/
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it does not account for time constraints and resulting input errors. In this thesis we

investigate algorithms that extend object identification to such more realistic settings

by addressing the need for rapid response, and error-tolerant algorithms.

In an object identification problem, there is a set Θ = {θ1, · · · , θM} of M different

objects and a set Q = {q1, · · · , qN} of N distinct subsets of Θ known as queries.

An unknown object θ is generated from this set Θ with a certain prior probability

distribution Π = (π1, · · · , πM), i.e., πi = Pr(θ = θi). The goal is to determine the

unknown object θ ∈ Θ through as few queries from Q as possible, where a query q ∈ Q

returns a value 1 if θ ∈ q, and 0 otherwise. An object identification algorithm thus

corresponds to a decision tree, where the internal nodes are queries, and the leaf nodes

are objects. Problems of this nature also arise in applications such as computer vision

(Geman and Jedynak , 1996; Swain and Stricker , 1993), image processing (Korostelev

and Kim, 2000), job scheduling (Kosaraju et al., 1999), pool-based active learning

(Dasgupta, 2004; Nowak , 2008; Golovin and Krause, 2010) and the adaptive traveling

salesperson problem (Gupta et al., 2010). Algorithms and performance guarantees

have been extensively developed in the literature, as described in Chapter II.

In the context of toxic chemical identification, the objects are chemicals, and

the queries are symptoms. An object identification algorithm will prompt the first

responder with a symptom. Once the presence or absence of that symptom is deter-

mined, a new symptom is suggested by the algorithm, and so on, until the chemical

is uniquely determined. In this thesis, we consider several variations on this basic

object identification framework that are motivated by toxic chemical identification,

and are naturally applicable to other time-critical diagnostic tasks. In particular, we

can broadly classify our contributions into four main categories - group based ac-

tive diagnosis, active diagnosis under exponential query costs, active diagnosis under

persistent query noise and active diagnosis under multiple unknown objects.

First, we consider the problem of group diagnosis where Θ is partitioned into
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groups of objects, and it is only necessary to identify the group to which the un-

known object θ belongs. This scenario often arises in the problem of toxic chemical

identification, where the appropriate response to a toxic chemical may only depend

on the class of chemicals to which it belongs (pesticide, corrosive acid, etc.). We

also consider other group based settings that naturally arise in real-world diagnostic

scenarios, as described in more detail in Chapter III.

In Chapter IV, we study the problem of diagnosis under exponential query costs.

We begin by noting that the standard formulation for object identification along with

the existing algorithms inherently assume that the cost of identifying an object grows

linearly in the number of queries. This often results in requiring a large number of

queries for diagnosis, especially for objects with low prior probabilities. However, this

is not acceptable in time-critical applications such as emergency response where the

cost of additional queries may grow significantly.

To address these two problems, we propose extensions of a standard object iden-

tification algorithm known as the splitting algorithm, or generalized binary search

(GBS) to these settings. The proposed algorithms are derived in a common coding-

theoretic framework, and are based on reinterpretation of GBS as a generalized form

of Shannon-Fano coding. For more details, refer to Chapters III and IV.

We then consider the problem of active diagnosis under persistent query noise

in Chapter V. Query noise corresponds to errors in the obtained query responses.

Though the problem of diagnosis under query noise has been considered in the lit-

erature, it has often been assumed that the queries can be re-sampled, such that

repeated querying results in independent query responses (Kääriäinen, 2006; Nowak ,

2008, 2009). However, in most diagnosis problems, the query noise persists in that

repeated querying results in the same query response. Moreover, the underlying noise

distribution is often not known. Unlike the independent noise model where the un-

known object θ can be identified with great certainty after sufficiently many queries,

3



in the persistent noise model it may not be possible to identify θ even after all queries

are made. Hence, we propose a novel rank-based approach where we output a ranked

list of the objects in Θ based on their likelihood of being the unknown object θ. We

propose a greedy algorithm to select queries such that the expected rank of this un-

known object θ is minimized. Further, we show that the proposed algorithm can be

implemented without any knowledge of the underlying query noise distribution.

Finally, in Chapter VI, we consider a more general setting of the above diagno-

sis problem that arises in applications such as medical diagnosis (Heckerman, 1990;

Jaakkola and Jordan, 1999), fault diagnosis in nuclear plants (Santoso et al., 1999),

computer networks (Rish et al., 2005; Zheng et al., 2005), and power-delivery systems

(Yongli et al., 2006). In these applications, more than one object is often of interest,

i.e., θ could now correspond to a subset of objects from Θ. For example, in a fault

diagnosis problem where objects correspond to components and queries to probes or

alarm responses, more than one component could be faulty and the goal is to identify

all the faulty components. The problem of active diagnosis is now to identify this

unknown set θ by obtaining (noisy) responses to as few queries as possible, where the

query noise is persistent. In the recent years, this problem has been formulated as

an inference problem on a Bayesian network, and the current algorithms for active

diagnosis in this setting rely on belief propagation making them slow and intractable.

To address this issue, we propose an extension of our above rank-based algorithm

to the multiple object scenario, where we choose queries sequentially such that the

area under the ROC curve (AUC) of the rank-based output is maximized. The AUC

criterion allows us to make a simplifying assumption that significantly reduces the

complexity of active query selection (from the current exponential to near quadratic)

in the multiple object scenario, with little or no compromise on the performance

quality. In summary, we show that the proposed rank-based framework is a fast,

robust, and a reliable approach for active diagnosis in large-scale, real-world diagnosis

4



problems.

We demonstrate the performance of our proposed algorithms through extensive

simulations on both synthetic as well as real world datasets. In particular, we demon-

strate our results on two real world datasets, the first one is a toxic chemical database

used by first responders known as WISER, and the second corresponds to network

topologies built using the BRITE (Medina et al., 2001) and the INET (Winick and

Jamin, 2002) generators that arise in the problem of fault diagnosis in computer

networks.
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CHAPTER II

Background

In diagnosis problems, there is a set Θ = {θ1, · · · , θM} of M different objects and

a set Q = {q1, · · · , qN} of N distinct subsets of Θ known as queries. The relation

between the objects and the queries can be captured using a bipartite diagnosis graph

(BDG) as shown in Figure 2.1. The edges in this graph represent the relation or the

interactions between the two entities. For example, in the toxic chemical identifica-

tion problem, objects correspond to toxic chemicals and queries to symptoms, where

an edge indicates that a particular symptom is exhibited by the presence of that toxic

chemical. Similarly, in a fault diagnosis problem, objects may correspond to compo-

nents and queries to alarms, where an edge indicates that a particular component-

alarm pair are connected.

The relation between the objects and the queries can also be denoted using a

θ1 θ2 θ3

q1 q2 q3 q4 q5

Figure 2.1: A bipartite diagnosis graph (BDG) corresponding to an object identifi-
cation problem with 3 objects and 5 queries, where Θ = {θ1, θ2, θ3} and
Q = {q1, q2, q3, q4, q5} with q1 = q3 = {θ1}, q2 = q4 = {θ2, θ3}, and
q5 = {θ1, θ3}.

6



binary matrix B, where the rows correspond to different objects and columns to

queries, with the binary entries in the matrix corresponding to the presence/absence of

edges. The binary matrix corresponding to the bipartite diagnosis graph in Figure 2.1

is given by,

B =


1 0 1 0 1

0 1 0 1 0

0 1 0 1 1

 .

In the problem of object identification, there is an unknown object θ generated

from this set Θ with a certain prior probability distribution Π = (π1, . . . , πM), where

πi = Pr(θ = θi). The goal of object identification is to identify this unknown object

θ using as few queries from the set Q as possible. In the ideal scenario when there is

no noise, a query q ∈ Q returns a value 1 if θ ∈ q, and 0 otherwise. In other words,

the true responses to the queries correspond to the entries in the binary row vector

associated with the unknown object in the matrix B.

As mentioned earlier, problems of this nature arise in several applications such as

job scheduling (Kosaraju et al., 1999), image processing (Korostelev and Kim, 2000),

computer vision (Geman and Jedynak , 1996; Swain and Stricker , 1993), pool-based

active learning (Dasgupta, 2004; Nowak , 2008; Golovin and Krause, 2010) and the

adaptive traveling salesperson problem (Gupta et al., 2010). In an active learning

setting, objects correspond to classifiers and queries to labels at specific unlabeled

data points, with the goal of identifying the best classifier using as few labeled data

as possible.

A solution to an object identification problem is a decision tree, where each internal

node in the tree corresponds to a query, each leaf node corresponds to a unique

object from the set Θ and the optimality is with respect to minimizing the expected

depth of the leaf node corresponding to θ. In particular, the expected depth of a

7



tree is given by
∑M

i=1 πidi, where di corresponds to the depth of object θi in the

tree. The problem of obtaining an optimal decision tree with the least expected

depth has been studied extensively in the literature with Garey (1970) proposing a

dynamic programming based algorithm. However, this algorithm runs in exponential

time in the worst case. Later, Hyafil and Rivest (1976) showed that determining an

optimal binary decision tree for this problem is NP-complete. Thereafter, various

greedy algorithms (Loveland , 1985; Kosaraju et al., 1999; Roy et al., 2008) have been

proposed to obtain a suboptimal binary decision tree.

Among the various greedy algorithms, the most widely studied algorithm is known

as the splitting algorithm (Loveland , 1985) or generalized binary search (GBS) (Das-

gupta, 2004; Nowak , 2008). This algorithm grows a binary decision tree in a top down

greedy manner, where at each internal node, it selects a query that most evenly divides

the probability mass of the remaining objects (Loveland , 1985; Dasgupta, 2004). The

resulting tree has been shown to be near-optimal (Loveland , 1985; Kosaraju et al.,

1999; Dasgupta, 2004), in that the expected depth of the greedy tree is logarithmically

close to that of an optimal tree, i.e.,

E[depthGBS] ≤ O

(
ln

1

mini πi

)
E[depthopt].

In addition, several variants of this problem such as multiway or k-ary splits

(instead of binary splits) (Chakaravarthy et al., 2007, 2009; Cicalese et al., 2010) and

unequal query costs (Adler and Heeringa, 2008; Golovin and Krause, 2010; Gupta

et al., 2010; Cicalese et al., 2010) have also been studied in the literature.

2.1 Special cases of the Object Identification Problem

In this section, we will discuss two interesting special cases of the object identifica-

tion problem described above. In these two cases, the problem of object identification
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reduces to a well-known, and well-studied problem in the literature. Moreover, though

the problem of finding an optimal decision tree is NP-complete for a general object

identification problem, there exists efficient, polynomial time algorithms to find opti-

mal solutions in both these special cases.

2.1.1 Source Coding

In the special case when the query set Q is complete (a query set Q is said to

be complete if for any S ⊆ Θ there exists a query q ∈ Q such that either q = S or

Θ\ q = S), the problem of object identification reduces to the problem of source cod-

ing. Here, the problem of constructing an optimal binary decision tree is equivalent to

construction of optimal variable-length binary prefix codes with minimum expected

length. This problem has been widely studied in information theory with both Shan-

non (1948) and Fano (1961) independently proposing a top-down greedy strategy to

construct suboptimal binary prefix codes, popularly known as Shannon-Fano codes.

Later, Huffman (1952) derived a simple bottom-up algorithm to construct optimal

binary prefix codes. A well known lower bound on the expected length of binary

prefix codes is given by the Shannon entropy of the probability distribution Π (Cover

and Thomas , 1991). In fact, the problem of object identification when the query set

Q is not complete can be considered as “constrained” prefix coding with the same

entropy lower bound on the expected depth of the tree. This interpretation of object

identification forms the basis of our results in Chapters III and IV.

2.1.2 Guessing

A query set Q is said to be singleton complete if Q contains all singleton queries,

where a singleton query is a query that responds 1 to only one object, i.e., the query q

is of the form {θi} for some i ∈ {1, · · · ,M}. In the special case when the query set Q

is singleton complete, the problem of object identification reduces to the well-known
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problem of guessing. In guessing, the goal is to identify the value taken by a discrete

random variable X in one trial of a random experiment by asking questions of the form

“Did X take on its ith possible value?” until the answer is “Yes”, while minimizing the

expected number of guesses required to identify the realization of X. This problem

along with its variants have been studied extensively in the literature (Massey , 1994;

Arikan, 1996; Arikan and Merhav , 1998; Merhav and Arikan, 1999; Sundaresan, 2007;

Hanawal and Sundaresan, 2008). The problem of guessing is often encountered in

applications such as cryptography and pattern matching. Given the prior probability

distribution Π of the random variable X, the optimal guessing strategy is to guess

in the decreasing order of these probabilities. Moreover, GBS when applied to this

problem produces this optimal solution.

2.2 Other Related Problems

We now briefly mention other related problems that have been studied in the

literature. We will describe interesting similarities between these problems to those

we study in this thesis, along with their critical differences.

2.2.1 Preference Elicitation

The problem of preference elicitation arises in combinatorial auctions. It is the

process of asking questions about the preferences of bidders so as to best divide some

set of goods. The problem can be formalized more generally as follows. Consider a

set S of M items that needs to be sold and let x ∈ {0, 1}M denote any subset of items

called an “example”. Potentially there could be N = 2M−1 examples. Let there be k

bidders where each bidder is associated with a preference function fk : {0, 1}M → R,

where fk(x) denotes the amount bidder k is willing to pay for example x or the subset

of items in x. Now, the objective is to determine a k-way partition (S1, S2, · · · , Sk)

of the set of items S such that f1(S1) + f2(S2) + · · ·+ fk(Sk) is maximized. However,
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the preference functions of bidders are often unknown and it is not feasible to ask

the bidder to provide his valuations for all the examples, which can be exponentially

large. Hence, the problem of preference elicitation deals with learning the preference

functions using as few queries as possible and then obtaining the best k-way partition,

where a query could be of the form “How much are you willing to pay for example

x?”

In the context of an object identification problem, it can be thought of as a setting

in which there are multiple target objects that can each be queried separately, but

where the goal is not so much to learn each target object as it is to produce an

“optimal partition”. For an extensive survey on preference elicitation methods, refer

to (Chen and Pu, 2004). Also, for a more detailed analysis on the similarities and

differences between preference elicitation and the problem of object identification,

refer to (Blum et al., 2004).

2.2.2 Adaptive Group Testing

Traditionally, group testing has been a design problem, where the goal is to con-

struct an optimally efficient set of tests of items such that the test results contain

enough information to determine a small subset of items of interest. The problem can

be described more generally as follows. Consider a set S of M items, of which d items

are defective. Let D denote the defective set. This defective set must be a member

or sample of a given family called the sample space. For example, the sample space

could be all subsets of M items of size d. Now, the goal of adaptive group testing is

to construct a collection of tests to minimize the number of tests needed to find the

defective set.

As a motivating example, consider the problem of identifying defective bulbs in

a set of light bulbs. Here, an experiment or a test would be as follows. A batch of

light bulbs would be arranged in series and an electrical voltage would be applied at
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either end. If the lights are on, then the whole tested batch of light bulbs must be

good, else there is at least one bulb in the batch that is defective. Here, any subset

of items could be selected to perform this experiment. The goal is to determine

the experiments and the order in which they should be performed such that all the

defective bulbs are identified in as few experiments as possible.

In the context of a diagnosis problem, it is similar to the problem of active diag-

nosis when multiple objects are present (i.e., θ is some unknown subset of Θ), with

the goal of identifying all the unknown objects. However, the key difference is that in

a diagnosis setting, the tests are constrained to be those from a fixed set of queries Q,

where as in the case of group testing, the test could comprise of any subset of the M

items (i.e. 2M − 1 possible tests). Moreover, in group testing, it is assumed that the

size of the unknown set θ is known a priori. For an extensive study on the problem

of adaptive group testing and its algorithms, refer to (Du and Hwang , 2000).

2.2.3 Adaptive Conjoint Analysis

Conjoint analysis is a statistical technique used in market research to determine

how people value different features that make up an individual product or service.

The objective of conjoint analysis is to determine what combination of a limited

number of attributes is most influential on respondent choice or decision making.

A controlled set of potential products or services is shown to respondents and by

analyzing how they make preferences between these products, the implicit valuation

of the individual elements making up the product or service can be determined. These

implicit valuations then can be used to create market models that estimate market

share, revenue and even profitability of new designs.

Here, a product is considered as a bundle of attributes, each with specified levels.

For example, the attributes of a laptop computer can be weight, battery life, price,

processor speed etc, where the attribute “price” can have three levels − less than
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$1000, $1000 - $2000, greater than $2000. It is normally assumed that each attribute

level has a particular value for a customer, which affects how much he/she likes

the product. These values are called “utilities”. The goal of conjoint analysis is to

estimate these utilities for various customers. As the number of attributes and the

levels in each attribute increases, it becomes infeasible to ask the customer for his

complete set of utilities.

In adaptive conjoint analysis, the customer is presented with trade-off questions

in a sequential manner. For example, a trade-off question could be “Which would

you prefer − 2.4GHz Intel quad core processor with 2 hours battery life or 2.4GHz

Intel single core processor with 6 hours battery life?” The goal here is to learn the

utility function of the customer in as few trade-off questions as possible.

Comparing to a diagnosis problem, there are some interesting similarities as well

as some critical differences. The similarity being that in a diagnosis problem, the

goal is to learn the binary value associated with each object (1 if θi ∈ θ, and 0 else),

and in the case of adaptive conjoint analysis, it is the utility associated with each

attribute and each level. However, once again the key difference is that there is no

restriction on the queries to be made unlike in a diagnosis setting where the queries

are restricted to be from the set Q. For more details on adaptive conjoint analysis,

refer to (Johnson, 1987; Johnson et al., 2003).

2.3 Prior Work and their Limitations

As mentioned in Chapter I, the main contributions of this thesis can be broadly

classified into four categories - group-based active diagnosis, active diagnosis under

exponential query costs, active diagnosis under persistent query noise, and active

diagnosis under multiple unknown objects. In this section, we will briefly describe

any prior work in each of these four categories and state their limitations.

The problem of rapid group identification has been simultaneously studied by
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Golovin et al. (2010), who like us, also proposed a near-optimal algorithm, which is

discussed in more detail in Chapter III. The problem of diagnosis under exponential

query costs has been studied earlier in the special case where the query set Q is com-

plete, i.e., in the context of source coding for the design of prefix-free codes (Campbell ,

1965). In this special case, it has also been shown that an optimal binary decision

tree (i.e., optimal binary prefix-free codes) can be obtained using a modified version

of the Huffman algorithm (Hu et al., 1979; Parker , 1980). However, to the best of our

knowledge, there does not exist any optimal or suboptimal algorithm for the general

case where the query set Q is not complete. For more details, refer to Chapter IV or

Bellala et al. (2010).

The problem of rapid object identification in the presence of query noise has been

studied in the literature (Kääriäinen, 2006; Nowak , 2008, 2009) where the query noise

is assumed to be independent, such that repeated querying may result in different

responses. However, in many diagnosis applications, re-sampling or repeating a query

does not change the query response confining an algorithm to non-repeatable queries.

The work by Rényi (1961) is regarded to be the first to consider this more stringent

noise model, also referred to as persistent noise in the literature (Goldman et al., 1990;

Jackson et al., 1997; Hanneke, 2007). However, his work has focused on the passive

setting where the queries are chosen at random. The problem of pool-based active

learning under persistent noise has been studied by Balcan et al. (2006) and Hanneke

(2007) in the PAC (Probably Approximately Correct) model. However, they assume

that the query set is large enough (possibly infinite) such that it is possible to get

arbitrarily close to the optimal classifier, for any given noise level.

In this thesis, we focus on the problem of object identification under persistent

query noise where the query set is possibly finite. We address this problem in two

parts. First, we consider a restricted noise setting where we limit the number of

persistent errors such that unique identification of the unknown object is guaranteed.
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Specifically, given an object identification problem B, we limit the number of per-

sistent errors to half the minimum Hamming distance between any two object row

vectors (refer to Section 3.6 for more details). In the special case when the query set

Q is complete, this problem reduces to the problem of designing minimum length k-

error correcting codes in communication theory, also referred to as the Rényi-Ulam’s

problem in the game-theoretic literature (Pelc, 2002). However, this problem has not

been studied earlier in the general case where the query set Q is not complete.

We then consider a more general noise setting with no restrictions on the number

of persistent errors. In this context, Rish et al. (2005) proposed an information

gain based active diagnosis algorithm. However, this algorithm requires complete

knowledge of the underlying query noise distribution, which is often not known. Refer

to Chapter V for more details.

The problem of diagnosis when multiple objects are present has been studied in

the recent years, where it has been formulated as an inference problem on a Bayesian

network, with the goal of assigning most likely states to unobserved object nodes

based on the outcome of the query nodes. In this context, Zheng et al. (2005) pro-

posed the use of information gain for active query selection. Further, noting that

exact computation of information gain is intractable in the multiple object scenario,

they proposed an approximate algorithm based on loopy belief propagation (BP) to

estimate the information gain. This algorithm, which they refer to as BPEA (Be-

lief Propagation for Entropy Approximation) requires exactly one run of BP for each

query selection. However, BPEA is not scalable as its complexity grows exponentially

in the maximum degree of the underlying Bayesian network. More recently, Cheng

et al. (2010) proposed a speed up to query selection using BPEA by reducing the num-

ber of queries to be investigated at each stage. However, the exponential complexity

still remains. Refer to Chapter VI for more details.
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2.4 Overview of our Approach

In this thesis, we propose algorithms that address the above limitations of the

existing approaches. Our algorithms are derived in a common, principled framework.

In particular, the proposed algorithms can be broadly classified into two settings as

stated below.

• In Chapters III and IV, we consider extensions of the object identification prob-

lem where the unknown object θ can be identified with certainty. In particu-

lar, we consider the group-based settings, exponential query costs, and object

identification under a restricted number of persistent errors. To address these

problems, we first present a new interpretation of GBS from a coding-theoretic

perspective by viewing the problem of object identification as constrained source

coding. Specifically, we present an exact formula for the expected number of

queries required to identify an unknown object in terms of Shannon entropy

of the prior distribution Π, and show that GBS is a top-down algorithm that

greedily minimizes this cost function. We then extend this framework to each

of the above cases and derive extensions of GBS. The work in these chapters is

based on Bellala et al. (2010) and Bellala et al. (2011b).

• In Chapters V and VI, we study the problem of object identification under

persistent query noise in the single fault (only one unknown object) and multi-

fault (multiple unknown objects) settings. In these problems, θ may not be

identified even after obtaining responses to all the queries from the setQ. Hence,

we modify the goal of active diagnosis to maximize the quality of the obtained

estimate for θ while minimizing the number of queries. Specifically, we pose

this problem as active diagnosis on a Bayesian network, and propose a novel

rank-based approach where the algorithm returns a ranked list of the objects

based on their posterior probabilities. We use area under the ROC curve (AUC)
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Figure 2.2: A screen shot of the WISER decision support system.

as a criterion to measure the quality of the obtained ranked list, and show how

to choose queries actively such that the AUC is maximized. We also show

how active query selection using the proposed AUC criterion overcomes the

limitations of the existing approaches. The work in these chapters is based on

Bellala et al. (2011a) and Bellala et al. (2011c).

2.5 Motivating Applications

We will now briefly describe two diagnosis applications that have primarily moti-

vated the work in this thesis. In addition, we will be demonstrating the performance

of our proposed algorithms on real world databases corresponding to these two ap-

plications in the rest of this thesis.

2.5.1 Emergency Response

In a recent study, Kleindorfer et al. (2003) reported that hundreds of toxic chem-

ical accidents take place every year in the U.S. In the event of such an accident, the

goal of a first responder is to rapidly identify the toxic chemical that may have leaked

in to the environment. This rapid identification of the toxic chemical is needed to
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treat victims, decontaminate site, and issue neighborhood warnings. Owing to the

importance of this problem, several organizations such as the NLM (National Library

of Medicine) have constructed extensive evidence-based databases that record toxic

chemicals and the acute symptoms they are known to cause. In addition, NLM has

developed a decision-support system known as WISER (Wireless Information System

for Emergency Responders) to aid first responders in rapid identification of the toxic

chemical. The WISER database describes the binary relationship between 402 toxic

chemicals and 79 acute symptoms.

Figure 2.2 shows a screen shot of the WISER system. It consists of a drop down

menu containing the list of all symptoms. A first responder may question victims of

chemical exposure regarding the symptoms they experience, and inputs this informa-

tion in to the system. Chemicals that are inconsistent with the reported symptoms

are then eliminated. Unfortunately, many symptoms tend to be non-specific. For

example, acute dyspnea (difficulty breathing) can be caused by many different chem-

icals. Therefore, it is important for a first responder to pose these questions in a

sequence that leads to chemical identification in as few symptom queries as possible.

2.5.2 Fault Diagnosis in Computer Networks

In the problem of fault diagnosis in computer networks, the goal is to continuously

monitor a system of networked computers for faults, where each computer can be

associated with a binary random variable Xi (0 for working and 1 for faulty). It is

not possible to test each individual computer directly in a large network. Hence, a

common solution is to test a subset of computers with a single test probe Zj , where

a probe can be as simple as a ping request or more sophisticated such as an e-mail

message or a webpage-access request (see Figure 2.3). Thus, there is a bipartite

diagnosis graph with each query (probe) connected to all the objects (computers) it

passes through.
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Figure 2.3: A toy example demonstrating a system of networked computers along
with probe stations and probes.

In these networks, certain computers are designated as probe stations, which are

instrumented to send out probes to test the response of the networked elements. How-

ever, the available set of probes is often very large, and hence it is desired to minimize

the number of probes required to identify the faulty computers. In our experiments,

we use networks generated using the BRITE (Medina et al., 2001) and the INET

(Winick and Jamin, 2002) generators, which simulate an Internet-like topology at

the Autonomous systems level. To generate a BDG of computers and probes from

these topologies, we used the approach described by Rish et al. (2005). Refer to

Appendix C for a brief description on how these networks were generated.
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CHAPTER III

Group Diagnosis

3.1 Introduction

In this chapter, we consider variations on the basic object identification framework

that are motivated by the problem of toxic chemical identification, and are naturally

applicable to other time-critical diagnostic tasks. In particular, we develop theoret-

ical results and new algorithms for what might be described as group-based active

diagnosis. The work in this chapter is based on Bellala, Bhavnani and Scott (2011b).

First, we consider the case where the object set Θ is partitioned into groups of

objects, and it is only necessary to identify the group to which the unknown object

belongs. For example, the appropriate response to a toxic chemical may only depend

on the class of chemicals to which it belongs (pesticide, corrosive acid, etc.). As our

experiments reveal, an active query selection algorithm designed to rapidly identify

individual objects is not necessarily efficient for group identification.

Second, we consider the problem where the set Q of queries is partitioned into

groups (respiratory symptoms, cardio symptoms, etc.). Instead of suggesting specific

symptoms to the user, we design an algorithm that suggests a group of queries, and

allows the user the freedom to input information on any query in that group. Although

such a system will theoretically be less efficient, it is motivated by the fact that in

a practical application, some symptoms will be easier for a given user to understand
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and identify. Instead of suggesting a single symptom, which might seem “out of the

blue” to the user, suggesting a query group will be less bewildering, and hence lead

to a more efficient and accurate outcome. Our experiments demonstrate that the

proposed algorithm based on query groups identifies objects in nearly as few queries

as a fully active method.

Third, we apply our algorithm for group identification to the problem of object

identification under persistent query noise. Persistent query noise occurs when the

response to a query is in error, but cannot be re-sampled, as is often assumed in

the literature. Such is the case when the presence or absence of a symptom is in-

correctly determined, which is more likely in a stressful emergency response scenario.

Experiments show our method offers significant gains over algorithms not designed

for persistent query noise.

Our algorithms are derived in a common framework, and are based on reinter-

pretation of a standard object identification algorithm (the splitting algorithm, or

generalized binary search) as a generalized form of Shannon-Fano coding. We first

establish an exact formula for the expected number of queries required to identify an

object using an arbitrary decision tree, and show that the splitting algorithm effec-

tively performs a greedy, top-down optimization of this objective. We then extend this

formula to the case of group identification and query groups, and develop analogous

greedy algorithms. In the process, we provide a new interpretation of impurity-based

decision tree induction for multi-class classification. We also develop a logarithmic

approximation bound for group identification, using the notion of submodular func-

tions.

Finally, we demonstrate the performance of our algorithms through experiments

on synthetic data as well as the WISER database (version 4.21). WISER, which

stands for Wireless Information System for Emergency Responders, is a decision

support system developed by the National Library of Medicine (NLM) for first re-
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sponders. This database describes the binary relationship between 298 toxic chemicals

(corresponding to the number of distinguishable chemicals in this database) and 79

acute symptoms. The symptoms are grouped into 10 categories (e.g., neurological,

cardio) as determined by NLM, and the chemicals are grouped into 16 categories (e.g.,

pesticides, corrosive acids) as determined by a toxicologist and a Hazmat expert.

3.1.1 Notation

We denote an object identification problem by a pair (B,Π) where Π denotes

the prior probability distribution on the objects, i.e., πi = Pr(θ = θi), and B is a

binary matrix denoting the binary relation between the objects and the queries as

described in Chapter II. We assume that the rows of B are distinct, i.e., we make

the assumption of unique identifiability of every object in Θ. This is reasonable since

objects that have similar query responses for all queries in Q, i.e., objects that are

not distinguishable, can always be grouped into a single meta-object.

A decision tree T constructed on (B,Π) has a query from the set Q at each of its

internal nodes with the leaf nodes terminating in the objects from the set Θ. At each

internal node in the tree, the object set under consideration is divided into two subsets,

corresponding to the objects that respond 0 and 1 to the query, respectively. For a

decision tree with L leaves, the leaf nodes are indexed by the set L = {1, · · · , L}

and the internal nodes are indexed by the set I = {L + 1, · · · , 2L − 1}. At any

internal node a ∈ I, let l(a), r(a) denote the “left” and “right” child nodes, where

the set Θa ⊆ Θ corresponds to the set of objects that reach node ‘a’, and the sets

Θl(a) ⊆ Θa,Θr(a) ⊆ Θa corresponds to the set of objects that respond 0 and 1 to the

query at node ‘a’, respectively. We denote by πΘa :=
∑
{i:θi∈Θa} πi, the probability

mass of the objects under consideration at any node ‘a’ in the tree. Also, at any node

‘a’, the set Qa ⊆ Q corresponds to the set of queries that have been performed along

the path from the root node up to node ‘a’.
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We denote the Shannon entropy of a vector Π = (π1, · · · , πM) by H(Π) :=

−
∑

i πi log2 πi and the Shannon entropy of a proportion π ∈ [0, 1] by H(π) :=

−π log2 π − (1 − π) log2(1 − π), where we use the limit, lim
π→0

π log2 π = 0 to define

the limiting cases. Finally, given a tree T , we use the random variable K(T ) to de-

note the number of queries required to identify an unknown object θ or the group of

an unknown object θ using the given tree.

3.2 Coding-Theoretic Interpretation of Object Identification

Before proceeding to the group-based settings, we first present an exact formula

for the standard object identification problem. This result allows us to interpret

the splitting algorithm or GBS as generalized Shannon-Fano coding. Furthermore,

our proposed algorithms for group-based settings are based on generalizations of this

result.

First, we define a parameter called the reduction factor on the binary matrix/tree

combination that provides a useful quantification on the expected number of queries

required to identify an unknown object.

Definition III.1. A reduction factor at any internal node ‘a’ in a decision tree is

defined as ρa = max(πΘl(a)
, πΘr(a)

)/πΘa and the overall reduction factor of a tree is

defined as ρ = maxa∈I ρa.

Note from the above definition that 0.5 ≤ ρa ≤ ρ ≤ 1 and we describe a decision

tree with ρ = 0.5 to be a perfectly balanced tree.

Given an object identification problem (B,Π), let T (B,Π) denote the set of de-

cision trees that can uniquely identify all the objects in the set Θ. For any decision

tree T ∈ T (B,Π), let {ρa}a∈I denote the set of reduction factors and let di denote

the depth of object θi in the tree. Then, the expected number of queries required to
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identify an unknown object using the given tree is equal to

E[K(T )] =
∑M

i=1 Pr(θ = θi)E[K(T )|θ = θi] =
∑M

i=1 πidi.

Theorem III.2. The expected number of queries required to identify an unknown

object using a tree T ∈ T (B,Π) with reduction factors {ρa}a∈I is given by

E[K(T )] = H(Π) +
∑
a∈I

πΘa [1−H(ρa)] (3.1)

=
H(Π)∑

a∈I π̃ΘaH(ρa)

where π̃Θa :=
πΘa∑
r∈I πΘr

.

Proof. The first equality is a special case of Theorem III.6 below. The second equality

follows from the observation E[K(T )] =
∑M

i=1 πidi =
∑

a∈I πΘa . Hence replacing πΘa

with π̃Θa · E[K(T )] in the first equality leads to the result.

In the second equality, the term
∑

a∈I π̃ΘaH(ρa) denotes the average entropy of

the reduction factors, weighted by the proportion of times each internal node ‘a’ is

queried in the tree. This theorem re-iterates an earlier observation that the expected

number of queries required to identify an unknown object using a tree constructed

on (B,Π) (where the query set Q is not necessarily a complete set) is bounded below

by its entropy H(Π). It also follows from the above result that a tree attains this

minimum value (i.e., E[K(T )] = H(Π)) iff it is perfectly balanced, i.e., the overall

reduction factor ρ of the tree is equal to 0.5.

From the first equality, the problem of finding a decision tree with minimum

E[K(T )] can be formulated as the following optimization problem:

min
T∈T (B,Π)

H(Π) +
∑

a∈I πΘa [1−H(ρa)]. (3.2)

24



Since Π is fixed, the optimization problem reduces to minimizing
∑

a∈I πΘa [1−H(ρa)]

over the set of trees T (B,Π). Note that the reduction factor ρa depends on the query

chosen at node ‘a’ in a tree T . As mentioned earlier, finding a global optimal solution

for this optimization problem is NP-complete.

Instead, we may take a top down approach and minimize the objective function by

minimizing the term πΘa [1−H(ρa)] at each internal node, starting from the root node.

Since πΘa is independent of the query chosen at node ‘a’, this reduces to minimizing

ρa (i.e., choosing a split as balanced as possible) at each internal node a ∈ I. The

algorithm can be summarized as shown below.

Generalized Binary Search (GBS)

Initialization : Let the leaf set consist of the root node
while some leaf node ‘a’ has |Θa| > 1 do

for each query q ∈ Q \Qa do
Find Θl(a) and Θr(a) produced by making a split with query q
Compute the reduction factor ρa produced by query q

end
Choose a query with the smallest reduction factor
Form child nodes l(a), r(a)

end

Note that when the query set Q is complete, GBS is similar to Shannon-Fano

coding (Shannon, 1948; Fano, 1961). The only difference is that in Shannon-Fano

coding, for computational reasons, the queries are restricted to those that are based

on thresholding the prior probabilities πi.

Corollary III.3. The standard splitting algorithm/GBS is a greedy algorithm to min-

imize the expected number of queries required to uniquely identify an object.

Corollary III.4 below follows from Theorem III.2. It states that given a tree T

with overall reduction factor ρ < 1, the average complexity of identifying an unknown

object using this tree is O(log2M). Recently, Nowak (2008) showed there are geomet-
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ric conditions (incoherence and neighborliness) that also bound the worst-case depth

of the tree to be O(log2M), assuming a uniform prior on objects. These conditions

imply that the reduction factors are close to 1
2

except possibly near the very bottom

of the tree where they could be close to 1. Because ρa could be close to 1 for deeper

nodes, the upper bound on E[K(T )] based on the overall reduction factor ρ given

below could be very loose in practice.

Corollary III.4. The expected number of queries required to identify an unknown

object using a tree T with overall reduction factor ρ constructed on (B,Π) is bounded

above by

E[K(T )] ≤ H(Π)

H(ρ)
≤ log2M

H(ρ)

Proof. Using the second equality in Theorem III.2, we get

E[K(T )] =
H(Π)∑

a∈I π̃ΘaH(ρa)
≤ H(Π)

H(ρ)
≤ log2M

H(ρ)

where the first inequality follows from the definition of ρ, ρ ≥ ρa ≥ 0.5,∀a ∈ I and

the last inequality follows from the concavity of the entropy function.

In the sections that follow, we show how Theorem III.2 and GBS may be gener-

alized, leading to principled strategies for group identification, object identification

with group queries and object identification with persistent noise.

3.3 Group Identification

We now move to the problem of group identification, where the goal is not to

determine the unknown object θ ∈ Θ, rather the group to which the object belongs.

Here, in addition to the binary matrix B and a priori probability distribution Π on

the objects, the group labels for the objects are also provided, where the groups are
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assumed to be disjoint. Note that if the groups are overlapping, it can be reduced

to the disjoint setting by finding the smallest partition of the objects such that the

group labels are constant on each cell of the partition. Then, a group identification

algorithm would identify precisely those groups to which the object belongs. For

example, in toxic chemical identification, a first responder may only need to know

whether a chemical is a pesticide, a corrosive acid, or both. Hence, it could be

reasonable to reduce a group identification problem with overlapping groups to that

of disjoint groups arising out of its partition. Thus, we devote our attention to the

problem of group identification with disjoint groups.

We denote a group identification problem by (B,Π,y), where y = (y1, · · · , yM)

denotes the group labels of the objects, yi ∈ {1, · · · ,m}. Let {Θi}mi=1 be a partition

of the object set Θ, where Θi denotes the set of objects in Θ that belong to group i.

It is important to note here that the group identification problem cannot be simply

reduced to an object identification problem with groups {Θ1, · · · ,Θm} as “meta-

objects,” since the objects within a group need not respond the same to each query.

For example, consider the toy example shown in Figure 3.1 where the objects θ1, θ2

and θ3 belonging to group 1 cannot be considered as one single meta-object as these

objects respond differently to queries q1 and q3.

In this context, we also note that GBS can fail to find a good solution for a group

identification problem as it does not take the group labels into consideration while

choosing queries. Once again, consider the toy example shown in Figure 3.1 where

just one query (query q2) is sufficient to identify the group of an unknown object,

whereas GBS requires 2 queries to identify the group when the unknown object is

either θ2 or θ4, as shown in Figure 3.2. Hence, we develop a new strategy which

accounts for the group labels when choosing the best query at each stage.

Note that when constructing a tree for group identification, a greedy, top-down

algorithm terminates splitting when all the objects at the node belong to the same
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q1 q2 q3 Group label, y
θ1 0 1 1 1
θ2 1 1 0 1
θ3 0 1 0 1
θ4 1 0 0 2

Figure 3.1: Toy Example 1
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Figure 3.2: Decision tree constructed us-
ing GBS for group identifica-
tion on toy example 1

group. Hence, a tree constructed in this fashion can have multiple objects ending in

the same leaf node and multiple leaves ending in the same group.

For a tree with L leaves, we denote by Li ⊂ L = {1, · · · , L} the set of leaves that

terminate in group i. Similar to Θi ⊆ Θ, we denote by Θi
a ⊆ Θa the set of objects

that belong to group i at any internal node a ∈ I in the tree. Also, in addition to

the reduction factors defined in Section 3.2, we define a new set of reduction factors

called the group reduction factors at each internal node.

Definition III.5. The group reduction factor of group i at any internal node ‘a’ in

a decision tree is defined as ρia = max(πΘi
l(a)
, πΘi

r(a)
)/πΘia

.

Given a group identification problem (B,Π,y), let T (B,Π,y) denote the set of

decision trees that can uniquely identify the groups of all objects in the set Θ. For

any decision tree T ∈ T (B,Π,y), let ρa denote the reduction factor and let {ρia}mi=1

denote the set of group reduction factors at each of its internal nodes. Also, let dj

denote the depth of leaf node j ∈ L in the tree. Then the expected number of queries
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required to identify the group of an unknown object using the given tree is equal to

E[K(T )] =
m∑
i=1

Pr(θ ∈ Θi)E[K(T )|θ ∈ Θi]

=
m∑
i=1

πΘi

∑
j∈Li

πΘj

πΘi
dj



Theorem III.6. The expected number of queries required to identify the group of an

object using a tree T ∈ T (B,Π,y) with reduction factors {ρa}a∈I and group reduction

factors {ρia}mi=1,∀a ∈ I, is given by

E[K(T )] = H(Πy) +
∑
a∈I

πΘa

[
1−H(ρa) +

m∑
i=1

πΘia

πΘa

H(ρia)

]
(3.3)

where Πy denotes the probability distribution of the object groups induced by the labels

y, i.e. Πy = (πΘ1 , · · · , πΘm).

Proof. Special case of Theorem III.12 below.

The above theorem states that given a group identification problem (B,Π,y),

the expected number of queries required to identify the group of an unknown object

is lower bounded by the entropy of the probability distribution of the groups. It

also follows from the above result that this lower bound is achieved iff there exists a

perfectly balanced tree (i.e. ρ = 0.5) with the group reduction factors equal to 1 at

every internal node in the tree. Also, note that Theorem III.2 is a special case of this

theorem where each group has size 1 leading to ρia = 1 for all groups at every internal

node.

Using Theorem III.6, the problem of finding a decision tree with minimum E[K(T )]
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can be formulated as the following optimization problem:

min
T∈T (B,Π,y)

∑
a∈I πΘa

[
1−H(ρa) +

∑m
i=1

π
Θia

πΘa
H(ρia)

]
. (3.4)

Note that here both the reduction factor ρa and the group reduction factors

{ρia}mi=1 depend on the query chosen at node ‘a’. Also, the above optimization prob-

lem being a generalized version of the optimization problem in (3.2) is NP-complete.

Hence, we propose a suboptimal approach to solve the above optimization prob-

lem where we optimize the objective function locally instead of globally. We take

a top-down approach and minimize the objective function by minimizing the term

∆a :=
[
1−H(ρa) +

∑m
i=1

π
Θia

πΘa
H(ρia)

]
at each internal node, starting from the root

node. The algorithm can be summarized as shown below. We refer to this algorithm

as GISA (Group Identification Splitting Algorithm) or GGBS (Group Generalized

Binary Search).

Group Identification Splitting Algorithm (GISA)

Initialization : Let the leaf set consist of the root node
while some leaf node ‘a’ has more than one group of objects do

for each query qj ∈ Q \Qa do
Compute {ρia}mi=1 and ρa produced by making a split with query qj
Compute the cost ∆a(j) of making a split with query qj

end
Choose a query with the least cost ∆a at node ‘a’
Form child nodes l(a), r(a)

end

Note that the objective function in this algorithm consists of two terms. The first

term [1 − H(ρa)] favors queries that evenly distribute the probability mass of the

objects at node ‘a’ to its child nodes (regardless of the group) while the second term∑
i

π
Θia

πΘa
H(ρia) favors queries that transfer an entire group of objects to one of its child

nodes.
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3.3.1 Relation to Impurity-based Decision Tree Induction

As a brief digression, in this section we show a connection between the above

algorithm and impurity-based decision tree induction. In particular, we show that the

above algorithm is equivalent to the decision tree splitting algorithm used in the C4.5

software package (Quinlan, 1993). Before establishing this result, we briefly review

the multi-class classification setting where impurity-based decision tree induction is

popularly used.

In the multi-class classification setting, the input is training data x1, · · · ,xM sam-

pled from some input space (with an underlying probability distribution) along with

their class labels, y1, · · · , yM and the task is to construct a classifier with the least

probability of misclassification. Decision tree classifiers are grown by maximizing an

impurity-based objective function at every internal node to select the best classi-

fier from a set of base classifiers. These base classifiers can vary from simple axis-

orthogonal splits to more complex non-linear classifiers. The impurity-based objective

function is

I(Θa)−
[
πΘl(a)

πΘa

I(Θl(a)) +
πΘr(a)

πΘa

I(Θr(a))

]
, (3.5)

which represents the decrease in impurity resulting from split ‘a’. Here I(Θa) corre-

sponds to the measure of impurity in the input subspace at node ‘a’ and πΘa corre-

sponds to the probability measure of the input subspace at node ‘a’.

Among the various impurity functions suggested in the literature (Kearns and

Mansour , 1995; Takimoto and Maruoka, 2003), the entropy measure used in the C4.5

software package (Quinlan, 1993) is popular. In the multi-class classification setting

with m different class labels, this measure is given by

I(Θa) = −
∑m

i=1

π
Θia

πΘa
log

π
Θia

πΘa
(3.6)
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where πΘa , πΘia
are empirical probabilities based on the training data.

Similar to a group identification problem, the input here is a binary matrix B

with bij denoting the binary label produced by base classifier j on training sample

i, and a probability distribution Π on the training data along with their class labels

y. Specifically, the objects correspond to training data, queries to different base

classifiers, and the object groups correspond to the different classes (two classes in case

of a binary classification problem). However, unlike a group identification problem

where the nodes in a tree are not terminated until all the objects belong to the same

group, the leaf nodes here are allowed to contain some impurity in order to avoid

overfitting. The following result extends Theorem III.6 to the case of impure leaf

nodes.

Theorem III.7. The expected depth of a leaf node in a decision tree classifier T ∈

T (B,Π,y) with reduction factors {ρa}a∈I and class reduction factors {ρia}mi=1, ∀a ∈ I,

is given by

E[K(T )] = H(Πy) +
∑
a∈I

πΘa

[
1−H(ρa) +

m∑
i=1

πΘia

πΘa

H(ρia)

]
−
∑
a∈L

πΘaI(Θa) (3.7)

where Πy denotes the probability distribution of the classes induced by the class labels

y, i.e., Πy = (πΘ1 , · · · , πΘm) and I(Θa) denotes the impurity in leaf node ‘a’ given

by (3.6).

Proof. The proof is given in Appendix A.

The only difference compared to Theorem III.6 is the last term, which corresponds

to the average impurity in the leaf nodes.

Theorem III.8. At every internal node in a tree, minimizing the objective function

∆a := 1−H(ρa) +
∑m

i=1

π
Θia

πΘa
H(ρia) is equivalent to maximizing I(Θa)−

[
πΘl(a)

πΘa
I(Θl(a))

+
πΘr(a)

πΘa
I(Θr(a))

]
with entropy measure as the impurity function.
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Proof. The proof is given in Appendix A.

Therefore, greedy optimization of (3.7) at internal nodes corresponds to greedy op-

timization of impurity. Also, note that optimizing (3.7) at a leaf assigns the majority

vote class label. Therefore, we conclude that impurity-based decision tree induction

with entropy as the impurity measure amounts to a greedy optimization of the ex-

pected depth of a leaf node in the tree. Also, Theorem III.7 allows us to interpret

impurity based splitting algorithms for multi-class decision trees in terms of reduction

factors, which also appears to be a new insight.

3.3.2 A Near-optimal Algorithm

As mentioned in Chapter II, the splitting algorithm or GBS has been shown to be

near-optimal with a logarithmic approximation ratio (Dasgupta, 2004; Nowak , 2008;

Golovin and Krause, 2010), i.e.,

E[K(T̂ )] ≤ O

(
ln

1

πmin

)
E[K(T ∗)],

where πmin := mini πi is the minimum prior probability of any object, T̂ is a greedy

tree constructed using GBS and T ∗ is an optimal tree for the given problem.

Recently, Golovin and Krause (2010) introduced the notion of adaptive submod-

ularity and strong adaptive monotonicity (refer to Appendix A), and showed that a

greedy optimization algorithm with these properties can be near-optimal and achieve

a logarithmic approximation ratio, with GBS being a specific instance of this class.

Unfortunately, the objective function in GISA, i.e.,

H(ρa)−
m∑
i=1

πia
πa
H(ρia) (3.8)

does not satisfy these properties. We now present a modified version of GISA that
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can be shown to be adaptive submodular and strong adaptive monotone, and hence

can achieve a logarithmic approximation to the optimal solution.

The modified algorithm is to construct a top-down, greedy decision tree where at

each internal node, a query that maximizes

πl(a)πr(a) −
m∑
i=1

πia
πa
πil(a)π

i
r(a) (3.9)

is chosen. Essentially, the binary entropy terms H(ρa) and H(ρia) in (3.8) are approxi-

mated by the weighted Gini indices, π2
a(ρa(1−ρa)) and (πia)

2
(ρia(1−ρia)), respectively.

Note that in the special case where each group is of size 1, the query selection cri-

terion in (3.9) reduces to πl(a)πr(a), thereby reducing modified GISA to the standard

splitting algorithm.

Given a group identification problem (B,Π,y), recall that T (B,Π,y) denotes the

set of all possible trees that can uniquely identify the group of any object from the

set Θ. Then, let T ∗ denote a tree with the least expected depth, i.e.,

T ∗ ∈ arg min
T∈T (B,Π,y)

E[K(T )],

and let T̂ denote a tree constructed using modified GISA. The following theorem

states that the expected depth of T̂ is logarithmically close to that of an optimal tree.

In effect, this also provides a near-optimal algorithm for decision tree construction in

the classification setting.

Theorem III.9. Let (B,Π,y) denote a group identification problem. For a greedy

decision tree T̂ constructed using modified GISA, it holds that

E[K(T̂ )] ≤
(

2 ln

(
1√

3πmin

)
+ 1

)
E[K(T ∗)], (3.10)

where πmin := min{π ∈ Π : π > 0} is the minimum prior probability of any object.
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Proof. The proof is given in Appendix A.

In addition, if the query costs are unequal, the query selection criterion in modified

GISA can be changed to arg maxq /∈Qa ∆a(q)/c(q), where ∆a(q) is as defined in (3.9),

and c(q) is the cost of obtaining the response to query q. This simple heuristic can

been shown to retain the near-optimal property, i.e.,

c(T̂ ) ≤
(

2 ln

(
1√

3πmin

)
+ 1

)
c(T ∗),

where T̂ is a greedy tree constructed using the above heuristic, and T ∗ is a tree with

minimum expected cost. The cost of a tree T is defined as c(T ) := Eθ[c(T, θ)], where

c(T, θi) is the total cost of the queries made along the path from the root node to the

leaf node ending in object θi.

Golovin et al. (2010) simultaneously studied the problem of group identification,

and, like us, used it in the context of object identification with persistent noise (refer

Section 3.6). They proposed an extension of the algorithm by Dasgupta (2006) for

group identification, and showed a logarithmic approximation similar to us. However,

their result holds only when the priors πi are rational. In addition, the bound achieved

by modified GISA is marginally tighter than theirs.

3.4 Object Identification under Group Queries

In this section, we return to the problem of object identification. The input

is a binary matrix B denoting the relationship between M objects and N queries,

where the queries are grouped a priori into n disjoint categories, along with the a

priori probability distribution Π on the objects. However, unlike the decision trees

constructed in the previous two sections where the end user (e.g., a first responder) has

to go through a fixed set of questions as dictated by the decision tree, here, the user
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q1 q2 q3 q4

θ1 0 1 1 0

θ2 1 0 1 1

θ3 1 1 0 1

Figure 3.3: Toy Example 2
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Figure 3.4: Decision tree constructed on toy example 2
for object identification under group queries

is offered more flexibility in choosing the questions at each stage. More specifically,

the decision tree suggests a query group from the n groups instead of a single query

at each stage, and the user can choose a query to answer from the suggested query

group.

A decision tree constructed with a group of queries at each stage has multiple

branches at each internal node, corresponding to the size of the query group. Hence,

a tree constructed in this fashion has multiple leaves ending in the same object.

While traversing this decision tree, the user chooses the path at each internal node by

selecting the query to answer from the given list of queries. Figure 3.4 demonstrates a

decision tree constructed in this fashion for the toy example shown in Figure 3.3. The

circled nodes correspond to the internal nodes, where each internal node is associated

with a query group. The numbers associated with a dashed edge correspond to the

probability that the user will choose that path over the others. The probability of

reaching a node a ∈ I in the tree given θ ∈ Θa is given by the product of the

probabilities on the dashed edges along the path from the root node to that node, for

example, the probability of reaching leaf node θ∗1 given θ = θ1 in Figure 3.4 is 0.45.

The problem now is to select the query categories that will identify the object most
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efficiently, on average.

In addition to the terminology defined in Sections 3.1.1 and 3.2, we also define

z = (z1, · · · , zN) to be the group labels of the queries, where zj ∈ {1, · · · , n},∀j =

1, · · · , N . Let {Qi}ni=1 be a partition of the query set Q, where Qi denotes the set of

queries in Q that belong to group i. Similarly, at any node ‘a’ in a tree, let Qi
a and

Qi
a denote the set of queries in Qa and Q\Qa that belong to group i respectively. Let

pi(q) be the a priori probability of the user selecting query q ∈ Qi at any node with

query group i in the tree, where
∑

q∈Qi pi(q) = 1. In addition, at any node ‘a’ in the

tree, the function pi(q) = 0,∀q ∈ Qi
a, since the user would not choose a query which

has already been answered, in which case pi(q) is renormalized. In our experiments

we take pi(q) to be uniform on Qi
a. Finally, let za ∈ {1, · · · , n} denote the query

group selected at an internal node ‘a’ in the tree and let p̃a denote the probability of

reaching that node given θ ∈ Θa.

We denote an object identification problem with query groups by (B,Π, z,p).

Given (B,Π, z,p), let T (B,Π, z,p) denote the set of decision trees that can uniquely

identify all the objects in the set Θ with query groups at each internal node. For a

decision tree T ∈ T (B,Π, z,p), let {ρa(q)}q∈Qza denote the reduction factors of all

the queries in the query group at each internal node a ∈ I in the tree, where the

reduction factors are treated as functions with input being a query.

Also, for a tree with L leaves, let Li ⊂ L = {1, · · · , L} denote the set of leaves

terminating in object θi and let dj denote the depth of leaf node j ∈ L. Then, the

expected number of queries required to identify the unknown object using the given

tree is equal to

E[K(T )] =
M∑
i=1

Pr(θ = θi)E[K(T )|θ = θi]

=
M∑
i=1

πi

∑
j∈Li

p̃jdj


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Theorem III.10. The expected number of queries required to identify an object using

a tree T ∈ T (B,Π, z,p) is given by

E[K(T )] = H(Π) +
∑
a∈I

p̃aπΘa

[
1−

∑
q∈Qza

pza(q)H(ρa(q))

]
(3.11)

Proof. Special case of Theorem III.12 below.

Note from the above theorem, that given an object identification problem with

group queries (B,Π, z,p), the expected number of queries required to identify an

object is lower bounded by its entropy H(Π). Also, this lower bound can be achieved

iff the reduction factors of all the queries in a query group at each internal node of

the tree is equal to 0.5. In fact, Theorem III.2 is a special case of the above theorem

where each query group has just one query.

Given (B,Π, z,p), the problem of finding a decision tree with minimum E[K(T )]

can be formulated as the following optimization problem:

min
T∈T (B,Π,z,p)

∑
a∈I p̃aπΘa

[
1−

∑
q∈Qza pza(q)H(ρa(q))

]
.

Note that here the reduction factors ρa(q),∀q ∈ Qza and the prior probability

function pza(q) depends on the query group za ∈ {1, · · · , n} chosen at node ‘a’ in the

tree. The above optimization problem being a generalized version of the optimiza-

tion problem in (3.2) is NP-complete. A greedy top-down local optimization of the

above objective function yields a suboptimal solution where we choose a query group

that minimizes the term ∆a(j) :=
[
1−

∑
q∈Qj pj(q)H(ρa(q))

]
at each internal node,

starting from the root node. We refer to this algorithm summarized below, as GQSA

(Group Queries Splitting Algorithm).

Remark III.11. In this section and the one following, we assume that the query groups

are disjoint only for the sake of simplicity. However, we do not need this assumption
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Group Queries Splitting Algorithm (GQSA)

Initialization : Let the leaf set consist of the root node
while some leaf node ‘a’ has |Θa| > 1 do

for each query group with
∣∣∣Qj

a

∣∣∣ ≥ 1 do

Compute the prior probabilities of selecting queries within a group
pj(q),∀q ∈ Qj at node ‘a’
Compute the reduction factors for all the queries in the query group
{ρa(q)}q∈Qj
Compute the cost ∆a(j) of using query group j at node ‘a’

end
Choose a query group j with the least cost ∆a(j) at node ‘a’
Form the left and the right child nodes for all queries with pj(q) > 0 in the
query group

end

for the results in Theorem III.10, and Theorem III.12 in the next section, to hold.

Similarly, we assume that the prior probability of choosing a query from a query group

depends only on the group membership. However, one could use a more complex prior

distribution that not only depends on the group membership, but also on the previous

queries and their responses. The results in Theorems III.10 and III.12 do not change

by these generalizations, as long as the prior distribution is normalized and sums to

1 at each internal node in the tree. This can be readily observed from the proof of

Theorem III.12 in Appendix A.

3.5 Group Identification under Group Queries

For the sake of completion, we consider here the problem of identifying the group

of an unknown object θ ∈ Θ under group queries. The input is a binary matrix B

denoting the relationship between M objects and N queries, where the objects are

grouped into m groups and the queries are grouped into n groups. The task is to

identify the group of an unknown object through as few queries from Q as possible

where, at each stage, the user is offered a query group from which a query is chosen.
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As noted in Section 3.3, a decision tree constructed for group identification can

have multiple objects terminating in the same leaf node. Also, a decision tree con-

structed for group identification with a query group at each internal node has multiple

leaves terminating in the same group. Hence a decision tree constructed in this sec-

tion can have multiple objects terminating in the same leaf node and multiple leaves

terminating in the same group. Also, we use most of the terminology defined in

Sections 3.3 and 3.4 here.

We denote a group identification problem with query groups by (B,Π,y, z,p)

where y = (y1, · · · , yM) denotes the group labels on the objects, z = (z1, · · · , zN)

denotes the group labels on the queries and p = (p1(q), · · · , pn(q)) denotes the a

priori probability functions of selecting queries within query groups. Given a group

identification problem under group queries (B,Π,y, z,p), let T (B,Π,y, z,p) denote

the set of decision trees that can uniquely identify the groups of all objects in the set

Θ with query groups at each internal node. For any decision tree T ∈ T (B,Π,y, z,p),

let {ρa(q)}q∈Qza denote the reduction factor set and let {{ρia(q)}mi=1}q∈Qza denote the

group reduction factor sets at each internal node a ∈ I in the tree, where za ∈

{1, · · · , n} denotes the query group selected at that node.

Also, for a tree with L leaves, let Li ⊂ L = {1, · · · , L} denote the set of leaves

terminating in object group i and let dj, p̃j denote the depth of leaf node j ∈ L and

the probability of reaching that node given θ ∈ Θj, respectively. Then, the expected

number of queries required to identify the group of an unknown object using the given

tree is equal to

E[K(T )] =
m∑
i=1

Pr(θ ∈ Θi)E[K(T )|θ ∈ Θi]

=
m∑
i=1

πΘi

∑
j∈Li

πΘj

πΘi
p̃jdj


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Theorem III.12. The expected number of queries required to identify the group of

an unknown object using a tree T ∈ T (B,Π,y, z,p) is given by

E[K(T )] = H(Πy) +
∑
a∈I

p̃aπΘa

{
1−

∑
q∈Qza

pza(q)[
H(ρa(q))−

m∑
i=1

πΘia

πΘa

H(ρia(q))

]}
(3.12)

where Πy denotes the probability distribution of the object groups induced by the labels

y, i.e. Πy = (πΘ1 , · · · , πΘm)

Proof. The proof is given in Appendix A.

Note that Theorems III.2, III.6 and III.10 are special cases of the above theorem.

This theorem states that, given a group identification problem under group queries

(B,Π,y, z,p), the expected number of queries required to identify the group of an

object is lower bounded by the entropy of the probability distribution of the object

groups H(Πy). It also follows from the above theorem that this lower bound can be

achieved iff the reduction factors and the group reduction factors of all the queries in

a query group at each internal node are equal to 0.5 and 1 respectively.

The problem of finding a decision tree with minimum E[K(T )] can be formulated

as the following optimization problem:

min
T∈T (B,Π,y,z,p)

∑
a∈I

p̃aπΘa

{
1−

∑
q∈Qza

pza(q)

[
H(ρa(q))−

m∑
i=1

πΘia

πΘa

H(ρia(q))

]}
.

Note that here the reduction factors {ρa(q)}q∈Qza , the group reduction factors

{ρia(q)}q∈Qza for all i = 1, · · · ,m, and the prior probability function pza(q) depends

on the query group za ∈ {1, · · · , n} chosen at node ‘a’ in the tree. Once again, the

above optimization problem being a generalized version of the optimization problem

in (3.2) is NP-complete. A greedy top-down optimization of the above objective
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Group Identification under Group Queries Splitting Algorithm
(GIGQSA)

Initialization : Let the leaf set consist of the root node
while some leaf node ‘a’ has more than one group of objects do

for each query group with
∣∣∣Qj

a

∣∣∣ ≥ 1 do

Compute the prior probabilities of selecting queries within a group,
pj(q),∀q ∈ Qj at node ‘a’
Compute the reduction factors for all the queries in the query group
{ρa(q)}q∈Qj
Compute the group reduction factors for all the queries in the query
group {ρia(q)}q∈Qj , ∀i = 1, · · · ,m
Compute the cost ∆a(j) of using query group j at node ‘a’

end
Choose a query group j with the least cost ∆a(j) at node ‘a’
Form the left and the right child nodes for all queries with pj(q) > 0 in the
query group

end

function yields a suboptimal solution where we choose a query group that minimizes

the term ∆a(j) := 1 −
∑

q∈Qj pj(q)
[
H(ρa(q))−

∑m
i=1

π
Θia

πΘa
H(ρia(q))

]
at each internal

node, starting from the root node. We refer to this algorithm summarized above, as

GIGQSA (Group Identification under Group Queries Splitting Algorithm).

3.6 Object Identification under Persistent Noise

We now consider the problem of rapidly identifying an unknown object θ ∈ Θ in

the presence of persistent query noise, and relate this problem to group identification.

Query noise refers to errors in the query responses, i.e., the observed query response

is different from the true response of the unknown object. For example, a victim of

toxic chemical exposure may not report a symptom because of a delayed onset of that

symptom. Unlike the noise model often assumed in the literature, where repeated

querying results in independent realizations of the noise, persistent query noise is a

more stringent noise model where repeated queries results in the same response.
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Figure 3.5: For the toy example shown in (a) consisting of 2 objects and 3 queries

with an ε = 1, (b) demonstrates the construction of matrix B̃. The

probability distribution of the objects in B̃ are generated using the noise
model described in Section 3.6.1, where only queries q2 and q3 are assumed
to be prone to error.

Before we address this problem, we need to introduce some additional notation.

Given an object identification problem (B,Π), let δ denote the minimum Hamming

distance between any two rows of the matrix B. Also, we refer to the bit string

consisting of observed query responses as an input string. The input string can differ

from the true bit string (corresponding to the row vector of the true object in matrix

B) due to persistent query noise. However, we further assume that the number of

query responses in error cannot exceed ε := b δ−1
2
c. Note that in the persistent noise

model, this assumption is required for unique identification of the unknown object.

Given this noise setting, the goal of object identification under persistent noise is to

uniquely identify the unknown object θ using as few queries as possible, where the

responses to queries can be in error.
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This problem can be posed as a group identification problem as follows: Given an

object identification problem (B,Π) with M objects and N queries that is susceptible

to ε errors, create (B̃, Π̃) with M groups of objects and N queries, where each object

group in this new matrix is formed by considering all possible bit strings that differ

from the original bit string in at most ε positions, i.e., the size of each object group

in B̃ is
∑ε

e=0

(
N
e

)
. Figure 3.5(b) demonstrates construction of B̃ for the toy example

shown in Figure 3.5(a) consisting of 2 objects and 3 queries with an ε = 1.

Each bit string in the object set Θi of B̃ corresponds to one of the possible input

strings when the true object is θi and at most ε errors occur. Also note that, by

definition of ε, no two bit strings in the matrix B̃ can be the same. Thus, the

problem of rapidly identifying an unknown object θ from (B,Π) in the presence of

at most ε persistent errors, reduces to the problem of identifying the group of the

unknown object from (B̃, Π̃). The probability distribution Π̃ of the bit strings in B̃

depends on the prior Π and the error model. In the following section, we describe

one specific error model that arises commonly in applications such as active learning,

image processing and computer vision, and demonstrate the computation of Π̃ under

that error model.

Given that this problem can be reduced to a group identification problem, the

unknown object can be rapidly identified in the presence of persistent query noise

using any group identification algorithm including GISA and modified GISA. In ad-

dition, the near-optimal property of modified GISA guarantees that the expected

number of queries required to identify an unknown object under persistent noise is

logarithmically close to that of an optimal algorithm, as stated in the result below.

Corollary III.13. Let (B,Π) denote an object identification problem that is suscep-

tible to ε persistent errors. Let K̂ denote the expected number of queries required to

identify an unknown object under persistent noise using modified GISA, and let K∗

denote the expected number of queries required by an optimal algorithm. Then it holds
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that

K̂ ≤
(

2 ln

(
1√

3π̃min

)
+ 1

)
K∗,

where π̃min = min{π̃ ∈ Π̃ : π̃ > 0}.

Proof. The result follows from Theorem III.9.

3.6.1 Constant Noise Rate

We now consider a noise model that has been used in the context of pool-based

active learning with a faulty oracle (Nowak , 2009; Hanneke, 2007), experimental

design (Rényi , 1961), computer vision, and image processing (Korostelev and Kim,

2000), where the responses to some queries are assumed to be randomly flipped.

We will describe a general version of this noise model. Given N queries, consider

the case where a fraction ν of them are prone to error. The query response to each

of these νN queries can be in error with a probability 0 ≤ p ≤ 0.5, where the errors

occur independently. Then, the probability of e errors occurring is given by

Pr(e errors) =

(
Nν
e

)
pe(1− p)Nν−e∑ε′

e′=0

(
Nν
e′

)
pe′(1− p)Nν−e′

, 0 ≤ e ≤ ε′

where ε′ := min(ε,Nν) denotes the maximum number of persistent errors that could

occur. Note that this probability model corresponds to a truncated binomial distri-

bution.

Given an object identification problem (B,Π) that is susceptible to ε errors, let

B̃ denote the extended binary matrix constructed as described in Section 3.6. The

probability distribution Π̃ of the objects in B̃ can be computed as follows. For an

object belonging to group i in B̃, if its response to a query that is not prone to error

differs from the true response of object θi in B, then the probability π̃ of that object

in B̃ is 0. On the other hand, if its response differs in e ≤ ε′ queries that are prone
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to error, then its probability is given by

pe(1− p)Nν−e∑ε′

e′=0

(
Nν
e′

)
pe′(1− p)Nν−e′

πi.

Figure 3.5(b) shows the probability distribution of the objects in B̃ using the proba-

bility model described above with p = 0.5 (Π̃1) and p = 0.25 (Π̃2) for the toy example

shown in Figure 3.5(a) where only queries q2 and q3 are prone to error.

However, one possible concern with this approach for object identification under

persistent noise could be a memory related issue of explicitly maintaining the matrix

B̃ due to the combinatorial explosion in its size. Interestingly, for the noise model

described here, the relevant quantities for query selection in GBS, GISA and modi-

fied GISA (i.e., the reduction factors) can be efficiently computed without explicitly

constructing the matrix B̃, described in detail in Appendix A.

3.7 Experimental Evaluation

We perform three sets of experiments, demonstrating our algorithms for group

identification, object identification using query groups, and object identification with

persistent noise. In each case, we compare the performances of the proposed algo-

rithms to standard algorithms such as the splitting algorithm, using synthetic data as

well as a real dataset, the WISER database. The WISER database is a toxic chem-

ical database describing the binary relationship between 298 toxic chemicals and 79

acute symptoms. The symptoms are grouped into 10 categories (e.g., neurological,

cardio) as determined by NLM, and the chemicals are grouped into 16 categories (e.g.,

pesticides, corrosive acids) as determined by a toxicologist and a Hazmat expert.
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Figure 3.6: Random data model - The query parameters (γw(q), γb(q)) are restricted
to lie in the rectangular space

3.7.1 Group Identification

Here, we consider a group identification problem (B,Π) where the objects are

grouped into m groups given by y = (y1, · · · , yM), yi ∈ {1, · · · ,m}, with the task

of identifying the group of an unknown object from the object set Θ through as

few queries from Q as possible. First, we consider random datasets generated using a

random data model and compare the performances of GBS, GISA and modified GISA

for group identification in these random datasets. Then, we compare the performance

of these algorithms on the WISER database. In both these experiments, we assume

a uniform a priori probability distribution on the objects.

3.7.1.1 Random Datasets

We consider random datasets of the same size as the WISER database, with 298

objects and 79 queries where the objects are grouped into 16 classes with the same

group sizes as that in the WISER database. We associate each query in a random

dataset with two parameters, γw ∈ [0.5, 1] which reflects the correlation of the object

responses within a group, and γb ∈ [0.5, 1] which captures the correlation of the
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Figure 3.7: Expected number of queries required to identify the group of an object
using GBS, GISA and modified GISA on random datasets generated us-
ing the proposed random data model. Note that GISA and modified
GISA achieve almost similar performance on these datasets, with GISA
performing slightly better than modified GISA.

object responses between groups. When γw is close to 0.5, each object within a group

is equally likely to exhibit 0 or 1 as its response to the query, whereas, when γw is

close to 1, most of the objects within a group are highly likely to exhibit the same

response to the query. Similarly, when γb is close to 0.5, each group is equally likely

to exhibit 0 or 1 as its response to the query, where a group response corresponds

to the majority vote of the object responses within a group, while, as γb tends to 1,

most of the groups are highly likely to exhibit the same response.

Given a (γw, γb) pair for a query in a random dataset, the object responses for

that query are created as follows

1. Generate a Bernoulli random variable, x

2. For each group i ∈ {1, · · · ,m}, assign a binary label bi, where bi = x with

probability γb

3. For each object in group i, assign bi as the object response with probability γw

Given the correlation parameters (γw(q), γb(q)) ∈ [0.5, 1]2,∀q ∈ Q, a random dataset
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Figure 3.8: Scatter plot of the query parameters in the WISER database

can be created by following the above procedure for each query. Conversely, we

describe in Section 3.7.1.2 on how to estimate these parameters for a given dataset.

Figure 3.7 compares the mean E[K(T )] for GBS, GISA and modified GISA in

100 randomly generated datasets (for each value of d1 and d2), where the random

datasets are created such that the query parameters are uniformly distributed in the

rectangular space governed by d1, d2 as shown in Figure 3.6. This demonstrates the

improved performance of GISA and modified GISA over GBS in group identification.

Especially, note that E[K(T )] tends close to the entropy bound H(Πy) using both

GISA and modified GISA as d2 increases.

This is due to the increment in the number of queries in the fourth quadrant of

the parameter space as d2 increases. Specifically, as the correlation parameters γw, γb

tends to 1 and 0.5 respectively, choosing that query eliminates approximately half the

groups with each group being either completely eliminated or completely included, i.e.

the group reduction factors tend to 1 for these queries. Such queries are preferable in

group identification with both GISA and modified GISA being specifically designed

to search for those queries leading to their strikingly improved performance over GBS

as d2 increases.
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Algorithm E[K(T )]
modified GISA 7.291 ± 0.001

GISA 7.792 ± 0.001
GBS 7.948 ± 0.003

Random Search 16.328 ± 0.177

Table 3.1: Expected number of queries required to identify the group of an object in
the WISER database

3.7.1.2 WISER Database

Table 3.1 compares the expected number of queries required to identify the group

of an unknown object in the WISER database using GISA, modified GISA, GBS

and random search, where the group entropy in the WISER database is given by

H(Πy) = 3.068. The table reports the 95% symmetric confidence intervals based on

random trails, where the randomness in GISA, modified GISA and GBS is due to the

presence of multiple best splits at each internal node.

However, the improvement of both GISA and modified GISA over GBS on WISER

is less than was observed for many of the random datasets discussed above. To

understand this, we developed a method to estimate the correlation parameters of

the queries for a given dataset B. For each query in the dataset, the correlation

parameters can be estimated as follows

1. For every group i ∈ {1, · · · ,m}, let bi denote the group response given by the

majority vote of object responses in the group and let γ̂iw denote the fraction of

objects in the group with similar response as bi

2. Denote by a binary variable x, the majority vote of the group responses b =

[b1, · · · , bm]

3. Then, γ̂b is given by the fraction of groups with similar response as x, and

γ̂w = 1
m

∑
i γ̂

i
w

Now, we use the above procedure to estimate the query parameters for all queries
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in the WISER database, shown in Figure 3.8. Note from this figure that there is just

one query in the fourth quadrant of the parameter space and there are no queries

with γw close to 1 and γb close to 0.5. In words, chemicals in the same group tend to

behave differently and chemicals in different groups tend to exhibit similar response

to the symptoms. This is a manifestation of the non-specificity of the symptoms in

the WISER database as reported by Bhavnani et al. (2007).

3.7.2 Object Identification under Group Queries

In this section, we consider an object identification problem under group queries

(B,Π) where the queries are a priori grouped into n groups given by z = (z1, · · · , zN),

zi ∈ {1, · · · , n}, with the task of identifying an unknown object from the set Θ through

as few queries from Q as possible, where the user is presented with a query group at

each stage to choose from. Note that this approach is midway between a complete

active search strategy and a complete passive search strategy. Hence, we primarily

compare the performance of GQSA to a completely active search strategy such as

GBS and a completely passive search strategy like random search where the user

randomly chooses the queries from the set Q to answer. In addition, we also compare

GQSA to other possible heuristics where we choose a query group i that minimizes

minq∈Qi pi(q)ρa(q) or maxq∈Qi pi(q)ρa(q) at each internal node ‘a’.

First, we compare the performances of these algorithms on random datasets gen-

erated using a random data model. Then, we compare them in the WISER database.

In both these experiments, we assume uniform a priori probability distribution on

the objects as well as on queries within a group. The latter probability distribution

corresponds to the probability of a user selecting a particular query q from a query

group, pi(q),∀i = 1, · · · , n.
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Figure 3.9: Compares the average query complexity of different algorithms for object
identification under group queries in synthetic datasets

3.7.2.1 Random Datasets

Here, we consider random datasets of the same size as the WISER database, with

298 objects and 79 queries where the queries are grouped into 10 groups with the same

group sizes as that in the WISER database. We associate a random dataset with a

parameter γmax ∈ [0.5, 1], where γmax corresponds to the maximum permissible value

of γb for a query in the random dataset. Given a γmax, a random dataset is created

as follows

1. For each query group, generate a γb ∈ [0.5, γmax]

2. For each query in the query group, generate a Bernoulli random variable x and

give each object the same query label as x with probability γb

Figure 3.9 compares the mean E[K(T )] for the respective algorithms in 100 ran-

domly generated datasets, for each value of γmax. The min min corresponds to the

heuristic where we minimize minq∈Qi pi(q)ρa(q) at each internal node and the min max

corresponds to the heuristic where we minimize maxq∈Qi pi(q)ρa(q). Note from the

figure that in spite of not being a completely active search strategy, the performance

of GQSA is comparable to that of GBS and better than the other algorithms.
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Algorithm E[K(T )]
GBS 8.283 ± 0.000

GQSA 11.360 ± 0.096
mini minq∈Qi pi(q)ρa(q) 13.401 ± 0.116
mini maxq∈Qi pi(q)ρa(q) 18.697 ± 0.357

Random Search 20.251 ± 0.318

Table 3.2: Expected number of queries required to identify an object under group
queries in the WISER database

3.7.2.2 WISER Database

Table 3.2 compares the expected number of queries required to identify an un-

known object under group queries in the WISER database using the respective

algorithms, where the entropy of the objects in the WISER database is given by

H(Π) = 8.219. The table reports the 95% symmetric confidence intervals based on

random trials, where the randomness in GBS is due to the presence of multiple best

splits at each internal node.

Once again, it is not surprising that GBS outperforms GQSA as GBS is fully

active, i.e, it always chooses the best split, whereas GQSA does not always pick the

best split, since a human is involved. Yet, the performance of GQSA is not much

worse than that of GBS. In fact, if we were to fully model the time-delay associated

with answering a query, then GQSA might have a smaller “time to identification,”

because presumably it would take less time to answer the queries on average.

3.7.3 Object Identification under Persistent Noise

In Section 3.6, we showed that identifying an unknown object in the presence

of persistent query noise can be reduced to a group identification problem. Hence,

any group identification algorithm can be adopted to solve this problem. Here, we

compare the performance of GBS, GISA and modified GISA under the noise model

described in Section 3.6.1.

Note that this noise model requires the knowledge of the Nν queries from the set
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Figure 3.10: Compares the performance of GBS, modified GISA and GISA in identi-
fying the true object in the presence of persistent query noise described
in Section 3.6.1 for p = 0.5.

Q that are prone to error. We assume this knowledge in all our experiments in this

section. Below, we show the procedure adopted to simulate the error model,

1. Select the fraction ν of the N queries that are prone to error

2. Generate e ∈ {0, · · · , ε′} according to the selected probability model (p value)

3. Choose e queries from the above Nν set of queries

4. Flip the object responses of these e queries in the true object

We compare the performance of GBS, GISA and modified GISA on a subset of

the WISER database consisting of 131 toxic chemicals and 79 symptom queries with

ε = 2. Figure 3.7.3 shows the expected number of queries required by GBS, GISA and

modified GISA to identify the true object in the presence of a maximum of ε persistent

errors for different values of ν, when the probability of query error p is 0.5. Note that

except for the extreme cases where ν = 0 and ν = 1, GISA and modified GISA have

great improvement over GBS. When ν = 0, 1, GBS, GISA and modified GISA reduce

to the same algorithm. Similar performance has been observed for different values of

p as shown in Figure 3.11(a). However, we do not show modified GISA in this figure

to avoid cramping.
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Figure 3.11: (a) Compares the performance of GBS, modified GISA and GISA in iden-
tifying the true object in the presence of persistent query noise described
in Section 3.6.1 for different values of p (b) Compares the performance
of GBS and GISA under persistent noise in the presence of discrepancies
between the true value of p, ptrue and the value used in the algorithm
palg

Also, note that to compute the probability distribution Π̃ of the objects in the

extended matrix B̃, we require the knowledge of p. Though this probability can be

estimated with the help of external knowledge sources beyond the database such as

domain experts, user surveys or by analyzing past query logs, the estimated value of

p can vary slightly from its true value. Hence, we tested the sensitivity of the three

algorithms to error in the value of p and noted that there is not much change in
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their performance to discrepancies in the value of p as shown in Figure 3.11(b). Once

again, we do not show the results of modified GISA to avoid cramping.
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CHAPTER IV

Diagnosis under Exponential Query costs

4.1 Introduction

As noted in Chapter III, the splitting algorithm or generalized binary search (GBS)

is tailored to minimize the expected number of queries required to identify an unknown

object θ, thereby implicitly assuming that the incremental cost for each additional

query is a constant. However, in time-critical applications such as the emergency

response problem of toxic chemical identification, the cost of additional queries may

grow significantly. Moreover, if some chemicals are less prevalent (i.e., have a small

prior), GBS may require an unacceptably large number of queries to identify them.

This problem is further compounded when the prior probabilities πi are inaccurately

specified.

To address these issues, we consider an objective function where the cost of iden-

tifying an object grows exponentially in the number of queries, i.e., the cost of iden-

tifying an object using d queries is λd for some fixed λ > 1. Specifically, the expected

cost of identifying an unknown object θ using a given tree T is defined to be

Lλ(Π,d) := logλ

(
M∑
i=1

πiλ
di

)
, (4.1)

where λ > 1 and d = (d1, · · · , dM), di denoting the depth of object θi in the given
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tree. In the limiting case where λ tends to 1 and∞, this cost function reduces to the

average depth and the worst case depth of a tree, respectively. That is,

L1(Π,d) = lim
λ→1

Lλ(Π,d) =
M∑
i=1

πidi, and

L∞(Π,d) = lim
λ→∞

Lλ(Π,d) = max
i∈{1,··· ,M}

di.

The above cost function was first proposed by Campbell (1965) in the context of

source coding for the design of prefix-free codes, where an optimal binary decision tree

(i.e., optimal binary prefix-free codes) that minimizes Lλ(Π,d) can be obtained by a

modified version of the Huffman algorithm (Hu et al., 1979; Parker , 1980; Humblet ,

1981; Schulz , 2008). This cost function has also been used recently in the design

of alphabetic codes (Baer , 2006) and random search trees (Schulz , 2008), where

efficient optimal or greedy algorithms have been presented. However, there does not

exist an algorithm to the best of our knowledge that constructs a good suboptimal

decision tree for the problem of object/group identification under exponential costs.

Moreover, note that as GBS is tailored to minimize L1(Π,d), it may not produce a

good suboptimal solution for the exponential cost function with λ > 1. Hence, we

derive extensions of GBS and GGBS specifically customized to minimize Lλ(Π,d).

Once again, we take a coding-theoretic approach to arrive at these new, greedy

algorithms. In particular, we use a result by Campbell (1966) which states that the

exponential cost of any tree T is bounded below by the α-Rényi entropy, i.e.,

Lλ(Π,d) ≥ Hα(Π) :=
1

1− α
log2

(
M∑
i=1

παi

)
, (4.2)

where α = 1
1+log2 λ

. For brevity, we will drop the dependence of the cost function on d

and denote it as Lλ(Π) in the rest of this chapter. The work in this chapter is based

on Bellala, Bhavnani and Scott (2010).
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4.2 Object Identification under Exponential Costs

We begin with the problem of object identification where the goal is to identify

an unknown object θ ∈ Θ in as few queries from Q as possible. We derive an explicit

formula for the gap in Campbell’s lower bound, and then use this formula to derive

a family of greedy algorithms that minimize the exponential cost function Lλ(Π) for

λ > 1.

As noted earlier, the exponential cost function Lλ(Π) reduces to the average depth

and the worst case depth in the limiting cases where λ tends to one and infinity,

respectively. In these limiting cases, the entropy lower bound on the cost function

reduces to the Shannon entropy H(Π) and log2M , respectively.

Given an object identification problem (B,Π), let T (B,Π) denote the set of deci-

sion trees that can uniquely identify all the objects in the set Θ.

Theorem IV.1. For any λ > 1 and any T ∈ T (B,Π), the exponential cost Lλ(Π) is

given by

λLλ(Π) = λHα(Π) +
∑
a∈I

πΘa

[
(λ− 1)λda −Dα(Θa)

+
πΘl(a)

πΘa

Dα(Θl(a)) +
πΘr(a)

πΘa

Dα(Θr(a))
]

(4.3)

where da denotes the depth of any internal node ‘a’ in the tree, Θa denotes the

set of objects that reach node ‘a’, πΘa =
∑

{i:θi∈Θa}
πi, α = 1

1+log2 λ
and Dα(Θa) :=[∑

{i:θi∈Θa}

(
πi
πΘa

)α]1/α

.

Proof. Special case of Theorem IV.4.

Theorem IV.1 provides an explicit formula for the gap in the Campbell’s lower

bound, namely, the term in summation over internal nodes I in (4.3). Using this

result, the problem of finding a decision tree with minimum Lλ(Π) can be formulated
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as the following optimization problem:

min
T∈T (B,Π)

∑
a∈I

πΘa

[
(λ− 1)λda −Dα(Θa) +

πΘl(a)

πΘa

Dα(Θl(a)) +
πΘr(a)

πΘa

Dα(Θr(a))

]
(4.4)

As we show in Section 4.2.1, this optimization problem is a generalized version of an

optimization problem that is NP-complete. Hence, we propose a suboptimal approach

to solve this optimization problem where we minimize the objective function locally

rather than globally. As before, we take a top-down approach and minimize the

objective function by minimizing the term πΘa

[
(λ− 1)λda −Dα(Θa) +

πΘl(a)

πΘa
Dα(Θl(a))

+
πΘr(a)

πΘa
Dα(Θr(a))

]
at each internal node, starting from the root node. Note that

the terms that depend on the query chosen at node ‘a’ are πΘl(a)
, πΘr(a)

,Dα(Θl(a))

and Dα(Θr(a)). Hence, the objective function to be minimized at each internal node

reduces to Ca :=
πΘl(a)

πΘa
Dα(Θl(a)) +

πΘr(a)

πΘa
Dα(Θr(a)). This algorithm, which we refer to

as λ-GBS, can be summarized as shown below.

λ-GBS

Initialization : Let the leaf set consist of the root node, Qroot = ∅
while some leaf node ‘a’ has |Θa| > 1 do

for each query q ∈ Q \Qa do
Find Θl(a) and Θr(a) produced by making a split with query q
Compute the cost Ca(q) of making a split with query q

end
Choose a query with the least cost Ca at node ‘a’
Form child nodes l(a), r(a)

end

In the following two sections, we will show that in the limiting case when λ tends

to one, where the average exponential depth reduces to the average linear depth,

λ-GBS reduces to GBS, and in the case when λ tends to infinity, λ-GBS reduces to

GBS with uniform prior, i.e., πi = 1/M , ∀i. The latter algorithm is GBS with the

true prior distribution Π replaced by a uniform distribution.

60



4.2.1 Average case scenario

We will use the result in the following corollary to show that in the limiting case

where λ tends to 1, λ-GBS reduces to GBS.

Corollary IV.2. In the limiting case where λ tends to 1, (4.3) reduces to

L1(Π) = H(Π) +
∑
a∈I

πΘa [1−H(ρa)] (4.5)

where H(·) denotes the Shannon entropy and ρa denotes the reduction factor defined

in § 3.2.

Proof. The result follows from Theorem IV.1 by taking the limit as λ tends to 1 and

applying L’Hôpital’s rule on both sides of (4.3).

Note from the above corollary that in the limiting case where λ tends to 1, the

optimization problem in (4.4) reduces to

min
T∈T (B,Π)

∑
a∈I

πΘa [1−H(ρa)],

thereby reducing λ-GBS to GBS.

4.2.2 Worst case scenario

We now present the other limiting case of the family of greedy algorithms λ-GBS

where λ→∞. As noted in Section 4.2, the exponential cost function Lλ(Π) reduces

to the worst case depth of any leaf node in this case. Note that GBS under a uniform

prior (i.e., to choose a query that evenly splits the remaining objects at each internal

node) is an intuitive algorithm for minimizing the worst case depth. As we show

below, λ-GBS reduces to this algorithm as λ→∞.

We begin by noting that the cost function minimized at each internal node of a

tree in λ-GBS is Ca :=
πΘl(a)

πΘa
Dα(Θl(a)) +

πΘr(a)

πΘa
Dα(Θr(a)). Since logλ is a monotonic
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function, this is equivalent to minimizing the function logλ(Ca). It then follows from

Corollary IV.3 that in the limiting case where λ tends to infinity, this criterion reduces

to minimizing max{|Θl(a)|, |Θr(a)|}. Hence, in this limiting case, λ-GBS reduces to

GBS with uniform prior, thereby completely eliminating the dependence of the algo-

rithm on the prior distribution Π. More generally, as λ increases, λ-GBS becomes less

sensitive to the prior distribution, and therefore more robust to any misspecification

of the prior.

Corollary IV.3. In the limiting case where λ→∞, the optimization problem

min logλ

(
πΘl(a)

πΘa

Dα(Θl(a)) +
πΘr(a)

πΘa

Dα(Θr(a))

)
→ min max{|Θl(a)|, |Θr(a)|}

Proof. Applying L’Hôpital’s rule, we get

lim
λ→∞

logλ

(
πΘl(a)

πΘa

Dα(Θl(a)) +
πΘr(a)

πΘa

Dα(Θr(a))

)
= max{log2 |Θl(a)|, log2 |Θr(a)|}

Since log2 is a monotonic increasing function, the optimization problem, min max

{log2 |Θl(a)|, log2 |Θr(a)|} is equivalent to the optimization problem, min max{|Θl(a)|,

|Θr(a)|}.

4.3 Group Identification under Exponential Costs

For the sake of completeness, we will now consider the problem of group identifi-

cation where the cost of identifying the group of an object grows exponentially in the

number of queries. In Section 3.3, we considered a special case of this problem where

the cost grows linearly in the number of queries. In this context, we also noted that

a greedy decision tree constructed for group identification can have multiple objects

ending in the same leaf node and multiple leaves ending in the same group. For a tree

with L leaves, we let Li ⊂ L = {1, · · · , L} denote the set of leaves that terminate in
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group i. Also, we let Θi
a ⊆ Θa denote the set of objects belonging to group i that

reach internal node a ∈ I in a tree, where Θi ⊆ Θ denotes the set of objects belonging

to group i at the root node of any tree.

Given a group identification problem (B,Π,y) where y denotes the group labels,

let T (B,Π,y) denote the set of decision trees that can uniquely identify the groups of

all objects in the set Θ. For any decision tree T ∈ T (B,Π,y), let dj denote the depth

of leaf node j ∈ L. Let random variable K denote the exponential cost incurred in

identifying the group of an unknown object θ ∈ Θ. Then, the average exponential

cost Lλ(Π) of identifying the group of the unknown object θ using a given tree is

defined as

λLλ(Π) =
m∑
i=1

Pr(θ ∈ Θi)E[K|θ ∈ Θi]

=
m∑
i=1

πΘi

∑
j∈Li

πΘj

πΘi
λdj


=⇒ Lλ(Π) = logλ

 m∑
i=1

πΘi

∑
j∈Li

πΘj

πΘi
λdj


In the limiting case where λ tends to one and infinity, the cost function Lλ(Π) reduces

to

L1(Π) := lim
λ→1

Lλ(Π) =
m∑
i=1

πΘi

∑
j∈Li

πΘj

πΘi
dj

 ,
L∞(Π) := lim

λ→∞
Lλ(Π) = max

j∈L
dj.

Theorem IV.4. For any λ > 1 and any tree T ∈ T (B,Π,y), the exponential cost
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Lλ(Π) of identifying the group of an object is given by

λLλ(Π) = λHα(Πy) +
∑
a∈I

πΘa

[
(λ− 1)λda −Dα(Θa)

+
πΘl(a)

πΘa

Dα(Θl(a)) +
πΘr(a)

πΘa

Dα(Θr(a))
]

(4.6)

where Πy = (πΘ1 , · · · , πΘm) denotes the probability distribution of the object groups

induced by the labels y, and Dα(Θa) :=
[∑m

i=1

(
π

Θia

πΘa

)α]1/α

with α = 1
1+log2 λ

, πΘi =∑
{k:yk=i}

πk and πΘia
=

∑
{k:θk∈Θa,yk=i}

πk.

Proof. The proof is given in Appendix B.

Note that the definition of Dα(Θa) in this theorem is a generalization of that in

Theorem IV.1. Also note that Theorem IV.1 is a special case of this theorem where

each group is of size 1.

Using the result in the above theorem, the problem of finding a decision tree

with minimum cost function Lλ(Π) can be formulated as the following optimization

problem:

min
T∈T (B,Π,y)

∑
a∈I

πΘa

[
(λ− 1)λda −Dα(Θa) +

πΘl(a)

πΘa

Dα(Θl(a)) +
πΘr(a)

πΘa

Dα(Θr(a))

]
.

(4.7)

This optimization problem being the generalized version of the optimization problem

in (4.4) is NP-complete. Hence, we propose a suboptimal algorithm to solve this op-

timization problem where we take a top-down approach and minimize the objective

function by minimizing the term Ca :=
πΘl(a)

πΘa
Dα(Θl(a))+

πΘr(a)

πΘa
Dα(Θr(a)) at each inter-

nal node, starting from the root node. This algorithm, which we refer to as λ-GGBS,

is summarized below.
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λ-Group Generalized Binary Search (λ-GGBS)

Initialization : Let the leaf set consist of the root node, Qroot = ∅
while some leaf node ‘a’ has more than one group of objects do

for each query q ∈ Q \Qa do
Compute {Θi

l(a)}mi=1 and {Θi
r(a)}mi=1 produced by making a split with

query q
Compute the cost Ca(q) of making a split with query q

end
Choose a query with the least cost Ca at node ‘a’
Form child nodes l(a), r(a)

end

4.3.1 Average case scenario

We now consider the limiting case where λ tends to 1, and show that λ-GGBS

reduces to GGBS in this case.

Corollary IV.5. In the limiting case where λ tends to 1, (4.6) reduces to

L1(Π) = H(Πy) +
∑
a∈I

πΘa

[
1−H(ρa) +

m∑
i=1

πΘia

πΘa

H(ρia)

]
(4.8)

where Πy = (πΘ1 , · · · , πΘm) denotes the probability distribution of the object groups

induced by the labels y, ρa denotes the reduction factor defined in § 3.2, ρia denotes

the group reduction factor defined in § 3.3 and H(·) denotes the Shannon entropy.

Proof. The result follows by taking the limit as λ tends to 1 and applying L’Hôpital’s

rule on both sides of (4.6). For more details, refer to Appendix B.

It follows from the above corollary that in the limiting case where λ tends to 1,

the optimization problem in (4.7) reduces to

min
T∈T (B,Π,y)

∑
a∈I

πΘa

[
1−H(ρa) +

m∑
i=1

πΘia

πΘa

H(ρia)

]
,

thereby reducing λ-GGBS to GGBS.
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4.3.2 Worst case scenario

We now present λ-GGBS in the limiting case where λ tends to infinity. As noted

above, the exponential cost function Lλ(Π) reduces to the worst case depth of any

leaf node in this limiting case.

We begin by noting that the cost function minimized at each internal node of a

tree in λ-GGBS is Ca :=
πΘl(a)

πΘa
Dα(Θl(a)) +

πΘr(a)

πΘa
Dα(Θr(a)). Since logλ is a monotonic

function, this is equivalent to minimizing the function logλ(Ca). Then, defining Na

to be the number of groups at any node ‘a’ in a tree, i.e., Na = |{i ∈ {1, · · · ,m} :

Θi
a 6= ∅}|, it follows from Corollary IV.6 that in the limiting case where λ→∞, the

criterion in λ-GGBS reduces to minimizing max{Nl(a), Nr(a)} at each internal node

in the tree.

Corollary IV.6. In the limiting case where λ→∞, the optimization problem

min logλ

(
πΘl(a)

πΘa

Dα(Θl(a)) +
πΘr(a)

πΘa

Dα(Θr(a))

)
−→ min max{Nl(a), Nr(a)}

where Dα(Θa) =
[∑m

i=1

(
π

Θia

πΘa

)α] 1
α

Proof. Applying L’Hôpital’s rule, we get

lim
λ→∞

logλ

(
πΘl(a)

πΘa

Dα(Θl(a)) +
πΘr(a)

πΘa

Dα(Θr(a))

)
= max{log2Nl(a), log2Nr(a)}

Since log2 is a monotonic increasing function, the optimization problem, min max

{log2Nl(a), log2Nr(a)} is equivalent to the optimization problem, min max{Nl(a), Nr(a)}.
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Figure 4.1: Experiments to demonstrate the improved performance of λ-GBS over
GBS and GBS with uniform prior. The plots in the first column corre-
spond to the WISER database and those in the second column correspond
to synthetic data.

4.4 Experimental Evaluation

We demonstrate the performance of the proposed algorithms through experiments

on both synthetic data and the WISER database. In particular, we compare the

performance of λ-GBS with that of GBS and GBS under a uniform prior for different

values of λ. Figure 4.1 demonstrates the improved performance of λ-GBS over a range

of λ values. Each curve in this figure corresponds to the average value (averaged over

100 repetitions) of the cost function Lλ(Π) as a function of λ.

The plots in the first column correspond to the WISER database. Here, in each

repetition, the prior is generated according to Zipf’s law, i.e., (k−β/
∑M

i=1 i
−β)Mk=1,

β ≥ 0, after randomly permuting the objects. Note that in the special case, when

β = 0, this reduces to the uniform distribution and as β increases, it tends to a skewed

distribution with most of the probability mass concentrated on a single object.
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The plots in the second column correspond to synthetic data based on an active

learning application. We consider a two-dimensional setting where the classifiers are

restricted to be linear classifiers of the form sign(xi − c), sign(c− xi), where i = 1, 2

and c takes on 25 distinct values. The number of distinct classifiers is therefore 100,

and the number of queries is 262 = 676. The goal is to identify the classifier by

selecting queries judiciously. Here, the prior is generated such that the classifiers that

are close to xi = 0 are more likely than the ones away from the axes, with their

relative probability decreasing according to Zipf’s law k−β, β ≥ 0. Hence, the prior

is the same in each repetition. However, the randomness in each repetition comes

from the greedy algorithms due to the presence of multiple best splits at each internal

node. Note that in all the experiments, λ-GBS performs better than GBS and GBS

with uniform prior. We also see that λ-GBS converges to GBS as λ→ 1 and to GBS

with uniform prior as λ→∞.
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CHAPTER V

Diagnosis under Persistent Query Noise

5.1 Introduction

In this chapter, we re-visit the problem of active diagnosis under persistent query

noise. As mentioned in Chapter III, the problem of active diagnosis/active learn-

ing in the presence of query noise has been studied in the literature (Kääriäinen,

2006; Nowak , 2008, 2009), where the noise is assumed to be independent, in that

posing the same query twice may yield different responses. This assumption suggests

repeated selection of a query as a possible strategy to overcome query noise. The

algorithms presented in (Kääriäinen, 2006; Nowak , 2008, 2009) are based on this

principle. However, in certain applications, resampling or repeating a query does

not change the query response, thereby confining an active diagnosis algorithm to

non-repeatable queries.

For example, in the emergency response problem of toxic chemical identifica-

tion (Bhavnani et al., 2007), a first responder is faced with the task of rapidly identi-

fying the toxic chemical by posing symptom-based queries to a victim. The responses

to these symptom queries are often in error due to reasons such as mis-identification

of a symptom by a victim or a delayed onset of a symptom, in which case the victim’s

response is unlikely to change upon repeated queries. Similarly, in a fault diagnosis

problem, the response to alarms/probes could be in error due to faulty alarms, in
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which case these responses would not change on repeated interrogations.

This more stringent noise model where queries cannot be resampled is referred

to as persistent noise (Rényi , 1961; Hanneke, 2007). It has been studied earlier in

the situation where the number of persistent errors is restricted such that unique

identification of the unknown object θ is guaranteed (Bellala et al., 2011b; Golovin

et al., 2010), as described in more detail in Section 3.6. In particular, the number

of query errors is restricted to be less than half of the minimum Hamming distance

between any two object bit strings (equivalently, any two row vectors in B). This is

often not reasonable as the minimum Hamming distance could be very small, such as

in WISER where it is equal to 1.

In this chapter, we consider the problem of active diagnosis under persistent noise

with no restriction on the number of persistent errors. We assume the object set

Θ and the query set Q are finite, and that only one object from Θ is “present”.

Unlike the previous two noise models where the unknown object θ can be identified

with certainty after sufficiently many queries, in this model it may not be possible to

identify θ even after all queries are made.

In this setting, Rish et al. (2005) proposed the use of mutual information or

the conditional entropy as a criterion for selecting queries, where queries are chosen

sequentially to minimize the uncertainty in θ (or maximize information gain) given

the observed responses to the past queries. After observing responses to a set of

queries, the unknown object is then estimated to be the object with the maximum a

posteriori probability, θMAP.

However, there are two limitations with this approach. First, in situations with

moderate to high noise, or where the Hamming distance between object bit strings

is low, the object with the maximum a posteriori probability will be equal to the

true object θ with low probability. Even in the case where θMAP does converge to the

true object θ, it may require a large number of queries to be inputted. Second, this
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algorithm assumes knowledge of the underlying query noise model; in particular, it

assumes knowledge of the probability of query errors, which is required to compute

the information gain in the query selection stage. However, this information is often

not known.

To address these issues, we propose a novel rank-based approach where we output

a ranked list of objects rather than θMAP, where the ranking is based on the poste-

rior probabilities. The rank-based approach is motivated by the fact that in many

applications there is a domain expert who makes the final decision on the possible

identity of the unknown object θ. Such a ranking can be useful to a domain ex-

pert who will use domain expertise and other sources of information to determine θ

from the ranked list. Thus, we propose a greedy algorithm to minimize the expected

rank of the unknown object θ. Moreover, the proposed greedy algorithm exhibits

an interesting property in that it does not require knowledge of the underlying noise

distribution, unlike the entropy-based algorithm. Finally, the work in this chapter is

based on Bellala, Bhavnani and Scott (2011a).

5.2 Data Model

We consider the input to an active diagnosis problem as a bipartite diagnosis

graph (BDG) or a binary matrix B denoting the relation between a set of M different

objects Θ and N distinct queries Q.

We associate each object θi ∈ Θ with a binary random variable Xi, where Xi = 1

when the unknown object θ = θi, and 0 otherwise. Then, X = (X1, · · · , XM) is

a binary random vector denoting the states of all the objects in Θ, where X ∈

{I1, · · · , IM}, Ii being a binary vector whose ith element is 1 and remaining elements

are 0.

Similarly, let Zj be a binary random variable denoting the observed response to

query qj. Then, Z = (Z1, · · · , ZN) is a binary random vector denoting the observed
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θ1 θ2 θ3

q1 q2 q3 q4 q5

Figure 5.1: A toy bipartite diagnosis graph (BDG) where the circled nodes denote
the objects and the square nodes denote queries.

responses to all queries in Q, where Z ∈ {0, 1}N .

In addition, we let QA denote the subset of queries indexed by A ⊆ {1, · · · , N},

and ZA the random variables associated with those queries, e.g, if A = {1, 4, 7}, then

QA = {q1, q4, q7} and ZA = (Z1, Z4, Z7). Also, for any query j, let paj denote the

objects that are connected to it in the BDG. Then, Xpaj denotes the states of all the

objects connected to query j, e.g., for query 2 in Figure 5.1, Xpa2
= (X2, X3).

We need to specify the joint distribution of (X,Z), and more generally (X,ZA)

for any A, which can be defined in terms of a prior probability distribution on X and

a conditional distribution on ZA given X. The prior probability distribution on X is

given by Π = (π1, · · · , πM), where πi = Pr(X = Ii) = Pr(Xi = 1) = Pr(θ = θi), and

Xi = 1⇐⇒ X = Ii. To define the conditional distribution on ZA given X, we make

the standard assumption that the observed responses to queries are conditionally

independent given the states of the objects connected to them, i.e.,

Pr(ZA = zA|Xi = 1) =
∏
j∈A

Pr(Zj = zj|Xi = 1),

where once again by Xi = 1 we implicitly mean X = Ii. This assumption holds

reasonably well in many practical applications as noise is usually generated indepen-

dently. For example, in the problem of fault diagnosis, it can be reasonable to assume

that all connections and alarms fail independently.

Note that in the ideal case when there is no noise, the observed response Zj to
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query j is deterministic given the binary states of the objects in paj. Specifically, it is

given by the OR operation of the binary variables in Xpaj , i.e., Zj = 1⇐⇒ ∃ i ∈ paj

s.t. Xi = 1. More generally, it is a noisy OR operation (Pearl , 1988), where the

conditional distribution of Zj given xpaj can be defined using standard noise models

such as the Y-model (Le and Hadjicostis , 2007) or the QMR-DT model (Jaakkola

and Jordan, 1999).

We derive our rank-based active diagnosis algorithm under this general probability

model, and in Section 5.3.3, we consider special cases of the QMR-DT noise model

that arise in several applications. In these special cases, we derive a noise adaptive

active diagnosis algorithm that does not depend on the underlying noise parameters.

The QMR-DT noise model can be described using two sets of parameters as shown

below,

Pr(Zj = 0|Xi = 1) := 1− ρ0j, if bij = 0, and

Pr(Zj = 0|Xi = 1) := (1− ρ0j)ρij, if bij = 1,

where 0 ≤ ρij ≤ 1, ∀i ∈ {1, · · · ,M},∀j ∈ {1, · · · , N} and 0 ≤ ρ0j ≤ 1, ∀j{1, · · · , N},

are the so-called inhibition and leak probabilities, respectively.

5.3 Active Diagnosis under Persistent Noise

We will now formally state the problem of active diagnosis under persistent noise.

As mentioned earlier, unique identification of the unknown object θ (equivalently, the

binary vector X) is no longer guaranteed. Hence, the goal of active diagnosis under

persistent noise is to maximize some function f(X; ZA) which captures the quality of

the estimate of X based on the responses to queries in A, subject to a constraint on
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the number of queries made, i.e.,

maxA⊆{1,··· ,N} f(X; ZA) (5.1)

s.t. |A| ≤ k.

Finding an optimal solution to this problem is typically not computationally feasi-

ble (Rish et al., 2005). Instead, the queries can be chosen sequentially by greedily

maximizing the quality function, i.e., given the observed responses to the past queries,

the next best query is chosen to be

j∗ := arg max
j /∈A

EZj [f(X; ZA ∪ Zj)− f(X; ZA)|ZA = zA], (5.2)

where ZA ∪ Zj denotes the random variables associated with queries in A ∪ {j}.

5.3.1 Entropy-based Active Query Selection

Mutual information has been traditionally chosen as a function to measure the

quality of the estimate of the object states X based on the responses to queries in

A. The expression for the quality function f(X; ZA) is then given by f(X; ZA) =

I(X; ZA) := H(X) − H(X|ZA). However, the optimization problem in (5.1) with

mutual information as the quality function is NP-hard (Rish et al., 2005). Alterna-

tively, the greedy approach can be used to choose queries sequentially where given

the observed responses zA to previously selected queries in A, the next best query is

chosen to be the one that maximizes the expected information gain as shown below,

j∗ = arg max
j /∈A

EZj [I(X; ZA ∪ Zj)− I(X; ZA)|ZA = zA]

= arg min
j /∈A

∑
z=0,1

Pr(Zj = z|zA)H(X|zA, z). (5.3)
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Note that information gain based greedy query selection reduces to choosing a query

that minimizes the expected conditional entropy of the object states X. Hence, we

will refer to this approach as entropy-based active query selection in the rest of this

thesis.

Given the posterior probabilities, the conditional entropy term in (5.3) can be

computed as follows

H(X|zA, z) = −
M∑
i=1

Pr(X = Ii|zA, z) log2 Pr(X = Ii|zA, z).

However, the computation of these posterior probabilities requires the knowledge of

the complete noise distribution or the parameters in the noise model. Moreover,

as we show in Section 5.4, entropy-based active query selection can be sensitive to

discrepancies in the knowledge of these parameters.

In the next section, we propose a rank-based greedy algorithm that depends in-

stead on the likelihoods and the prior probability distribution. We then exploit this

fact in Section 5.3.3 to develop algorithms that do not require knowledge of the query

noise parameters.

5.3.2 Rank-based Active Query Selection

Given the observed responses zA to a set of queries QA, we define the worst case

rank of an object θi to be

rwc(θi|zA) =
M∑
k=1

I
{

Pr(Xk = 1|zA) ≥ Pr(Xi = 1|zA)
}

=
M∑
k=1

I
{
πk Pr(zA|Xk = 1) ≥ πi Pr(zA|Xi = 1)

}
,

where I{E} is an indicator function which takes the value 1 when the event E is

true, and 0 otherwise. Note that rwc(θi|zA) takes a small value when θi has a high
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Figure 5.2: Demonstration of worst case ranking

posterior probability and a large value when the posterior probability is small. In

addition, when multiple objects have the same posterior probabilities, each object is

assigned the worst case ranking, as shown in Figure 5.2.

Given the ranks of all the objects in Θ, we measure the quality of the obtained

ranking (thereby, the quality of diagnosis) as

f(X; ZA) = Eθ[rwc(θ|zA)] =
M∑
i=1

Pr(Xi = 1|zA)rwc(θi|zA), (5.4)

which corresponds to the expected worst case rank of the unknown object θ. The

goal of active diagnosis is to choose queries such that the expected rank is minimized.

Substituting this objective function in (5.2), we get the criterion for choosing the next

best query to be

j∗ = arg min
j /∈A

∑
z=0,1

Pr(Zj = z|zA)Eθ[rwc(θ|zA, z)]

= arg min
j /∈A

∑
z=0,1

M∑
i=1

πi Pr(zA, z|Xi = 1)

Pr(zA)
rwc(θi|zA, z)

= arg min
j /∈A

∑
z=0,1

M∑
i=1

πi Pr(zA, z|Xi = 1)rwc(θi|zA, z) (5.5)

where (5.5) follows as Pr(zA) does not depend on query qj. In the noise-free case with

uniform prior, this greedy strategy reduces to GBS (Dasgupta, 2004; Nowak , 2008)

as shown in Appendix C.

In the noisy case, given the knowledge of the prior distribution Π and the noise

parameters such as the leak and the inhibition probabilities in the QMR-DT noise
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model, the greedy algorithm in (5.5) can be implemented efficiently. However, these

noise parameters are often not known, and hence it is desirable for a greedy query

selection criterion to be robust to any discrepancies in the knowledge of these pa-

rameters. As we show in Section 5.4, entropy-based active query selection can be

sensitive to discrepancies in the noise parameters.

In the next two sections, we consider two special cases of the noise model discussed

in Section 5.2 that appear in many applications. In these two cases, we present a

noise adaptive estimate of the query selection criterion in (5.5) that does not require

knowledge of the underlying noise parameters.

5.3.3 Noise Adaptive Active Query Selection

We will now present a noise adaptive estimate of the objective in (5.5) under

two special cases of the noise model discussed in Section 5.2 that appears in many

applications. Specifically, we take advantage of the fact that the above query selection

criterion depends on the noise parameters only through the likelihood function, and

provide a good upper bound on the likelihood function that is independent of noise

parameters. This enables accurate prediction of the worst case rank of the objects

without requiring knowledge of the true noise parameters. Furthermore, we show that

in some cases it is possible to estimate the true ranks exactly with limited knowledge

on the query noise. The bound on the likelihood function is based on the following

lemma.

Lemma V.1. Let h, k be integers with 0 ≤ h ≤ k and k ≥ 1. Then, for any

0 < p < 1,

ph(1− p)k−h ≤ εhh(1− εh)k−h (5.6)

where εh = h
k
. If it is known that p ≤ p2 < 1, then (5.6) holds with εh = min{p2,

h
k
}.
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If it is known that p ≥ p1 > 0, then (5.6) holds with εh = max{p1,
h
k
}. If it is known

that 0 < p1 ≤ p ≤ p2 < 1, then (5.6) holds with εh = min{p2,max{p1,
h
k
}}.

Proof. Refer to Appendix C.

5.3.3.1 Constant Noise Level

We begin with a special case of the noise model described in Section 5.2, where the

responses to some queries are assumed to be randomly flipped. This noise model has

been used in the context of pool-based active learning with a faulty oracle (Hanneke,

2007; Nowak , 2009), experimental design (Rényi , 1961), computer vision, and image

processing (Korostelev and Kim, 2000).

In this setting,

Pr(Zj = zj|Xi = 1) = p|bij−zj |(1− p)1−|bij−zj |.

More generally, the likelihood function can be expressed as shown below,

Pr(ZA = zA|Xi = 1) = pδi,A(1− p)|A|−δi,A ,

where δi,A =
∑

j∈A |bij−zj|, is the local Hamming distance between the true responses

of object i to queries in A, and the observed responses zA. Using the result in

Lemma V.1, the above likelihood function can be upper bounded by

Pr(zA|Xi = 1) :=

(
δi,A
|A|

)δi,A (
1− δi,A
|A|

)|A|−δi,A
.

Note that the lemma also states that given an upper or lower bound on the noise

parameter p, this bound can be further improved.

Finally, let rwc(i|zA) denote the estimated worst case rank of object i based on
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the upper bound on the likelihood function:

rwc(θi|zA) :=
M∑
j=1

I
{
πjPr(zA|Xj = 1) ≥ πiPr(zA|Xi = 1)

}
. (5.7)

Then, the query selection criterion in (5.5) can be replaced by the following noise-

independent criterion

arg min
j /∈A

∑
z=0,1

M∑
i=1

πiPr(zA, z|Xi = 1)rwc(θi|zA ∪ z). (5.8)

The result in Proposition V.2 presents conditions under which the true rank can be

estimated accurately. It states that, under uniform prior on the objects, it suffices to

know whether p < 0.5 or p > 0.5, for the estimated ranks to be exactly equal to the

true ranks.

More generally, for any given prior Π with ρ := mini πi/maxi πi, it suffices to

know whether p < ρ
1+ρ

or p > 1
1+ρ

, for the estimated ranks to be equal to the true

ranks. Even in the case where ρ
1+ρ
≤ p < 0.5 or 0.5 < p ≤ 1

1+ρ
, we observe through

experiments that the estimated ranks are equal to the true ranks for most objects.

Proposition V.2. Let zA be the observed responses to a sequence of queries in A,

under some unknown noise parameter p. Let ρ := mini πi/maxi πi. Given a p ∈

(0, ρ
1+ρ

) such that 0 < p ≤ p, or a p ∈ ( 1
1+ρ

, 1) such that 1 > p ≥ p, the estimated

ranks rwc(θi|zA) computed only with the knowledge of p or p are equal to the true

ranks rwc(θi|zA), ∀ 1 ≤ i ≤M .

Proof. Refer to Appendix C.

5.3.3.2 Response Dependent Noise

We now consider the noise model where the probability of error depends on the

true response to a query. When the true response is 0, the probability of observing a
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noisy response is given by ν0, and by ν1 when the true response is 1, i.e.,

Pr(Zj = 0|Xi = 1) = 1− ν0, if bij = 0,

and Pr(Zj = 0|Xi = 1) = ν1, if bij = 1.

For example, consider the following special case of the QMR-DT noise model described

in Section 5.2 where ρ0j = ρ0, ∀j and ρkj = ρ, ∀k 6= 0, j. This case reduces to the

above setting with ν0 = ρ0 and ν1 = (1− ρ0)ρ, where 0 < ρ0, ρ < 1 are the leak and

inhibition probabilities, respectively.

For any subset of indices A ⊆ {1, · · · , N}, let Ai0 = {j ∈ A : bij = 0} and

Ai1 = {j ∈ A : bij = 1} be partitions of A for each i = 1, · · · ,M such that the true

response bij of object i to queries in Ai0 is 0, and that in Ai1 is 1. Then, the likelihood

function is given by

Pr(ZA = zA|Xi = 1) = ν
δ
i,Ai0

0 (1− ν0)
|Ai0|−δi,Ai0 · ν

δ
i,Ai1

1 (1− ν1)
|Ai1|−δi,Ai1

where δi,Ai0 =
∑

j∈Ai0
|0 − zj| and δi,Ai1 =

∑
j∈Ai1
|1 − zj|, are the local Hamming

distances between the true responses of object i to queries in Ai0 and Ai1, and that of

their observed responses.

Once again, using Lemma V.1, this likelihood function can be upper bounded by

Pr(ZA = zA|Xi = 1) =

(
1−

δi,Ai0
|Ai0|

)|Ai0|−δi,Ai0 (δi,Ai0
|Ai0|

)δ
i,Ai0

×
(

1−
δi,Ai1
|Ai1|

)|Ai1|−δi,Ai1 (δi,Ai1
|Ai1|

)δ
i,Ai1

.

Hence, the ranks of the objects can be estimated using (5.7) and the rank-based query

selection can be performed using (5.8), without requiring any knowledge of the query

noise parameters.
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Unfortunately, it is not possible to extend the result of Proposition V.2 to this case.

Yet, the experimental results in Section 5.4 demonstrate that the noise-independent

rank-based algorithm performs comparably to the entropy-based algorithm, which

requires knowledge of ν0 and ν1.

5.4 Experimental Evaluation

We compare the performance of the proposed rank-based algorithm with entropy-

based active query selection, GBS, and random search, on 2 synthetic datasets, 1

semi-synthetic dataset, and 1 real dataset. GBS and random search serve as baselines

and are not expected to perform well since GBS doesn’t account for noise, and random

search just selects queries at random.

The first two datasets are random bipartite networks (Guillaume and Latapy ,

2004) generated using the standard Erdös-Rényi (ER) random network model and the

Preferential Attachment (PA) random network model. The third dataset is a network

topology built using the BRITE generator (Medina et al., 2001), which simulates an

Internet-like topology at the Autonomous Systems level. To generate a bipartite

network of components and probes from the BRITE network, we used the approach

described by Rish et al. (2005) and Zheng et al. (2005). The last dataset is the WISER

database, which is a toxic chemical database describing the binary relation between

298 toxic chemicals and 79 acute symptoms (Szczur and Mashayekhi , 2005).

We generated a random network for each of the random network models con-

sidered, where each network consisted of around 200 objects and 300 queries. We

generated a BRITE network consisting of 300 objects (components/computers) and

around 350 queries (probes). For the synthetic datasets and WISER, we assumed

a constant noise rate, and for the BRITE network, we considered the response de-

pendent noise model described in Section 5.3.3.2. Here, we present the results under

uniform prior where πi = 1/M . We observed similar performance under non-uniform
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Figure 5.3: The first column corresponds to a dataset generated using the ER model,
the second column corresponds to a dataset generated using the PA
model, the third column corresponds to the WISER database and the
last column corresponds to a BRITE network. In all the experiments, the
rank-based algorithm has no knowledge of the noise parameters.

prior as shown in Bellala et al. (2011a).

Figure 5.3 shows the worst case rank of the unknown object θ and the area under
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the ROC curve as a function of the number of queries inputted. The ROC curve is

generated as follows: After observing responses to a set of queries, the objects are

ranked based on their posterior probabilities where ties involving objects with equal

posterior probabilities are broken randomly, instead of a worst case ranking. Given

such a ranking of the objects in Θ, the ROC curve can be obtained by varying the

threshold t, where the states of the top t objects are declared as 1 and the rest 0

leading to a certain miss rate and false alarm rate.

Each curve in these figures is averaged over 500 random realizations, where each

random realization corresponds to a random selection of θ ∈ Θ and random generation

of the noisy query responses. The plots in the first column correspond to a dataset

generated using the ER model, the second column corresponds to the PA model, the

third column corresponds to the WISER database, and the last column to a BRITE

network. For the 2 random network models and BRITE, the results were observed to

be consistent across different realizations of the underlying bipartite network.

For the ER, PA, and the WISER datasets, we consider two different values for

the probability of error, p = 0.1, 0.2. The entropy-based query selection is performed

assuming the knowledge of p, whereas the rank-based query selection is performed

using only the fact that p < p = 0.5. The BRITE networks are simulated using the

QMR-DT noise model, where we considered the inhibition and the leak probabilities

to be (ρi, ρl) = (0.05, 0.05) and (0.1, 0.1). This noise model reduces to that in Sec-

tion 5.3.3.2 with ν0 = ρl and ν1 = (1 − ρl)ρi. Once again, the entropy-based query

selection is performed assuming the knowledge of ν0 and ν1, whereas the rank-based

query selection is performed using only the fact that ν0, ν1 ≤ p = 0.25.

Finally, Figure 5.4 demonstrates the sensitivity of entropy-based query selection to

mis-specification of the value of noise parameters. For the ER, PA and the WISER

datasets, the true noise parameter is p = 0.25 while the under-estimated and the

over-estimated curves are obtained using p = 0.15 and 0.4, respectively. For the
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Figure 5.4: Demonstrates the sensitivity of entropy-based query selection to mis spec-
ification of the noise parameters

BRITE network, while the true noise parameters are (0.1, 0.1), the other two curves

are obtained using (0.05, 0.05) and (0.15, 0.15). Once again, the rank-based algorithm

is performed without knowledge of the noise parameters. This demonstrates that the

entropy-based query selection can perform poorly when the noise parameters are

mis-specified.

In addition, these experiments demonstrate the competitive performance of the

proposed rank-based active diagnosis algorithm to entropy-based active query selec-

tion, despite not having the knowledge of the underlying noise parameters.
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CHAPTER VI

Multiple Fault Diagnosis

6.1 Introduction

In this chapter, we will consider a general version of the diagnosis problem studied

in Chapter V, that arises in applications such as medical diagnosis (Heckerman, 1990;

Jaakkola and Jordan, 1999), fault diagnosis in nuclear plants (Santoso et al., 1999),

computer networks (Rish et al., 2005; Zheng et al., 2005), and power-delivery systems

(Yongli et al., 2006). In these problems, more than one object could be of interest,

i.e., more than one object could be in state 1, and the goal is to identify the binary

states X = (X1, · · · , XM) of all the objects based on the (noisy) responses to queries

from the set Q.

For example, in the problem of medical diagnosis, the goal is to identify the

presence/absence of a set of diseases based on the outcomes of medical tests. Similarly,

in a fault diagnosis problem, the goal is to identify the state (faulty/working) of each

component based on alarm/probe responses. For simplicity, we will refer to an object

with state 1 as a fault in the rest of this chapter.

In recent years, this problem has been formulated as an inference problem on a

Bayesian network, with the goal of assigning most likely states to unobserved object

nodes based on the outcome of the query nodes. Hence, the goal of active diagnosis

is to select queries sequentially so as to maximize the accuracy of diagnosis while
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minimizing the cost of querying.

In this context, Zheng et al. (2005) proposed the use of reduction in conditional

entropy (equivalently, mutual information) as a measure to select the most informative

subset of queries. They proposed an algorithm that uses the loopy belief propagation

(BP) framework to select queries sequentially based on the gain in mutual information,

given the observed responses to past queries. This algorithm, which they refer to as

BPEA, requires one run of BP for each query selection. Finally, the objects are

assigned the most likely states based on the outcome of the selected queries, using a

MAP (maximum a posteriori) inference algorithm. Refer to Section 6.3.1 for more

details.

However, there are two limitations with this approach. First, the MAP estimate

may not equal the true state vector X, either due to noise in the observed query

responses or due to suboptimal convergence of the MAP inference algorithm. This

leads to false alarm and miss rates that may not be tolerable for a given application.

The second issue is that BPEA does not scale to large networks, because the

complexity of computing the approximate value of conditional entropy grows expo-

nentially in the maximum degree of the underlying Bayesian network (see Section 6.3.1

for details). As we show in Section 6.4, it becomes intractable even in networks with

a few thousand objects. In addition, since this approach relies on belief propagation

(BP), it may suffer from the limitations of BP such as slow convergence or oscillation

of the algorithm, especially when the prior fault probability is small (Murphy et al.,

1999). As we discuss below, the prior fault probability is indeed very low in most

real-world diagnosis problems. These factors render BPEA impractical in many large

scale, real-world applications.

We address these limitations by proposing an extension of our rank-based approach

to the multi-fault scenario, where we output a ranked list of objects based on their

posterior probabilities rather than their most likely states. Given such a ranked list,
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the object states can be estimated by choosing a threshold t, where the top t objects

in the ranked list are declared as faults (i.e., state 1) and the remaining as 0. Varying

the threshold t leads to a series of estimators with different false alarm and miss

rates giving rise to a receiver operating characteristic (ROC) curve. The quality of

the obtained ranking is then measured in terms of the area under this ROC curve

(AUC). We show how to choose queries greedily such that the AUC, and thus, the

quality of diagnosis, is maximized.

The rank-based approach is motivated by the fact that in many applications there

is a domain expert who makes the final decision on the objects’ states. Such a ranking

can be useful to a domain expert who will use domain expertise and other sources

of information to choose a threshold t that may lead to a permissible value of false

alarm and miss rates for a given application.

To address the second limitation, we circumvent the use of BP in the query se-

lection stage by making the simplifying assumption of a single fault, i.e., the state of

only one object can be equal to 1. To be clear, we still intend to apply our algorithm

when multiple faults are present; the single fault assumption is used in the design

of the algorithm. This assumption is reasonable because the prior fault probability

is quite low in many applications. For example, in the problem of fault diagnosis in

computer networks, the prior probability of a router failing in any given hour is on

the order of 10−6 (Kandula et al., 2005). Similarly, in the disease diagnosis problem

of QMR-DT, the prior probability of a disease being “present” is typically on the

order of 10−3 (Murphy et al., 1999).

We show that the AUC criterion can be optimized efficiently under a single-fault

assumption. While other criteria such as mutual information can also be optimized

efficiently under this assumption, we show that AUC is much more robust to violations

of the single fault assumption, which are bound to happen in practice. Finally, we

demonstrate through experiments on computer networks that the proposed query
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Figure 6.1: (top) A toy bipartite diagnosis graph, (bottom) A Bayesian network cor-
responding to the given BDG.

selection criterion can achieve performance close to that of BPEA in a multi-fault

setting, while having a computational complexity that is orders less than that of

BPEA (a reduction from exponential to near-quadratic). Thus, it is a fast and a

reliable substitute for BPEA in large scale diagnosis problems. Finally, the work in

this chapter is based on Bellala et al. (2011c).

6.2 Data Model

We will describe a general version of the data model considered in Chapter V. We

will consider the input to an active diagnosis problem as a bipartite diagnosis graph

denoting the relation between M different objects and N distinct queries, as shown

in Figure 6.1.

We denote the state of each object (e.g., presence/absence of a disease) with a

binary random variable Xi and the state of each query (i.e., the observed response

to a query) by a binary random variable Zj. Then, X = (X1, · · · , XM) is a binary

random vector denoting the states of all the objects, and Z = (Z1, · · · , ZN) is a

binary random vector denoting the responses to all the queries, where x ∈ {0, 1}M

and z ∈ {0, 1}N correspond to realizations of X and Z, respectively.

In addition, for any subset of queries A ⊆ {1, · · · , N}, we denote by ZA the
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random variables associated with those queries, e.g., if A = {1, 4, 7}, then ZA =

(Z1, Z4, Z7). Also, for any query j, let paj denote the objects that are connected to

it in the BDG. Then, Xpaj denotes the states of all the objects connected to query

j, e.g., for query 2 in Figure 6.1, Xpa2
= (X2, X3).

To specify the joint distribution of (X,ZA) for any A, we define it in terms of a

prior probability distribution on X and a conditional distribution on ZA given X. To

define the prior probability distribution on X, we make the standard assumption that

the object states are marginally independent, i.e., Pr(X = x) =
∏M

i=1 Pr(Xi = xi).

Similarly, to define the conditional distribution on ZA given X, we make the standard

assumption that the observed responses to queries are conditionally independent given

the states of the objects connected to them, i.e.,

Pr(ZA = zA|X = x) =
∏
j∈A

Pr(Zj = zj|xpaj).

These assumptions hold reasonably well in many practical applications. For example,

in a fault diagnosis problem, it can be reasonable to assume that the components fail

independently and that the alarm responses are conditionally independent given the

states of the components they are connected to. These dependencies can be encoded

by a Bayesian network as shown in Figure 6.1.

As mentioned in Section 5.2, in the ideal case when there is no noise, the observed

response Zj to query j is deterministic, and is given by the OR operation of the

binary variables in Xpaj , i.e., Zj = 1 ⇐⇒ ∃ i ∈ paj s.t. Xi = 1. More generally, it

is a noisy OR operation where the conditional distribution of Zj given xpaj can be

defined using standard noise models such as the Y-model (Le and Hadjicostis , 2007)

or the QMR-DT model (Pearl , 1988).

We derive the AUC based active diagnosis algorithm under this general probability

model, and in Section 6.4, we demonstrate the performance of the proposed algorithm
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in the problem of fault diagnosis in computer networks under the QMR-DT noise

model, where

Pr(Xi = x) := (αi)
x(1− αi)1−x, and

Pr(Zj = 0|xpaj) := ρ0j

∏
k∈paj

ρxkkj .

Here, αi is the prior fault probability, ρkj and (1 − ρ0j) are the so-called inhibition

and leak probabilities, respectively.

6.3 Active Diagnosis under Multiple Faults

As mentioned earlier, the approach in active diagnosis is to maximize some func-

tion f(zA) which denotes the quality of the estimate of X, subject to a constraint on

the number of queries made, i.e.,

maxA⊆{1,··· ,N} f(zA)

s.t. |A| ≤ k.

In general, finding an optimal solution to this problem is NP-hard (Rish et al., 2005).

Instead, the queries can be chosen sequentially by greedily maximizing the quality

function, given the observed responses to the past queries, i.e.,

j∗ := arg max
j /∈A

EZj [f(zA ∪ Zj)− f(zA)|ZA = zA] (6.1)

where zA ∪ Zj denotes the observed responses to queries in A ∪ {j}.
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6.3.1 Entropy-based Active Query Selection

Zheng et al. (2005) studied the problem of active diagnosis in the multiple fault

scenario, where they used mutual information as a function to measure the quality

of the estimate of the object states X based on the responses to queries in A, i.e.,

f(X; ZA) = I(X; ZA) := H(X) −H(X|ZA). However, the above optimization prob-

lem with mutual information as the quality function is NP-hard (Rish et al., 2005).

Alternatively, the greedy approach can be used to choose queries sequentially where

given the observed responses zA to previously selected queries in A, the next best

query is chosen to be the one that maximizes the expected information gain as shown

below,

j∗ = arg max
j /∈A

EZj [I(X; ZA ∪ Zj)− I(X; ZA)|ZA = zA]

= arg min
j /∈A

∑
z=0,1

Pr(Zj = z|zA)H(X|zA, z). (6.2)

In the multiple fault scenario, the conditional entropy term is given by

H(X|zA, z) = −
∑

x∈{0,1}M
Pr(x|zA, z) log2 Pr(x|zA, z).

Note that direct computation of the above expression is intractable. However, Zheng

et al. (2005) note that under the independence assumptions of Section 6.2, the con-

ditional entropy can be simplified such that the query selection criterion in (6.2) is

reduced to

arg min
j /∈A

[
−
∑
xpaj ,z

Pr(xpaj , z|zA) log2 Pr(Zj = z|xpaj)

+
∑
z=0,1

Pr(Zj = z|zA) log2 Pr(Zj = z|zA) + const

]
.
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In addition, they propose an approximation algorithm that uses the loopy belief

propagation (BP) infrastructure to compute the above expression, which they refer to

as belief propagation for entropy approximation (BPEA). Interestingly, this algorithm

requires only one run of loopy BP for each query selection. After observing responses

zA to a set of queries in A, the object states are then estimated to be

xMAP := arg max
x∈{0,1}M

Pr(X = x|zA),

where the MAP estimator is obtained using a loopy version of the max-product algo-

rithm. As far as we know, BPEA is the best known solution to the problem of active

query selection in the multiple fault scenario.

However, this approach does not scale to large networks as BPEA involves a

term whose computation grows exponentially in the number of parents to a query

node. If m denotes the maximum number of parents to any query node, i.e., m :=

maxj∈{1,··· ,N} |paj|, then the computational complexity of choosing a query using

BPEA is O(N2m), thus making it intractable in networks where m is greater than 25

or even less, especially when real-time query selection is desired.

Recently, Cheng et al. (2010) proposed a speed up to query selection using BPEA

by reducing the number of queries to be investigated at each stage. However, the

exponential complexity still remains. Alternatively, we propose to assume a single

fault in the query selection stage. As mentioned earlier, this assumption is motivated

by the fact that in most diagnosis problems, the prior fault probability is very low.

However, it is important for the query selection criterion to be robust to violations

of the single fault assumption, as multiple faults could be present in practice. As we

show in Section 6.3.2.2, entropy-based query selection is not robust to such violations,

and can perform poorly when multiple faults are present.

In the next section, we derive a new query selection criterion that sequentially
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X1 X2 X3 X4 X5

Pr(Xi = 1|zA) 0.3 0.15 0.35 0.15 0.05

Figure 6.2: A rank order corresponding to this example is r = (3, 1, 2, 4, 5).

chooses queries such that the area under the ROC curve of the rank-based output

is maximized. We will show that the proposed query selection criterion can be im-

plemented efficiently under a single fault assumption, and in Section 6.4, we will

demonstrate how the AUC-based query selection can achieve performance close to

that of BPEA, even when multiple faults occur, making it a viable substitute for

BPEA in large scale networks.

6.3.2 AUC-based Active Query Selection

AUC has been used earlier as a performance criterion in the classification setting

with decision tree classifiers (Ferri et al., 2002; Cortes and Mohri , 2003) and boost-

ing (Long and Servedio, 2007), in the problem of ranking (Ataman et al., 2006), and

in an active learning setting (Culver et al., 2006). In all the earlier settings, the AUC

of a classifier is estimated using the training data whose binary labels are known.

However, in our setting, neither are the object states (binary labels) known nor does

there exist any training data. Hence, we propose a simple estimator for the AUC

based on the posterior probabilities of the object states. Specifically, we propose 3

variants of this estimator, and discuss some interesting properties of each of these

variants in the two settings.

Given the observed responses zA to queries in A, let the objects be ranked

based on their posterior fault probabilities, i.e., Pr(Xi = 1|zA), where ties involv-

ing objects with the same posterior probability are broken randomly. Then, let

r = (r(1), · · · , r(M)) denote the rank order of the objects, where r(i) denotes the

index of the ith ranked object. For example, a rank order corresponding to the toy

example in Figure 6.2 is r = (3, 1, 2, 4, 5). Also, note that r depends on the queries
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chosen A and their observed responses zA, though it is not explicitly shown in our

notation.

Given this ranked list of objects, we get a series of estimators {x̂t}Mt=0 for the object

state vector X, where x̂t corresponds to the estimator which declares the states of

the top t objects in the ranked list as 1 and the remaining as 0. For example,

x̂2 = (1, 0, 1, 0, 0) for the toy example shown in Figure 6.2.

These estimators have different false alarm and miss rates. The miss and false

alarm rates associated with x̂t are given by

MRt =

∑
{i:x̂ti=0} I{Xi = 1}∑M
i=1 I{Xi = 1}

=

∑M
i=t+1 I{Xr(i) = 1}∑M
i=1 I{Xi = 1}

,

FARt =

∑
{i:x̂ti=1} I{Xi = 0}∑M
i=1 I{Xi = 0}

=

∑t
i=1 I{Xr(i) = 0}∑M
i=1 I{Xi = 0}

,

where I{E} is an indicator function which takes the value 1 when the event E is true,

and 0 otherwise.

However, since the true states of the objects are not known, the false alarm and

the miss rates need to be estimated. Given the responses zA to queries in A, these

two error rates can be approximated by using the expected value of the numerator

and denominator conditioned on these responses as shown below:

M̂Rt(zA) =

∑M
i=t+1 Pr(Xr(i) = 1|zA)∑M
i=1 Pr(Xi = 1|zA)

, (6.3a)

F̂ARt(zA) =

∑t
i=1 Pr(Xr(i) = 0|zA)∑M
i=1 Pr(Xi = 0|zA)

. (6.3b)

Using these estimates, the ROC curve can then be obtained by varying the thresh-

old t from 0 to M leading to different false alarm and miss rates. For example, x̂0

which declares the states of all the objects to be equal to 0, has a false alarm rate of

0 and a miss rate of 1. On the other hand, x̂M which declares the states of all objects

as 1, has a false alarm rate of 1 with a miss rate of 0. The other estimators have false
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tFAR

tMR1−

1MR1 +− t

Lower Rectangles

Linear Approximation

Upper Rectangles

1FAR +t

Figure 6.3: Demonstrates the different approximations for area under the ROC curve

alarm and miss rates that span the space between these two extremes.

Finally, the area under this ROC curve can be estimated using a piecewise approx-

imation with either lower rectangles, upper rectangles or a linear approximation as

shown in Figure 6.3. As we discuss later, each of these variants have some interesting

properties in different settings, and as we show in Appendix D, the expected worst

case rank criterion proposed in Chapter V is a special case of the AUC criterion. The

expressions related to each of the three approximations are as given below:

Alr(zA) =
M−1∑
t=0

(
1− M̂Rt

)(
F̂ARt+1 − F̂ARt

)
Aur(zA) =

M−1∑
t=0

(
1− M̂Rt+1

)(
F̂ARt+1 − F̂ARt

)
Al(zA) =

M−1∑
t=0

(
1− M̂Rt + M̂Rt+1

2

)(
F̂ARt+1 − F̂ARt

)
,

where we dropped the dependence of M̂Rt and F̂ARt on zA to avoid cramping. Fur-
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ther, noting that F̂ARM = 1 and F̂AR0 = 0, Alr(zA) can be re-written as

Alr(zA) =
M−1∑
t=0

(1− M̂Rt)(F̂ARt+1 − F̂ARt)

= F̂ARM − F̂AR0 −
M−1∑
t=0

M̂Rt(F̂ARt+1 − F̂ARt)

= 1−
M−1∑
t=0

M̂Rt(F̂ARt+1 − F̂ARt),

where
∑M−1

t=0 M̂Rt (F̂ARt+1 − F̂ARt) corresponds to an estimate of the area above

the ROC curve using lower rectangles, which we denote by Alr(zA). Similarly, the

estimates of the area above the ROC curve using upper rectangles or a linear approx-

imation are given by,

Aur(zA) =
M−1∑
t=0

M̂Rt+1

(
F̂ARt+1 − F̂ARt

)
Al(zA) =

M−1∑
t=0

M̂Rt + M̂Rt+1

2

(
F̂ARt+1 − F̂ARt

)
.

Substituting the estimates for miss rate and false alarm rate from (6.3a) and (6.3b),
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the corresponding approximations for the area above the ROC curve are given by

Alr(zA) =

M∑
i=1

M∑
j=i

Pr(Xr(i) = 0|zA) Pr(Xr(j) = 1|zA)

M∑
i=1

Pr(Xi = 1|zA)
M∑
i=1

Pr(Xi = 0|zA)

(6.4a)

Aur(zA) =

M−1∑
i=1

M∑
j=i+1

Pr(Xr(i) = 0|zA) Pr(Xr(j) = 1|zA)

M∑
i=1

Pr(Xi = 1|zA)
M∑
i=1

Pr(Xi = 0|zA)

(6.4b)

Al(zA) =

M−1∑
i=1

M∑
j=i+1

Pr(Xr(i) = 0|zA) Pr(Xr(j) = 1|zA)

M∑
i=1

Pr(Xi = 1|zA)
M∑
i=1

Pr(Xi = 0|zA)

+

M∑
i=1

Pr(Xi = 0|zA) Pr(Xi = 1|zA)

2
M∑
i=1

Pr(Xi = 1|zA)
M∑
i=1

Pr(Xi = 0|zA)

. (6.4c)

Using the AUC as a quality function, the goal of active diagnosis is to maximize

the accuracy of diagnosis given by the estimate of AUC, subject to a constraint on

the number of queries made, i.e.,

maxA⊆{1,··· ,N}A(zA)

s.t. |A| ≤ k,

where A(zA) corresponds to an estimate of the AUC using any of the above approxi-

mations. More generically, in the rest of this paper, we will use the terms A(zA) and

A(zA) to denote any of the above approximations for area under the ROC curve and

area above the ROC curve, respectively.

Once again the above optimization problem is NP-hard. Hence, we resort to the
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greedy strategy, where substituting this quality function in (5.2), we get the criterion

for greedily choosing a query to be

j∗ = arg min
j /∈A

∑
z=0,1

Pr(Zj = z|zA)A(zA ∪ z). (6.5)

Note that both the query selection criterion in (6.5) and the different approxima-

tions to the quality function A(zA) in (6.4) depend only on the posterior probabilities

of unobserved nodes given the states of the observed nodes. Since these probabilities

can be approximated using loopy belief propagation, the AUC-based active query

selection can be performed using loopy BP similar to the entropy-based active query

selection in BPEA.

However, our main focus is on active diagnosis for large scale networks where

query selection using loopy BP is slow and possibly intractable. In the next section,

we show how the proposed AUC-based query selection can be performed efficiently

under a single fault assumption. In addition, we also argue that the AUC criterion

under a single fault assumption is robust to violations of the assumption leading to

a good choice of queries even when multiple faults are present.

6.3.2.1 Active Query Selection under Single Fault Assumption

In order to avoid the use of loopy BP in the query selection stage, we make the

simplifying assumption of a single fault. Under this assumption, the object state

vector X is restricted to belong to the set {I1, · · · , IM} in the query selection stage.

This reduction in the state space of the object vector allows for query selection to be

performed efficiently without the need for loopy belief propagation.

More specifically, the posterior probabilities required to choose queries sequentially

in (6.5) can be computed as follows. Using the conditional independence assumption
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of Section 6.2, Pr(Z = z|zA) can be computed as

Pr(Z = z|zA) =
M∑
i=1

Pr(Z = z|X = Ii) Pr(X = Ii|zA),

where the posterior probabilities Pr(X = Ii|zA) can be updated efficiently in O(M)

time as

Pr(X = Ii|ZA = zA, Zj = z) =
Pr(X = Ii|ZA = zA) Pr(Zj = z|X = Ii)∑M
k=1 Pr(X = Ik|ZA = zA) Pr(Zj = z|X = Ik)

.

Also, note that under a single fault assumption,

M∑
i=1

Pr(Xi = 1|zA) =
M∑
i=1

Pr(X = Ii|zA) = 1, and (6.6a)

M∑
i=1

Pr(Xi = 0|zA) =
M∑
i=1

1− Pr(Xi = 1|zA) = M − 1. (6.6b)

Using these constraints, the estimates for the area above the ROC curve in (6.4) can

be equivalently expressed as shown in the following proposition.

Proposition VI.1. Under the single fault assumption, the estimates for the area

above the ROC curve, Alr(zA), Al(zA) and Aur(zA) in (6.4) can be equivalently

expressed as

Alr(zA) =

∑M
i=1

[
2i+ Pr(Xr(i) = 0|zA)

]
Pr(Xr(i) = 1|zA)

2(M − 1)
(6.7a)

Al(zA) =

∑M
i=1 [2i] Pr(Xr(i) = 1|zA)

2(M − 1)
(6.7b)

Aur(zA) =

∑M
i=1

[
2i− Pr(Xr(i) = 0|zA)

]
Pr(Xr(i) = 1|zA)

2(M − 1)
(6.7c)

Proof. Refer to Appendix D.

Note from this result that given a ranked list of the objects along with their poste-
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rior probabilities, the complexity of estimating the area above the ROC curve A(zA)

under a single fault assumption is O(M). Since the posterior probabilities can also

be updated efficiently in O(M) time, the complexity of computing A(zA) is domi-

nated by the complexity of sorting, which is O(M logM). Hence, the computational

complexity of choosing a query at each stage using the AUC-based criterion under a

single fault assumption is O(NM logM). This lets active query selection be tractable

even in large networks.

However, as mentioned earlier, multiple faults could be present in practice, and

hence it is important for a query selection criterion under a single fault assumption

to be robust to violations of that assumption. In the next section, we will provide an

intuitive explanation as to why the proposed AUC criterion makes a robust choice of

queries under a single fault assumption, while the entropy-based criterion fails to do

so. We will demonstrate the same through extensive experiments in Section 6.4.

Before we proceed to provide this intuitive explanation, we will briefly digress to

mention another interesting property exhibited by AUC approximated using lower

rectangles or a linear approximation as given by Theorem VI.2 below. In particular,

it can be shown that these two AUC estimators are adaptive monotone (Golovin

and Krause, 2010), i.e., the accuracy of diagnosis given by Alr(ZA) or Al(ZA) is

guaranteed to increase by acquiring more query information (equivalently, the area

above the ROC curve given by Alr(ZA) or Al(ZA) is guaranteed to decrease by

acquiring more query information).

Theorem VI.2. Under the single fault assumption, the quality function A(ZA) esti-

mated using either lower rectangles or a linear approximation, is adaptive monotone,

i.e., ∀A′ ⊆ A

Alr(ZA′) ≤ Alr(ZA) and Al(ZA′) ≤ Al(ZA)
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Proof. Refer to Appendix D.

6.3.2.2 Robustness to violation of single-fault assumption

The following result helps to explain why entropy-based query selection under a

single fault assumption performs poorly in a multi-fault setting.

Proposition VI.3. Under the single fault assumption, along with the conditional

independence assumption of Section 6.2, the entropy-based query selection criterion

in (6.2) reduces to

j∗ := arg min
j /∈A

M∑
i=1

Pr(Xi = 1|zA)H
(

Pr(Zj = 0|Xi = 1)
)
−H

(
Pr(Zj = 0|zA)

)
(6.8)

where H(p) := −p log2 p− (1− p) log2(1− p) denotes the binary entropy function.

Proof. Refer to Appendix D.

As noted in (6.6a), under a single fault assumption, the posterior fault probabili-

ties are constrained to sum to 1. Hence, objects with high posterior fault probability

decrease the posterior fault probabilities of the remaining objects. Given this scenario,

note from (6.8) in Proposition VI.3, that both the terms in this query selection crite-

rion are highly dominated by the object(s) with high posterior fault probabilities (even

the second term, since Pr(Zj = 0|zA) =
∑M

i=1 Pr(Xi = 1|zA) Pr(Zj = 0|Xi = 1)).

Hence, at any given stage, the query chosen according to this criterion is highly bi-

ased towards objects that already have a high posterior fault probability. This could

lead to a poor choice of queries as the objects with high posterior fault probability

need not have their true states as 1, especially in the initial stages.

On the other hand, the AUC-based criterion under single fault assumption chooses

queries at each stage by taking into account its effect on all the objects, leading to
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Figure 6.4: Demonstrates the competitive performance of the AUC-based query se-
lection under single fault assumption to that of BPEA, while having a
computational complexity that is orders less (near quadratic vs. expo-
nential complexity of BPEA). On INET, we only compare AUC+SF with
Entropy+SF as BPEA becomes slow and intractable.

a more balanced and informative choice of queries. This can be observed from the

expressions for the estimators for area above the ROC curve in (6.7), where the

object with the highest posterior fault probability Xr(1) is assigned the least weight,

with monotonically increasing weights as the posterior fault probability of the objects

decreases. This forces to choose a query that takes in to consideration the effect on

all the objects.

Though all three approximations for AUC are robust to violations of the single

fault assumption, for reasons similar to the above and explained in detail in Ap-

pendix D, AUC approximated using upper rectangles turns out to be a better choice

for active diagnosis of multiple faults under a single fault assumption.
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6.4 Experimental Evaluation

We compare the performance of the proposed AUC-based active query selection

under single fault assumption (AUC+SF) with BPEA and entropy-based active query

selection under single fault assumption (Entropy+SF), on 1 synthetic dataset and 2

computer networks. Unlike Zheng et al. (2005) and Cheng et al. (2010) who only

considered networks of size up to 500 components and 580 probes, here we also

consider a large scale network.

The first dataset is a random bipartite diagnosis graph (Guillaume and Latapy ,

2004) generated using the standard Preferential Attachment (PA) random graph

model. The second and the third datasets are network topologies built using the

BRITE (Medina et al., 2001) and the INET (Winick and Jamin, 2002) generators,

which simulate an Internet-like topology at the Autonomous Systems level. To gen-

erate a BDG of components and probes from these topologies, we used the approach

described by Rish et al. (2005) and Zheng et al. (2005).

For the random graph model considered, we generated a random BDG consist-

ing of 300 objects and 300 queries. We generated a BRITE network consisting of

300 components and around 400 probes, and an INET network consisting of 4000

components and 5380 probes. We consider the QMR-DT noise model described in

Section 6.2; parameters are given below. We compare the 3 query selection criteria

under 2 performance measures, AUC and Information gain.

Figure 6.4 compares their performance as a function of the number of queries

inputted. Information gain is computed using BPEA. To compute the area under the

ROC curve, we rank the objects based on their posterior fault probabilities that are

computed using a single-fault assumption. Alternatively, note that these posterior

probabilities could also be computed using BP for the PA and BRITE networks (BP

is slow and intractable on the INET). For performance of the three query selection

criteria under AUC computed with BP based rankings, refer Bellala et al. (2011c).
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Figure 6.5: Comparison of time complexity of selecting a query using BPEA and
AUC+SF.

Using this alternate approach does not change our conclusions.

We used the inference engines in the libDAI (Mooij , 2010) package for imple-

menting BPEA and BP. However, BPEA (and BP) became slow and intractable on

the INET, with BP often not converging and resulting in oscillations. Hence, on

this network, we only compare the performance of AUC+SF and Entropy+SF based

on the AUC criterion which is computed based on rankings obtained from posterior

probabilities under a single-fault assumption.

The results in this figure correspond to a prior fault probability value of 0.03, with

the leak and inhibition probabilities at 0.051. Each curve in this figure is averaged over

200 random realizations, where each random realization corresponds to a random state

of X and random generation of the noisy query responses. For the PA and BRITE

models, the results were observed to be consistent across different realizations of the

underlying bipartite network. For INET, we considered only one network with 25

probe stations.

Note from this figure that AUC+SF invariably performs better than Entropy+SF,

and comparable to BPEA. We observed similar comparable performance of AUC+SF

1Refer Bellala et al. (2011c) for results on other values of prior, leak and inhibition probabilities
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to that of BPEA, for different values of leak and inhibition probabilities, and other

low values of prior fault probabilities (Bellala et al., 2011c). In addition, note from

Figure 6.5 that the time complexity of selecting a query grows exponentially for

BPEA, whereas for AUC+SF, it grows near quadratically (O(NM logM)) with the

time taken to select a probe being less than 2 seconds even in networks with 2000

components.

These experiments demonstrate the competitive performance of AUC-based active

query selection under single fault assumption to that of BPEA, besides having a

computational complexity that is orders less than that of BPEA, demonstrating its

potential as a fast and a reliable substitute for BPEA under low prior, in large scale

diagnosis problems.
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CHAPTER VII

Concluding Remarks

7.1 Summary of Contributions

In this thesis, we developed algorithms that broaden existing methods for object

identification to incorporate factors that are specific to a given task and environment.

These algorithms are greedy algorithms derived in a common, principled framework.

Specifically, the proposed algorithms can be broadly classified into the following two

frameworks.

Coding-Theoretic Framework : In Chapters III and IV, we considered extensions of

the standard object identification problem to the group-based and the exponential

cost settings. To address these problems, we show that a standard algorithm for

object identification, known as the splitting algorithm or generalized binary search

(GBS), can be viewed as a generalization of Shannon-Fano coding. We then use this

interpretation to extend GBS to the group-based and the exponential cost settings. In

particular, we prove the exact formulas for the cost function in each case that close the

previously known lower bounds related to Shannon and Rényi entropies. These exact

formulas are then optimized in a greedy, top-down manner to construct a decision

tree. We demonstrate the improved performance of the proposed algorithms over

GBS through simulations on a real world toxic chemical database known as WISER.

We also develop a logarithmic approximation bound for group identification using the
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notion of adaptive submodularity.

Decision-Theoretic Framework : In Chapters V and VI, we study the problem of ac-

tive diagnosis under persistent query noise in two different settings - single fault and

multiple faults. In this context, we note that traditional approaches such as entropy-

based active query selection have several drawbacks. Specifically, in the multiple

fault scenario, an entropy-based active query selection algorithm such as BPEA relies

on loopy belief propagation making it slow and intractable. Thus, we propose to

make the simplifying assumption of a single fault in the query selection stage. Un-

der this assumption, several query selection criterion can be implemented efficiently.

However, we note that entropy-based active query selection under a single fault as-

sumption performs poorly in a multiple fault setting. Hence, we propose a new query

selection criterion, where the queries are selected sequentially such that the area un-

der the ROC curve (AUC) of a rank-based output is maximized. We demonstrate

the competitive performance of the proposed algorithm to BPEA in the context of

fault diagnosis in computer networks. The competitive performance of the proposed

algorithm, while having a computational complexity that is orders less than that of

BPEA (near quadratic vs. the exponential complexity of BPEA), makes it a fast and

a reliable substitute for BPEA in large scale diagnosis problems. Furthermore, we

show that the proposed rank-based algorithm has another interesting feature in the

single fault scenario, in that it does not require knowledge of the underlying query

noise distribution. On the other hand, entropy-based active query selection requires

knowledge of these noise parameters, and can be sensitive to mis-specification of these

values.

7.2 Future Directions

While this work is a step towards making active diagnosis algorithms better suited

for real-world diagnosis tasks, there are still several interesting issues that deserve to
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be examined in the future.

In the context of group identification, we showed that the query selection criterion

in the proposed Group-GBS algorithm can be slightly modified such that it is adaptive

submodular and strong adaptive monotone, thereby guaranteeing near-optimality. It

would be interesting to see if similar modifications are possible with λ-GBS.

In the context of object identification under persistent query noise, we presented

two algorithms - one that is near-optimal but restricts the number of persistent er-

rors, and the other that neither restricts the number of persistent errors nor requires

knowledge of the underlying noise distribution, but with no performance guarantees.

Ideally, one would prefer to have an algorithm that exhibits both these properties,

near-optimal and noise independent. This is still an open problem which deserves to

be examined in the future.

In the context of active diagnosis under multiple objects, we made a significant

progress in terms of the time-complexity while making little compromise on the per-

formance. However, since the proposed approach is based on a single fault assumption

in the query selection stage, it is only effective for prior fault probability values up

to 0.1 (i.e., 10% of the components are faulty). As stated in Chapter VI, this was

acceptable in applications such as disease diagnosis and fault diagnosis where the

prior fault probability is very low. However, it is still an open problem to find a good,

tractable solution in applications where the prior fault probability could be high.

In addition, it would be interesting to study the robustness of the proposed AUC-

based algorithm when the faults are not independent as assumed in this thesis, but

are correlated. Such as scenario can arise in applications such as fault diagnosis in

power-delivery systems where the state of a component could effect that of the others.

In this context, it would also be interesting to study the robustness of other variants

of AUC, such as partial AUC. Moreover, Gupta (2001) showed that there exists a

relation between the AUC function and weighted variants of Information gain. In
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future, these variants of Information gain should also be studied for their robustness

properties.

Finally, in this thesis, we restricted our attention to applications where the re-

sponses to queries do not change over time. However, in applications such as disease

diagnosis, symptoms might evolve over time, where a disease can be characterized

by the sequence with which these symptoms emerge. In such applications, a “Plan

ahead” sampling that incorporates any time information can be more effective.
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APPENDIX A

Appendix for Group Diagnosis

Proof of Theorem III.7

Let Ta denote a subtree from any node ‘a’ in the tree T and let La denote the

set of leaf nodes in this subtree. Then, let µa denote the expected depth of the leaf

nodes in this subtree, given by

µa =
∑
j∈La

πΘj

πΘa

daj

where daj corresponds to the depth of leaf node j in the subtree Ta, and let Ha denote

the entropy of the probability distribution of the classes at the root node of the subtree

Ta, i.e.

Ha = −
m∑
i=1

πΘia

πΘa

log
πΘia

πΘa
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Now, we show using induction that for any subtree Ta in the tree T , the following

relation holds

πΘaµa − πΘaHa =
∑
s∈Ia

πΘs

[
1−H(ρs) +

m∑
i=1

πΘis

πΘs

H(ρis)
]
−
∑
s∈La

πΘsI(Θs)

where Ia,La denotes the set of internal nodes and the set of leaf nodes in the subtree

Ta, respectively.

The relation holds trivially for any subtree rooted at a leaf node of the tree T with

both the left hand side and the right hand side of the expression equal to −πΘaI(Θa)

(Note from (3.6) that I(Θa) = Ha). Now, assume the above relation holds for the

subtrees rooted at the left and right child nodes of node ‘a’. Then, using Lemma A.1

we have

πΘa [µa −Ha] = πΘl(a)
[µl(a) −Hl(a)] + πΘr(a)

[µr(a) −Hr(a)]

+πΘa

[
1−H(ρa) +

m∑
i=1

πΘia

πΘa

H(ρia)

]

=
∑
s∈Il(a)

πΘs

[
1−H(ρs) +

m∑
i=1

πΘis

πΘs

H(ρis)

]

+
∑
s∈Ir(a)

πΘs

[
1−H(ρs) +

m∑
i=1

πΘis

πΘs

H(ρis)

]

+ πΘa

[
1−H(ρa) +

m∑
i=1

πΘia

πΘa

H(ρia)

]
−
∑
s∈Ll(a)

πΘsI(Θs)−
∑

s∈Lr(a)

πΘsI(Θs)

=
∑
s∈Ia

πΘs

[
1−H(ρs) +

m∑
i=1

πΘis

πΘs

H(ρis)

]
−
∑
s∈La

πΘsI(Θs)

thereby completing the induction. Finally, the result follows by applying the relation

to the tree T whose probability mass at the root node, πΘa = 1.
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Lemma A.1.

πΘa [µa −Ha] = πΘl(a)
[µl(a) −Hl(a)] + πΘr(a)

[µr(a) −Hr(a)]

+ πΘa

[
1−H(ρa) +

m∑
i=1

πΘia

πΘa

H(ρia)

]

Proof. We first note that πΘaµa for a subtree Ta can be decomposed as

πΘaµa =
∑
j∈La

πΘjd
a
j

=
∑
j∈Ll(a)

πΘjd
a
j +

∑
j∈Lr(a)

πΘjd
a
j

=
∑
j∈Ll(a)

πΘj(d
a
j − 1) +

∑
j∈Lr(a)

πΘj(d
a
j − 1) +

∑
j∈La

πΘj

= πΘl(a)
µl(a) + πΘr(a)

µr(a) + πΘa (A.1)
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Similarly, πΘaHa can be decomposed as

πΘaHa =
m∑
i=1

πΘia
log

πΘa

πΘia

=
m∑
i=1

πΘi
l(a)

log
πΘa

πΘia

+
m∑
i=1

πΘi
r(a)

log
πΘa

πΘia

=
m∑
i=1

πΘi
l(a)

log
πΘl(a)

πΘi
l(a)

+
m∑
i=1

πΘi
l(a)

log
πΘi

l(a)

πΘia

+
m∑
i=1

πΘi
r(a)

log
πΘr(a)

πΘi
r(a)

+
m∑
i=1

πΘi
r(a)

log
πΘi

r(a)

πΘia

+
m∑
i=1

πΘi
l(a)

log
πΘa

πΘl(a)

+
m∑
i=1

πΘi
r(a)

log
πΘa

πΘr(a)

= πΘl(a)
Hl(a) + πΘr(a)

Hr(a)

−
m∑
i=1

[
πΘi

l(a)
log

πΘia

πΘi
l(a)

+ πΘi
r(a)

log
πΘia

πΘi
r(a)

]

+

[
πΘl(a)

log
πΘa

πΘl(a)

+ πΘr(a)
log

πΘa

πΘr(a)

]

= πΘl(a)
Hl(a) + πΘr(a)

Hr(a) −
m∑
i=1

πΘia
H(ρia) + πΘaH(ρa) (A.2)

The result follows from (A.1) and (A.2) above.

Proof of Theorem III.8

From relation (A.2) in Lemma A.1, we have

Ha −
[
πΘl(a)

πΘa

Hl(a) +
πΘr(a)

πΘa

Hr(a)

]
= −

[
−H(ρa) +

m∑
i=1

πΘia

πΘa

H(ρia)

]

Thus, maximizing the impurity based objective function with entropy function as the

impurity function is equivalent to minimizing the cost function ∆a := 1 − H(ρa) +∑m
i=1

π
Θia

πΘa
H(ρia)
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Proof of Theorem III.9

Before we prove the result in Theorem III.9, we need to introduce some additional

notation and review some definitions from Golovin and Krause (2010). Let f : 2Q ×

Θ → R≥0 be a utility/reward function that depends on the queries chosen and the

unknown object θ ∈ Θ. For any A ⊆ {1, · · · , N}, let QA denote the subset of queries

indexed by A, and let ZA be a binary random vector denoting the responses to queries

in QA. In addition, given a tree T , let Q(T, θi) denote the queries made along the

path from the root node to the leaf node terminating in object θi. Then, for any

S > 0 that denotes the minimum desired reward, an optimal tree T ∗ is defined to be

T ∗ ∈ arg min
T

E[K(T )] such that f(Q(T, θ), θ) ≥ S, ∀θ ∈ Θ.

Finding an optimal tree T ∗ is NP-complete and hence we need to resort to greedy

approaches.

Definition A.2. (Conditional Expected Marginal Gain) Given the observed

responses zA to queries in QA, the conditional expected marginal gain of choosing a

new query q /∈ QA is given by

∆(q|zA) := Eθ[f(QA ∪ {q}, θ)− f(QA, θ)|ZA = zA], (A.3)

where the expectation is taken with respect to Π.

A greedy algorithm to solve the above optimization problem is to construct a deci-

sion tree in a top-down manner, where at each internal node, a query that maximizes

∆(q|zA), i.e. arg maxq /∈QA ∆(q|zA) is chosen, where QA denotes the queries leading

to that node with zA being the responses.

Definition A.3. (Strong Adaptive Monotonicity) A function f : 2Q×Θ→ R≥0

is strongly adaptive monotone with respect to Π if, informally “selecting more queries
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never hurts” with respect to the expected reward. Formally, for all QA ⊆ Q, all

q /∈ QA and all z ∈ {0, 1} such that Pr(Z = z|ZA = zA) > 0, we require

Eθ[f(QA, θ)|ZA = zA] ≤ Eθ[f(QA ∪ {q}, θ)|ZA = zA, Z = z]. (A.4)

Definition A.4. (Adaptive Submodular) A function f : 2Q×Θ→ R≥0 is adaptive

submodular with respect to distribution Π if the conditional expected marginal gain

of any fixed query does not increase as more queries are selected and their responses

are observed. Formally, f is adaptive submodular w.r.t. Π if for all QA and QB such

that QA ⊆ QB ⊆ Q and for all q /∈ QB, we have

∆(q|zB) ≤ ∆(q|zA). (A.5)

Theorem A.5. (Golovin and Krause, 2010) Suppose f : 2Q × Θ → R≥0 is adaptive

submodular and strongly adaptive monotone with respect to Π and there exists an S

such that f(Q, θ) = S for all θ ∈ Θ. Let η be any value such that f(QA, θ) > S − η

implies f(QA, θ) = S for all QA ⊆ Q and all θ. Let T ∗ be an optimal tree with

the least expected depth and let T̂ be a suboptimal tree constructed using the greedy

algorithm, then

E[K(T̂ )] ≤ E[K(T ∗)]

(
ln

(
S

η

)
+ 1

)
(A.6)

Proof of Theorem III.9

Let the utility function f be defined as f(QA, θi) := 1− π2
a +

(
πkia
)2

, where πa is

the probability mass of the objects remaining after observing responses to queries in

QA with θi as the unknown object, and ki denoting the group to which θi belongs.

As shown in Lemma A.6 below, substituting this utility function in (A.3), we get the

conditional expected marginal gain to be 3πl(a)πr(a)−
∑m

i=1 3π
i
a

πa
πil(a)π

i
r(a), which is the
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greedy criterion for choosing queries at each internal node.

Now, note that f(Q, θ) = 1, ∀θ ∈ Θ. Also, for any QA ⊆ Q, if f(QA, θi) >

1 − 3π2
min, it implies f(QA, θi) = 1, hence η = 3π2

min. In addition, it follows from

Lemma A.6 and Lemma A.7 below that the utility function f defined above is adap-

tive submodular and strongly adaptive monotone. Hence, the result follows from

Theorem A.5.

Lemma A.6. The utility function f defined above is adaptive submodular.

Proof. Consider two subsets of Q such that QA ⊆ QB. Let zA, zB denote the responses

to the queries in QA and QB, respectively. Then, we need to show that for any q /∈ QB,

∆(q|zA) ≥ ∆(q|zB).

Let Θa ⊆ Θ denote the set of objects whose responses to queries in QA are same

as those in zA. Then substituting f(QA, θ) = 1− π2
a + (πia)

2 in (A.3), we get

∆(q|zA) =
m∑
i=1

πil(a)

πa

[
π2
a − π2

l(a) − (πia)
2 + (πil(a))

2
]

+
m∑
i=1

πir(a)

πa

[
π2
a − π2

r(a) − (πia)
2 + (πir(a))

2
]

=
πl(a)

πa
πr(a)(πa + πl(a))−

m∑
i=1

πil(a)

πa
πir(a)(π

i
a + πil(a))

+
πr(a)

πa
πl(a)(πa + πr(a))−

m∑
i=1

πir(a)

πa
πil(a)(π

i
a + πir(a))

= 3πl(a)πr(a) −
m∑
i=1

3
πia
πa
πil(a)π

i
r(a).

Similarly, let Θb ⊆ Θ denote the set of objects whose responses to queries in QB are

equal to those in zB. Then, substituting f(QB, θ) = 1 − π2
b + (πib)

2 in (A.3), we get

∆(q|zB) = 3πl(b)πr(b) −
∑m

i=1 3
πib
πb
πil(b)π

i
r(b).
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To prove f is adaptive submodular, we need to show that

πl(a)πr(a) −
m∑
i=1

πia
πa
πil(a)π

i
r(a) ≥ πl(b)πr(b) −

m∑
i=1

πib
πb
πil(b)π

i
r(b),

=⇒ πaπbπl(a)πr(a) −
m∑
i=1

πiaπbπ
i
l(a)π

i
r(a) ≥ πaπbπl(b)πr(b) −

m∑
i=1

πibπaπ
i
l(b)π

i
r(b)

Note that since QA ⊆ QB, Θb ⊆ Θa and hence πb ≤ πa, π
i
b ≤ πia, ∀i ∈ {1, · · · ,m}. For

any query q /∈ QB, let Θl(a) and Θr(a) correspond to the objects in Θa that respond 0

and 1 to query q respectively. Similarly, let Θl(b) and Θr(b) correspond to the objects

in Θb that respond 0 and 1 to query q respectively. Then, πl(b) ≤ πl(a), π
i
l(b) ≤ πil(a), ∀i,
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and πr(b) ≤ πr(a), π
i
r(b) ≤ πir(a), ∀i. Hence

πaπbπl(a)πr(a) −
m∑
i=1

πiaπbπ
i
l(a)π

i
r(a)

= πaπb

m∑
i=1

πil(a)π
i
r(a) + πaπb

∑
i 6=j

πil(a)π
j
r(a) −

m∑
i=1

πiaπbπ
i
l(a)π

i
r(a)

=
m∑
i=1

πil(a)π
i
r(a)(πa − πia)πb + πaπb

∑
i 6=j

πil(a)π
j
r(a) (A.7a)

≥
m∑
i=1

πil(a)π
i
r(a)(πa − πia)πb + πaπb

∑
i 6=j

πil(b)π
j
r(b) (A.7b)

=
m∑
i=1

πil(a)π
i
r(a)(πa − πia)(πb − πib) +

m∑
i=1

πil(a)π
i
r(a)(πa − πia)πib

+ πaπb
∑
i 6=j

πil(b)π
j
r(b) (A.7c)

≥
m∑
i=1

πil(b)π
i
r(b)(πa − πia)(πb − πib) +

m∑
i=1

πil(a)π
i
r(a)(πa − πia)πib

+ πaπb
∑
i 6=j

πil(b)π
j
r(b) (A.7d)

≥
m∑
i=1

πil(b)π
i
r(b)(πa − πia)(πb − πib) +

m∑
i=1

πil(b)π
i
r(b)(πb − πib)πia

+ πaπb
∑
i 6=j

πil(b)π
j
r(b) (A.7e)

=
m∑
i=1

πil(b)π
i
r(b)πa(πb − πib) + πaπb

∑
i 6=j

πil(b)π
j
r(b)

= πaπbπl(b)πr(b) −
m∑
i=1

πaπ
i
bπ

i
l(b)π

i
r(b)
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where (A.7e) follows from (A.7d) since

m∑
i=1

πil(a)π
i
r(a)(πa − πia)πib

=
m∑
i=1

πil(a)π
i
l(b)π

i
r(a)(πa − πia) +

m∑
i=1

πir(a)π
i
r(b)π

i
l(a)(πa − πia)

≥
m∑
i=1

πil(a)π
i
l(b)π

i
r(b)(πb − πib) +

m∑
i=1

πir(a)π
i
r(b)π

i
l(b)(πb − πib)

=
m∑
i=1

πil(b)π
i
r(b)(πb − πib)πia,

thus proving that f is adaptive submodular.

Lemma A.7. The utility function f as defined above is strongly adaptive monotone.

Proof. Consider any subset of queries QA ⊆ Q, and let zA denote the responses to

these queries. Let Θa denote the set of objects whose responses to queries in QA are

equal to those of zA. For any query q /∈ QA, let Θl(a) and Θr(a) correspond to the

objects in Θa that respond 0 and 1 to query q respectively.

For strong adaptive monotonicity, we need to show that

1− π2
a +

m∑
i=1

(πia)
3

πa
≤ 1− π2

l(a) +
m∑
i=1

(
πil(a)

)3

πl(a)

, if πl(a) > 0

and 1− π2
a +

m∑
i=1

(πia)
3

πa
≤ 1− π2

r(a) +
m∑
i=1

(
πir(a)

)3

πr(a)

, if πr(a) > 0.

We will show the first inequality, and the second inequality can be shown in a similar

manner. Given πl(a) > 0, we need to show that

π3
aπl(a) − π3

l(a)πa ≥
m∑
i=1

(
πia
)3
πl(a) −

(
πil(a)

)3
πa.
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Note that

π3
aπl(a) − π3

l(a)πa

=
(
πl(a) + πr(a)

)3
πl(a) − π3

l(a)

(
πl(a) + πr(a)

)
= π3

r(a)πl(a) + 3π2
l(a)π

2
r(a) + 2π3

l(a)πr(a) (A.8a)

≥
m∑
i=1

[(
πir(a)

)3
πl(a) + 3πl(a)π

i
l(a)

(
πir(a)

)2
]

+ 2π3
l(a)πr(a) (A.8b)

=
m∑
i=1

[(
πir(a)

)3
πl(a) + 3πl(a)π

i
l(a)

(
πir(a)

)2 − πr(a)

(
πil(a)

)3
]

+ 2π3
l(a)πr(a) +

m∑
i=1

πr(a)

(
πil(a)

)3
(A.8c)

≥
m∑
i=1

[(
πir(a)

)3
πl(a) + 3πl(a)π

i
l(a)

(
πir(a)

)2 −
(
πil(a)

)3
πr(a) + 3

(
πil(a)

)2
πir(a)πl(a)

]
(A.8d)

=
m∑
i=1

{
πl(a)

[(
πil(a)

)3
+ 3

(
πil(a)

)2
πir(a) + 3πil(a)

(
πir(a)

)2
+
(
πir(a)

)3
]

−
(
πil(a)

)3
πl(a) −

(
πil(a)

)3
πr(a)

}
(A.8e)

=
m∑
i=1

(
πia
)3
πl(a) −

(
πil(a)

)3
πa

where (A.8b) follows from (A.8a) as π3
r(a)πl(a) and 3πl(a)πl(a)π

2
r(a) has more non-negative

terms than
∑m

i=1

(
πir(a)

)3

πl(a),
∑m

i=1 3πl(a)π
i
l(a)

(
πir(a)

)2

, respectively. Also (A.8d) fol-
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lows from (A.8c) since

πr(a)

[
2π3

l(a) +
m∑
i=1

(
πil(a)

)3

]

= πr(a)

[
m∑
i=1

3
(
πil(a)

)3
+ 6

∑
i 6=j

(
πil(a)

)2
πjl(a) + 6

∑
i 6=j 6=k

πil(a)π
j
l(a)π

k
l(a)

]

=

(
m∑
h=1

πhr(a)

)[
m∑
i=1

3
(
πil(a)

)3
+ 6

∑
i 6=j

(
πil(a)

)2
πjl(a) + 6

∑
i 6=j 6=k

πil(a)π
j
l(a)π

k
l(a)

]

≥ 3
m∑
i=1

(
πil(a)

)3
πir(a) + 3

∑
i 6=j

(
πil(a)

)2
πir(a)π

j
l(a)

= 3πl(a)

m∑
i=1

(
πil(a)

)2
πir(a),

thus proving that f is strongly adaptive monotone.

Proof of Theorem III.12

Let Ta denote a subtree from any node ‘a’ in the tree T and let La denote the

set of leaf nodes in this subtree. Then, let µa denote the expected number of queries

required to identify the group of an object terminating in a leaf node of this subtree,

given by

µa =
∑
j∈La

πΘj

πΘa

p̃ajd
a
j

where daj , p̃
a
j denotes the depth of leaf node j in the subtree Ta and the probability of

reaching that leaf node given θ ∈ Θj, respectively, and let Ha denote the entropy of

the probability distribution of the object groups at the root node of this subtree, i.e.

Ha = −
m∑
i=1

πΘia

πΘa

log
πΘia

πΘa
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Now, we show using induction that for any subtree Ta in the tree T , the following

relation holds

πΘaµa − πΘaHa =
∑
s∈Ia

p̃asπΘs

{
1−

∑
q∈Qzs

pzs(q)

[
H(ρs(q))−

m∑
i=1

πΘis

πΘs

H(ρis(q))

]}

where Ia denotes the set of internal nodes in the subtree Ta.

The relation holds trivially for any subtree rooted at a leaf node of the tree T

with both the left hand side and the right hand side of the expression being equal to

0. Now, assume the above relation holds for all subtrees rooted at the child nodes

of node ‘a’. Note that node ‘a’ has a set of left and right child nodes, each set

corresponding to one query from the query group selected at that node. Then, using

the decomposition in Lemma A.1 on each query from this query group, we have

1 · πΘa [µa −Ha] =
∑
q∈Qza

pza(q)πΘa [µa −Ha]

=
∑
q∈Qza

pza(q)
{
πΘlq(a)

[µlq(a) −Hlq(a)] + πΘrq(a)
[µrq(a) −Hrq(a)]

+ πΘa

[
1−H(ρa(q))−

m∑
i=1

πΘia

πΘa

H(ρia(q))

]}

=
∑
q∈Qza

pza(q)
{
πΘlq(a)

[µlq(a) −Hlq(a)] + πΘrq(a)
[µrq(a) −Hrq(a)]

}
+ πΘa

{
1−

∑
q∈Qza

pza(q)

[
H(ρa(q))−

m∑
i=1

πΘia

πΘa

H(ρia(q))

]}

where lq(a), rq(a) correspond to the left and right child of node ‘a’ when query q

is chosen from the query group and µlq(a), πΘlq(a)
, Hlq(a) correspond to the expected

depth of a leaf node in the subtree Tlq(a), probability mass of the objects at the root

node of this subtree, and the entropy of the probability distribution of the objects at

the root node of this subtree respectively. Now, using the induction hypothesis, we
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get

πΘaµa − πΘaHa

=
∑
q∈Qza

pza(q)

 ∑
s∈Ilq(a)

p̃l
q(a)
s πΘs

[
1−

∑
q∈Qzs

pzs(q)

(
H(ρs(q))−

m∑
i=1

πΘis

πΘs

H(ρis(q))

)]
+
∑
q∈Qza

pza(q)

 ∑
s∈Irq(a)

p̃r
q(a)
s πΘs

[
1−

∑
q∈Qzs

pzs(q)

(
H(ρs(q))−

m∑
i=1

πΘis

πΘs

H(ρis(q))

)]
+ πΘa

{
1−

∑
q∈Qza

pza(q)

[
H(ρa(q))−

m∑
i=1

πΘia

πΘa

H(ρia(q))

]}

=
∑
s∈Ia

p̃asπΘs

{
1−

∑
q∈Qzs

pzs(q)

[
H(ρs(q))−

m∑
i=1

πΘis

πΘs

H(ρis(q))

]}

thereby completing the induction. Finally, the result follows by applying the relation

to the subtree rooted at the root node of T , whose probability mass πΘa = 1.

Miscellanies

Reduction factor calculation in the persistent noise model

At any internal node a ∈ I in a tree, let δai denote the Hamming distance between

the query responses up to this internal node (Qa) and the true responses of object θi

to those queries. Also, let na denote the number of queries from the set of Nν queries

(that were prone to error) in the set Q\Qa and for a query q ∈ Q\Qa, denote by bi(q)

the binary response of object θi to that query. Denote by the set Ia = {i : δai ≤ ε′},

the object groups with non-zero number of objects at this internal node. All the

formulas below come from routine calculations based on probability model 2.

For a query q ∈ Q \ Qa, that is not prone to error, the reduction factor and the

group reduction factors generated by choosing that query at node ‘a’ are as follows.

The group reduction factor of any group i ∈ Ia is equal to 1 and the reduction factor

124



is given by

ρa = max{A,B}∑
i∈Ia0

⋂
Ia1

πi

 τai∑
e=0

(nae )pe+δ
a
i (1−p)Nν−e−δ

a
i

 ,

A =
∑
i∈Ia0

πi

[
τai∑
e=0

(
na
e

)
pe+δ

a
i (1− p)Nν−e−δai

]
,

B =
∑
i∈Ia1

πi

[
τai∑
e=0

(
na
e

)
pe+δ

a
i (1− p)Nν−e−δai

]
,

where Ia0 = {i ∈ Ia : bi(q) = 0}, Ia1 = {i ∈ Ia : bi(q) = 1} and τai = min(na, ε
′ − δai ).

In addition, for a query q ∈ Q \Qa that is prone to error, denote by δ
l(a)
i , δ

r(a)
i the

Hamming distance between the user responses to queries up to the left and right child

node of node ‘a’ with query q chosen at node ‘a’, and the true responses of object

θi to those queries. In particular, δ
l(a)
i = δai + |bi(q) − 0| and δ

r(a)
i = δai + |bi(q) − 1|.

Then, the reduction factor and the group reduction factors generated by choosing

this query at node ‘a’ are as follows. The group reduction factor of a group i ∈ Ia

whose δai = ε′ is equal to 1 and that of a group whose δai < ε′ is given by

ρia = max{A,B}
τa
i∑

e=0
(nae )pe+δ

a
i (1−p)Nν−e−δ

a
i

,

A =
τ
l(a)
i∑
e=0

(
na−1
e

)
pe+δ

l(a)
i (1− p)Nν−e−δ

l(a)
i ,

B =
τ
r(a)
i∑
e=0

(
na−1
e

)
pe+δ

r(a)
i (1− p)Nν−e−δ

r(a)
i ,

where τ
l(a)
i = min(na−1, ε′−δl(a)

i ) and τ
r(a)
i = min(na−1, ε′−δr(a)

i ), and the reduction
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factor is given by

ρa = max{A,B}∑
i∈Ia

πi

 τai∑
e=0

(nae )pe+δ
r(a)
i (1−p)Nν−e−δ

r(a)
i

 ,

A =
∑

i∈Il(a)

πi

[
τ
l(a)
i∑
e=0

(
na−1
e

)
pe+δ

l(a)
i (1− p)Nν−e−δ

l(a)
i

]
,

B =
∑

i∈Ir(a)

πi

[
τ
r(a)
i∑
e=0

(
na−1
e

)
pe+δ

r(a)
i (1− p)Nν−e−δ

r(a)
i

]
,
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APPENDIX B

Appendix for Diagnosis under Exponential Query

costs

Proof of Theorem IV.4

Define two new functions L̃λ and H̃α as

L̃λ :=
1

λ− 1

[∑
j∈L

πΘjλ
dj − 1

]
=
∑
j∈L

πΘj

dj−1∑
k=0

λk


H̃α := 1− 1(∑m

i=1 π
α
Θi

) 1
α

Noting that the cost function Lλ(Π) can be written as,

Lλ(Π) = logλ

(∑
j∈L

πΘjλ
dj

)
,

the new function L̃λ can be related to the cost function Lλ(Π) as

λLλ(Π) = (λ− 1)L̃λ + 1 (B.1)
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Similarly, H̃α is related to the α-Rényi entropy Hα(Πy) as

Hα(Πy) =
1

1− α
log2

m∑
i=1

παΘi =
1

α log2 λ
log2

m∑
i=1

παΘi = logλ

(
m∑
i=1

παΘi

) 1
α

(B.2a)

=⇒ λHα(Πy) =

(
m∑
i=1

παΘi

) 1
α

=

(
m∑
i=1

παΘi

) 1
α

H̃α + 1 (B.2b)

where we use the definition of α, i.e., α = 1
1+log2 λ

in (B.2a).

Now, we note from Lemma B.1 that L̃λ can be decomposed as

L̃λ =
∑
a∈I

λdaπΘa

=⇒ λLλ(Π) = 1 +
∑
a∈I

(λ− 1)λdaπΘa (B.3)

where da denotes the depth of internal node ‘a’ in the tree T . Similarly, note from

Lemma B.2 that H̃α can be decomposed as

H̃α =
1(∑m

i=1 π
α
Θi

) 1
α

∑
a∈I

[
πΘaDα(Θa)− πΘl(a)

Dα(Θl(a))− πΘr(a)
Dα(Θr(a))

]
=⇒ λHα(Πy) = 1 +

∑
a∈I

[
πΘaDα(Θa)− πΘl(a)

Dα(Θl(a))− πΘr(a)
Dα(Θr(a))

]
. (B.4)

Finally, the result follows from (B.3) and (B.4) above.

Lemma B.1. The function L̃λ can be decomposed over the internal nodes in a tree

T , as

L̃λ =
∑
a∈I

λdaπΘa

where da denotes the depth of internal node a ∈ I and πΘa is the probability mass of

the objects at that node.

Proof. Let Ta denote a subtree from any internal node ‘a’ in the tree T and let Ia,La
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denote the set of internal nodes and leaf nodes in the subtree Ta, respectively. Then,

define L̃aλ in the subtree Ta to be

L̃aλ =
∑

j∈La
πΘj

πΘa

[∑daj−1

k=0 λk
]

where daj denotes the depth of leaf node j ∈ La in the subtree Ta.

Now, we show using induction that for any subtree Ta in the tree T , the following

relation holds

πΘaL̃
a
λ =

∑
s∈Ia

λd
a
sπΘs (B.5)

where das denotes the depth of internal node s ∈ Ia in the subtree Ta.

The relation holds trivially for any subtree Ta rooted at an internal node a ∈ I

whose both child nodes terminate as leaf nodes, with both the left hand side and the

right hand side of the expression equal to πΘa . Now, consider a subtree Ta rooted

at an internal node a ∈ I whose left child (or right child) alone terminates as a leaf

node. Assume that the above relation holds true for the subtree rooted at the right
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child of node ‘a’. Then,

πΘaL̃
a
λ =

∑
j∈La

πΘj

daj−1∑
k=0

λk


=

∑
{j∈La:daj=1}

πΘj +
∑

{j∈La:daj>1}

πΘj

daj−1∑
k=0

λk


= πΘl(a)

+
∑

{j∈La:daj>1}

πΘj

1 + λ

daj−2∑
k=0

λk


= πΘa + λ

∑
j∈Lr(a)

πΘj

d
r(a)
j −1∑
k=0

λk


= πΘa + λ

∑
s∈Ir(a)

λd
r(a)
s πΘs

where the last step follows from the induction hypothesis. Finally, consider a subtree

Ta rooted at an internal node a ∈ I whose neither child node terminates as a leaf

node. Assume that the relation in (B.5) holds true for the subtrees rooted at its left

and right child nodes. Then,

πΘaL̃
a
λ =

∑
j∈La

πΘj

daj−1∑
k=0

λk


=
∑
j∈Ll(a)

πΘj

1 + λ

daj−2∑
k=0

λk

+
∑

j∈Lr(a)

πΘj

1 + λ

daj−2∑
k=0

λk


= πΘa + λ

∑
j∈Ll(a)

πΘj

d
l(a)
j −1∑
k=0

λk

+ λ
∑

j∈Lr(a)

πΘj

d
r(a)
j −1∑
k=0

λk


= πΘa + λ

 ∑
s∈Il(a)

λd
l(a)
s πΘs +

∑
s∈Ir(a)

λd
r(a)
s πΘs

 =
∑
s∈Ia

λd
a
sπΘs

thereby completing the induction. Finally, the result follows by applying the relation

in (B.5) to the tree T whose probability mass at the root node, πΘa = 1.
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Lemma B.2. The function H̃α can be decomposed over the internal nodes in a tree

T , as

H̃α =
1(∑m

i=1 π
α
Θi

) 1
α

∑
a∈I

[
πΘaDα(Θa)− πΘl(a)

Dα(Θl(a))− πΘr(a)
Dα(Θr(a))

]

where Dα(Θa) :=
[∑m

i=1

(
π

Θia

πΘa

)α] 1
α

and πΘa denotes the probability mass of the objects

at any internal node a ∈ I.

Proof. Let Ta denote a subtree from any internal node ‘a’ in the tree T and let Ia

denote the set of internal nodes in the subtree Ta. Then, define H̃a
α in a subtree Ta

to be

H̃a
α = 1− πΘa[∑m

i=1 π
α
Θia

] 1
α

Now, we show using induction that for any subtree Ta in the tree T , the following

relation holds

[
m∑
i=1

παΘia

] 1
α

H̃a
α =

∑
s∈Ia

[
πΘsDα(Θs)− πΘl(s)Dα(Θl(s))− πΘr(s)Dα(Θr(s))

]
(B.6)

Note that the relation holds trivially for any subtree Ta rooted at an internal node

a ∈ I whose both child nodes terminate as leaf nodes. Now, consider a subtree Ta

rooted at any other internal node a ∈ I. Assume the above relation holds true for
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the subtrees rooted at its left and right child nodes. Then,

[
m∑
i=1

παΘia

] 1
α

H̃a
α =

[
m∑
i=1

παΘia

] 1
α

− πΘa =

[
m∑
i=1

παΘia

] 1
α

− πΘl(a)
− πΘr(a)

=

[
m∑
i=1

παΘia

] 1
α

−

[
m∑
i=1

παΘi
l(a)

] 1
α

−

[
m∑
i=1

παΘi
r(a)

] 1
α

+

[ m∑
i=1

παΘi
l(a)

] 1
α

− πΘl(a)

+

[ m∑
i=1

παΘi
r(a)

] 1
α

− πΘr(a)


=
[
πΘaDα(Θa)− πΘl(a)

Dα(Θl(a))− πΘr(a)
Dα(Θr(a))

]
+

[
m∑
i=1

παΘi
l(a)

] 1
α

H̃ l(a)
α +

[
m∑
i=1

παΘi
r(a)

] 1
α

H̃r(a)
α

=
∑
s∈Ia

[
πΘsDα(Θs)− πΘl(s)Dα(Θl(s))− πΘr(s)Dα(Θr(s))

]

where the last step follows from the induction hypothesis. Finally, the result follows

by applying the relation in (B.6) to the tree T .

Proof of Corollary IV.5

The result in Corollary IV.5 is a special case of that in Theorem IV.4 when λ→ 1.

It follows by taking the logarithm to the base λ on both sides of equation

λLλ(Π) = λHα(Πy) +
∑
a∈I

πΘa

[
(λ− 1)λda −Dα(Θa) +

πΘl(a)

πΘa

Dα(Θl(a)) +
πΘr(a)

πΘa

Dα(Θr(a))

]
,

and then finding the limit as λ→ 1.

Using L’Hôpital’s rule, the left hand side (LHS) of the equation reduces to

lim
λ→1

logλ(LHS) = lim
λ→1

Lλ(Π) =
∑
j∈L

πΘjdj,

where Lλ(Π) = logλ

(∑
j∈L πΘjλ

dj

)
. Similarly, the right hand side (RHS) of the
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equation reduces to

lim
λ→1

logλ(RHS) = H(Πy) +
∑
a∈I

πΘa

[
1−

(
H(Θa)−

πΘl(a)

πΘa

H(Θl(a))−
πΘr(a)

πΘa

H(Θr(a))

)]
,

where H(Θa) = −
∑m

i=1

π
Θia

πΘa
log2

(
π

Θia

πΘa

)
.

Finally, the result follows by noting that

H(Θa)−
πΘl(a)

πΘa

H(Θl(a))−
πΘr(a)

πΘa

H(Θr(a)) = H(ρa) +
m∑
i=1

πΘia

πΘa

H(ρia),

as shown in Theorem III.8.
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APPENDIX C

Appendix for Diagnosis under Persistent Query

Noise

Proof of Lemma V.1

For any given k and h, let g(p) := log[ph(1− p)k−h]. It can be easily verified that

g′(p) = 0 when p = h
k

and g′′(p)|p=h
k
< 0 which implies that g(p) ≤ g(h

k
), ∀ p, from

which the inequality in (5.6) follows.

In addition, when p ≤ p2, we need to show that the bound can be improved to

ph(1− p)k−h ≤

 ph2(1− p2)k−h if p2 ≤ h
k
,(

h
k

)h (
1− h

k

)k−h
if p2 >

h
k
.

Note that the second part of this result, where p2 > h/k follows from the above

result. Hence, it remains to show that ∀ p2 ≤ h
k
, ph(1− p)k−h ≤ ph2(1− p2)k−h, which
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is equivalent to showing that ∀h ≥ kp2, g(p2)− g(p) ≥ 0.

g(p2)− g(p) = h log
p2(1− p)
p(1− p2)

+ k log
1− p2

1− p

≥ kp2 log
p2(1− p)
p(1− p2)

+ k log
1− p2

1− p

= k

[
p2 log

p2

p
+ (1− p2) log

1− p2

1− p

]
≥ 0

where the first inequality follows from h ≥ kp2 (the first log is ≥ 0 since p ≤ p2) and

the last inequality follows from the non-negativity of Kullback-Leibler divergence.

The other two cases can be proved in a similar manner.

Proof of Proposition V.2

Let |A| = k. Consider the case where ∃ p ∈ (0, ρ/(1 + ρ)) such that 0 < p ≤ p

(The other case where ∃ p ∈ (1/(1 + ρ), 1) such that 1 > p ≥ p can be proved in a

similar manner). Note from the definitions of rwc(θ|zA) and rwc(θ|zA) that the result

follows by showing the following relational equivalence between the true probabilities

and the estimated probabilities: ∀i, j

πi Pr(zA|Xi = 1) ≥ πj Pr(zA|Xj = 1)⇐⇒ πiPr(zA|Xi = 1) ≥ πjPr(zA|Xj = 1),

(C.1)

where the true likelihood and the estimated likelihood of any object θi are given by

Pr(zA|Xi = 1) = phi(1 − p)k−hi and Pr(zA|Xi = 1) = εhii (1 − εi)k−hi , hi = δi,A and

εi := min{hi/k, p}.

The above equivalence follows trivially for any pair of objects θi, θj whose hi = hj.

To show that the equivalence holds even when hi 6= hj, we will show that, for any
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two objects θi, θj with priors πi, πj,

πi Pr(zA|Xi = 1) > πj Pr(zA|Xj = 1) & (hi 6= hj)⇐⇒ hj > hi (C.2a)

and πiPr(zA|Xi = 1) > πjPr(zA|Xj = 1) & (hi 6= hj)⇐⇒ hj > hi. (C.2b)

We will first prove (C.2a), followed by (C.2b). Note that hj > hi is equivalent to

hj ≥ hi + 1. Using the fact that p < ρ
1+ρ

and that for any i, j,
πj
πi
≤ maxk πk

mink πk
= 1

ρ
, we

can show the converse of (C.2a) as follows. If hj − hi ≥ 1, then

(hj − hi) log
1− p
p
≥ log

1− p
p

> log
1

ρ
≥ log

πj
πi

=⇒ log πi + hi log
p

1− p
> log πj + hj log

p

1− p

=⇒ log πip
hi(1− p)k−hi > log πjp

hj(1− p)k−hj .

To prove the forward direction, we need to show that

hj ≤ hi =⇒ (hi = hj) or πi Pr(zA|Xi = 1) ≤ πj Pr(zA|Xj = 1).

If hj < hi, then πi Pr(zA|Xi = 1) < πj Pr(zA|Xj = 1) using the converse result with

dummy variables i and j interchanged, thereby proving (C.2a). Similarly, to prove

the converse of (C.2b), we need to show that hj > hi leads to πiPr(zA|Xi = 1) >

πjPr(zA|Xj = 1), for which we need to consider three different cases.

Case 1 : Let hj > hi ≥ kp =⇒ εi = εj = p. Then,

(hj − hi) log
1− p
p
≥ log

1− p
p

> log
1

ρ
≥ log

πj
πi

=⇒ log πi + hi log
p

1− p
> log πj + hj log

p

1− p

=⇒ log πip
hi(1− p)k−hi > log πjp

hj(1− p)k−hj

=⇒ log πiε
hi
i (1− εi)k−hi > log πjε

hj
j (1− εj)k−hj .
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Case 2 : Let hj ≥ kp > hi =⇒ εi = hi/k and εj = p. Then, following along the

same lines as above, we have

log πip
hi(1− p)k−hi > log πjp

hj(1− p)k−hj

=⇒ log πi

(
hi
k

)hi (
1− hi

k

)k−hi
> log πjp

hj(1− p)k−hj

=⇒ log πiε
hi
i (1− εi)k−hi > log πjε

hj
j (1− εj)k−hj

where the second statement follows from (5.6) in Lemma V.1.

Case 3 : Let kp > hj > hi, which implies εi = hi/k and εj = hj/k. Defining

g1(h) = log[(h/k)h(1− h/k)k−h] and g2(h) = log ph(1− p)k−h, we have,

dg1

dh
= log

h/k

1− h
k

<
dg2

dh
= log

p

1− p
< 0,

when h < kp. This implies that g1(h) has a larger slope than g2(h) when h ∈ [0, kp),

and hence

log (εi)
hi (1− εi)k−hi − log (εj)

hj (1− εj)k−hj

> log phi(1− p)k−hi − log phj(1− p)k−hj

= (hj − hi) log
1− p
p

> log
πj
πi

=⇒ log πiε
hi
i (1− εi)k−hi > log πjε

hj
j (1− εj)k−hj ,

thus proving the converse of (C.2b). The forward direction can be proved using the

converse result in the same way as it is done for (C.2a).
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Miscellanies

GBS as a special case

In the noise-free case with uniform prior on the objects (i.e., πi = 1/M , ∀i), the

rank-based greedy strategy in (5.5) reduces to GBS (Dasgupta, 2004; Nowak , 2008).

This can be shown by noting that in the noise-free case, the likelihood values are

binary with Pr(zA|Xi = 1) = 1 for all those objects whose true responses to queries

in A are equal to the observed responses zA, and 0 otherwise.

Given the responses zA to queries in A, let M(zA) be defined as follows,

M(zA) =
M∑
i=1

I{Pr(zA|Xi = 1) = 1}.

Then, the worst case rank of all those objects with a likelihood value equal to 1 is

given by M(zA), and that of the remaining objects is given by M .

Under a uniform prior, the greedy query selection criterion in (5.5) then reduces

to

j∗ = arg min
j /∈A

1

M

∑
z=0,1

M(zA∪z)∑
i=1

M(zA ∪ z)

= arg min
j /∈A

1

M

[
M2(zA ∪ 0) +M2(zA ∪ 1)

]
,

where M(zA ∪ 0) + M(zA ∪ 1) = M(zA), and zA ∪ z corresponds to the observed

responses to queries in A∪j. The solution to this constrained optimization problem is

to choose a query that most evenly divides the M(zA) objects, which is the standard

splitting algorithm or GBS.
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Details of networks generated for experiments

We will now briefly describe how the bipartite networks used in the experiments

in Chapters V and VI were generated.

• Random Networks : The Erdös-Rényi random networks were generated using

an edge density value (p) between 0.02 and 0.2, where p corresponds to the

probability that a particular object and query are connected. The Preferential

Attachment random network model consists of two parameters, α and ν, where

α corresponds to the probability with which an edge is generated uniformly

at random, and ν corresponds to the maximum edge degree of the objects in

the bipartite diagnosis graph. For more details, refer to Guillaume and Latapy

(2004). In the networks we generated, we used α values in the range of [0.1, 0.3]

and ν was chosen to be less than 10% of the maximum possible edge degree.

• Computer Networks : The computer networks used in this paper were generated

in a two-stage process consisting of (1) network topology generation and (2)

probe set selection. In the first stage, network topologies were created using

the BRITE (Medina et al., 2001) and the INET 3.0 (Winick and Jamin, 2002)

generators, which simulate an internet like topology at the Autonomous Sys-

tems (AS) level. More specifically, the BRITE networks were generated using

the AS Waxman model under default parameters, where the plane dimensions

were scaled based on the number of components. The INET network was also

generated using an AS model with default parameters.

Given this network topology, a random set of K network components were

chosen to be designated as probe stations. Probes were then generated by com-

puting the shortest path from each probe station to every component. This set

is then decreased in size using a greedy process known as Subtractive search

(Brodie et al., 2001), where the probes were selected passively such that the
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resulting probe set guarantees single fault diagnosis. Once this set has been

created, additional probes were added greedily to allow for multiple fault di-

agnosis. In the INET network we generated, Subtractive search was slow, and

hence the probes were selected based on greedy covering.

140



APPENDIX D

Appendix for Multi Fault Diagnosis

Proof of Proposition VI.1

We will show that the estimates for the area above the ROC curve, Alr(zA),

Al(zA) and Aur(zA) in (6.4) can be equivalently expressed as

Alr(zA) =
1

2
+

U(zA) + V(zA)

2W(zA)

Al(zA) =
1

2
+

U(zA)

2W(zA)

Aur(zA) =
1

2
+

U(zA)−V(zA)

2W(zA)

where

U(zA) =
M∑
i=1

(2i−M − 1) Pr(Xr(i) = 1|zA) (D.1a)

V(zA) =
M∑
i=1

Pr(Xi = 1|zA) Pr(Xi = 0|zA) (D.1b)

W(zA) =
M∑
i=1

Pr(Xi = 1|zA)
M∑
i=1

Pr(Xi = 0|zA).
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The result in Proposition VI.1 will then follow by observing that under a single fault

assumption, W(zA) = M − 1.

To prove the above equivalences, we will first show this result for Aur(zA), and

the other two results follow by observing that

Alr(zA) = Aur(zA) +
V(zA)

W(zA)

Al(zA) = Aur(zA) +
V(zA)

2W(zA)
.

We will now show the equivalence result for Aur(zA). Let N(zA) :=
∑M−1

i=1

∑M
j=i+1

Pr(Xr(i) = 0|zA) Pr(Xr(j) = 1|zA) denote its numerator. Then, the result follows by

observing that

M∑
i=1

Pr(Xi = 0|zA)
M∑
i=1

Pr(Xi = 1|zA)

=
M∑
i=1

Pr(Xr(i) = 0|zA)
M∑
i=1

Pr(Xr(i) = 1|zA)

= N(zA) +
M∑
i=1

Pr(Xr(i) = 0|zA)
i∑

j=1

Pr(Xr(j) = 1|zA)

= N(zA) +
M∑
i=1

Pr(Xr(i) = 0|zA) Pr(Xr(i) = 1|zA)

+
M∑
i=2

i−1∑
j=1

Pr(Xr(i) = 0|zA) Pr(Xr(j) = 1|zA), (D.2)

where the last term in the above expression can be expressed in terms of N(zA) using
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the relation Pr(Xr(i) = 0|zA) = 1− Pr(Xr(i) = 1|zA),

M∑
i=2

i−1∑
j=1

Pr(Xr(i) = 0|zA) Pr(Xr(j) = 1|zA)

=
M∑
i=2

i−1∑
j=1

[
1− Pr(Xr(i) = 1|zA)− Pr(Xr(j) = 0|zA)

+ Pr(Xr(i) = 1|zA) Pr(Xr(j) = 0|zA)

]

=
M∑
i=2

i−1∑
j=1

[
− Pr(Xr(i) = 1|zA) + Pr(Xr(j) = 1|zA)

+ Pr(Xr(i) = 1|zA) Pr(Xr(j) = 0|zA)

]

=
M∑
i=2

−(i− 1) Pr(Xr(i) = 1|zA) +
M−1∑
i=1

(M − i) Pr(Xr(i) = 1|zA)

+
M∑
i=2

i−1∑
j=1

Pr(Xr(i) = 1|zA) Pr(Xr(j) = 0|zA)

=
M∑
i=1

(M − 2i+ 1) Pr(Xr(i) = 1|zA)

+
M−1∑
j=1

M∑
i=j+1

Pr(Xr(j) = 0|zA) Pr(Xr(i) = 1|zA)

=
M∑
i=1

(M − 2i+ 1) Pr(Xr(i) = 1|zA) + N(zA).
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Finally, substituting the above relation in (D.2), we get

M∑
i=1

Pr(Xi = 0|zA)
M∑
i=1

Pr(Xi = 1|zA)

= 2N(zA) +
M∑
i=1

Pr(Xr(i) = 0|zA) Pr(Xr(i) = 1|zA)

+
M∑
i=1

(M − 2i+ 1) Pr(Xr(i) = 1|zA)

= 2N(zA) +
M∑
i=1

Pr(Xi = 0|zA) Pr(Xi = 1|zA)

+
M∑
i=1

(M − 2i+ 1) Pr(Xr(i) = 1|zA)

from which, the result follows.

Proof of Theorem VI.2

Since A(zA) = 1 − A(zA), the result in Theorem VI.2 follows by showing that

∀A′ ⊆ A

Alr(ZA) ≤ Alr(ZA′) and Al(ZA) ≤ Al(ZA′)

Let zA denote the responses to queries in the set A. To prove adaptive monotonic-

ity for Alr(ZA), it suffices to show that for any query j /∈ A, Alr(zA)−EZj [Alr(zA ∪

Zj)] ≥ 0 Golovin and Krause (2010). Similarly, for Al(ZA), we need to show that

Al(zA)− EZj [Al(zA ∪ Zj)] ≥ 0.

Under single fault assumption, we have

Alr(zA) =
1

2
+

U(zA) + V(zA)

2(M − 1)
, and

Al(zA) =
1

2
+

U(zA)

2(M − 1)
,
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where U(zA) and V(zA) are as defined in (D.1a) and (D.1b), respectively. Hence,

the adaptive monotonicity of Alr(zA) and Al(zA) follows by showing that ∀j /∈ A

U(zA)− EZj [U(zA ∪ Zj)] ≥ 0, and

V(zA)− EZj [V(zA ∪ Zj)] ≥ 0,

which follow from Lemma D.1 and D.2, below.

Lemma D.1. Let zA denote the observed responses to queries in the set A. Then,

for any query j /∈ A,

U(zA)− EZj [U(zA ∪ Zj)] ≥ 0

Proof. Under single fault assumption, U(zA) = −(M+1)+
∑M

i=1 2iPr(Xr(i) = 1|zA).

Hence, the result follows by showing that ∀ j /∈ A,

M∑
i=1

i

{
Pr(Xr(i) = 1|zA)−

[
Pr(Zj = 0|zA) Pr(Xr0(i) = 1|zA, 0)

+ Pr(Zj = 1|zA) Pr(Xr1(i) = 1|zA, 1)

]}
≥ 0. (D.3)

As mentioned earlier, the rank order depends on the queries chosen A and their

observed responses zA. Hence, to differentiate the rank orders in the above expression,

we use r(i) to denote the rank order of the objects based on the observed responses

zA, and r0(i), r1(i) to denote the rank order of the objects based on the observed

responses zA ∪ 0 and zA ∪ 1 to queries in A ∪ {j}.
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Note that (D.3) is equivalent to showing

M∑
i=1

(M − i+ 1)

{[
Pr(Zj = 0|zA) Pr(Xr0(i) = 1|zA, 0)

+ Pr(Zj = 1|zA) Pr(Xr1(i) = 1|zA, 1)

]
− Pr(Xr(i) = 1|zA)

}
≥ 0. (D.4)

Let ft(r, zA) :=
∑t

i=1 Pr(Xr(i) = 1|zA), i.e., the probability mass of the top t objects

in the ranked list given by r. Then,

M∑
i=1

(M − i+ 1) Pr(Xr(i)|zA) =
M∑
t=1

ft(r, zA),

and hence (D.4) is equivalent to showing

M∑
t=1

[
Pr(Zj = 0|zA)ft(r0, zA ∪ 0) + Pr(Zj = 1|zA)ft(r1, zA ∪ 1)

]
− ft(r, zA) ≥ 0.

Now, note that

ft(r0, zA ∪ 0) ≥ ft(r, zA ∪ 0) =
t∑
i=1

Pr(Xr(i) = 1|zA, 0).

Since the rank order r0 corresponds to the decreasing order of the posterior probabil-

ities in {Pr(Xi = 1|zA, 0)}Mi=1, the probability mass of the top t objects in this ranked
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list is greater than any other t objects. Similarly, ft(r1, zA∪1) ≥ ft(r, zA∪1). Hence,

Pr(Zj = 0|zA)ft(r0, zA ∪ 0) + Pr(Zj = 1|zA)ft(r1, zA ∪ 1) (D.5a)

≥ Pr(Zj = 0|zA)ft(r, zA ∪ 0) + Pr(Zj = 1|zA)ft(r, zA ∪ 1) (D.5b)

=
t∑
i=1

[
Pr(Zj = 0|zA) Pr(Xr(i) = 1|zA, 0)

+ Pr(Zj = 1|zA) Pr(Xr(i) = 1|zA, 1)

]
(D.5c)

=
t∑
i=1

[
Pr(Zj = 0|Xr(i) = 1) Pr(Xr(i) = 1|zA)

+ Pr(Zj = 1|Xr(i) = 1) Pr(Xr(i) = 1|zA)

]
(D.5d)

=
t∑
i=1

Pr(Xr(i) = 1|zA) = ft(r, zA). (D.5e)

Thus proving the inequality.

Note that in the above equation, (D.5d) follows from (D.5c) by observing that

under a single fault assumption, Xi = 1⇐⇒ X = Ii, and hence, using the conditional

independence assumption of Section 2, the posterior probability can be expressed as

Pr(Xi = 1|zA, z) = Pr(X = Ii|zA, z)

=
Pr(X = Ii) Pr(zA|X = Ii) Pr(Zj = z|X = Ii)

Pr(Zj = z|zA) Pr(ZA = zA)

=
Pr(X = Ii|zA) Pr(Zj = z|X = Ii)

Pr(Zj = z|zA)

=
Pr(Xi = 1|zA) Pr(Zj = z|Xi = 1)

Pr(Zj = z|zA)
. (D.6)

Lemma D.2. Let zA denote the observed responses to queries in the set A. Then,
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for any query j /∈ A,

V(zA)− EZj [V(zA ∪ Zj)] ≥ 0

Proof. Note that under single fault assumption, V(zA) = 1 −
∑M

i=1 Pr2(Xi = 1|zA).

Hence, we need to show that ∀ j /∈ A,

M∑
i=1

{[
Pr(Zj = 0|zA)

2

Pr(Xi = 1|zA, 0) + Pr(Zj = 1|zA)
2

Pr(Xi = 1|zA, 1)

]

−
2

Pr(Xi = 1|zA)

}
≥ 0. (D.7)

Substituting the expression for posterior probability from (D.6) in the LHS of (D.7),

we get

M∑
i=1

{
2

Pr(Xi = 1|zA)

[
Pr2(Zj = 0|Xi = 1)

Pr(Zj = 0|zA)
+

Pr2(Zj = 1|Xi = 1)

Pr(Zj = 1|zA)
− 1

]}

=
M∑
i=1

{
2

Pr(Xi = 1|zA)

[(
1− Pr(Zj = 1|Xi = 1)

)2

Pr(Zj = 0|zA)
+

Pr2(Zj = 1|Xi = 1)

Pr(Zj = 1|zA)
− 1

]}
,

=
M∑
i=1

{
2

Pr(Xi = 1|zA)

[(Pr(Zj = 1|Xi = 1)− Pr(Zj = 1|zA)

)2

Pr(Zj = 1|zA) Pr(Zj = 0|zA)

]}

≥ 0

where the last equality follows by using the relation Pr(Zj = 0|zA) = 1 − Pr(Zj =

1|zA), and completing the square.
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Proof of Proposition VI.3

The entropy-based query selection criterion is given by

j∗ = arg min
j /∈A

∑
z=0,1

Pr(Zj = z|zA)H(X|zA, z). (D.8)

Since, under a single fault assumption, Xi = 1⇐⇒ X = Ii, we need to show that the

above query selection criterion reduces to

j∗ := arg min
j /∈A

M∑
i=1

Pr(X = Ii|zA)H
(

Pr(Zj = 0|X = Ii)
)
−H

(
Pr(Zj = 0|zA)

)
.

We show this by first noting that under a single fault assumption, the conditional

entropy reduces to

H(X|zA, z) = −
M∑
i=1

Pr(X = Ii|zA, z) log Pr(X = Ii|zA, z).

In addition, as noted in (D.6), under the conditional independence assumption of

Section 2, the posterior probability can be expressed as

Pr(X = Ii|zA, z) =
Pr(X = Ii|zA) Pr(Zj = z|X = Ii)

Pr(Zj = z|zA)
. (D.9)

Substituting the above expression in (D.8), we get

∑
z=0,1

Pr(Zj = z|zA)H(X|ZA, z)

= −
∑
z=0,1

M∑
i=1

[
Pr(Zj = z|zA) Pr(X = Ii|zA, z)

log
Pr(X = Ii|zA) Pr(Zj = z|X = Ii)

Pr(Zj = z|zA)

]
. (D.10)

149



This expression can be broken down into 3 different terms. The first term is given by

−
∑
z=0,1

M∑
i=1

[
Pr(Zj = z|zA) Pr(X = Ii|zA, z) log Pr(X = Ii|zA)

]

= −
M∑
i=1

[
Pr(X = Ii|zA) log Pr(X = Ii|zA)

∑
z=0,1

Pr(Zj = z|X = Ii)

]

= H(X|zA),

where the second equality follows from (D.9) and the last equality follows since∑
z Pr(Zj = z|X = Ii) = 1.

The second term is given by

−
∑
z=0,1

M∑
i=1

[
Pr(Zj = z|zA) Pr(X = Ii|zA, z) log

1

Pr(Zj = z|zA)

]

= −
∑
z=0,1

[
Pr(Zj = z|zA) log

1

Pr(Zj = z|zA)

M∑
i=1

Pr(X = Ii|zA, z)

]

= −H
(

Pr(Zj = 0|zA)
)
,

where the last equality follows since
∑M

i=1 Pr(X = Ii|zA, z) = 1.

The last term is given by

−
∑
z=0,1

M∑
i=1

[
Pr(Zj = z|zA) Pr(X = Ii|zA, z) log Pr(Zj = z|X = Ii)

]

= −
M∑
i=1

[
Pr(X = Ii|zA)

( ∑
z=0,1

Pr(Zj = z|X = Ii) log Pr(Zj = z|X = Ii)

)]

=
M∑
i=1

Pr(X = Ii|zA)H
(

Pr(Zj = 0|X = Ii)
)
.
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X1 X2 X3 X4 X5

true state xi 0 0 1 0 0
Pr(Xi = 1|zA) 0.3 0.35 0.2 0.05 0.1

Ranked list X2 X1 X3 X5 X4
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Figure D.1: Demonstrates the ROC curve corresponding to a ranked list of objects,
when there is only one object in state 1

Substituting these 3 terms back into (D.10), we get

∑
z=0,1

Pr(Zj = z|zA)H(X|ZA, z) = H(X|zA)−H
(

Pr(Zj = 0|zA)
)

+
M∑
i=1

Pr(X = Ii|zA)H
(

Pr(Zj = 0|X = Ii)
)
,

and the result follows since H(X|zA) does not depend on the query j.

Miscellanies

Expected rank criterion as a special case

We will now show that the rank-based active query selection criterion proposed

in Chapter V is a special case of the AUC-based criterion proposed in Chapter VI.
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We begin by noting that in the special case when there is only one fault, the

ROC curve corresponding to the rank-based estimators reduces to a step function.

In particular, note that the miss rate of an estimator can only take two values in

this case, either 0 or 1, as there is only one object whose true state is equal to 1.

Hence, the ROC curve corresponding to a ranked list of objects is a step function,

where the step corresponds to the location of the faulty object (object with state 1)

in the ranked list, as demonstrated by the toy example in Figure D.1. Thus, in this

scenario, maximizing the area under the ROC curve (or, minimizing the area above

the ROC curve) corresponding to a ranked list of objects is equivalent to minimizing

the rank of the faulty object.

In fact, note from (6.7b) that in a single fault scenario, the estimate of the area

above the ROC curve using a linear approximation corresponds to the expected rank

of the faulty object in the ranked list. Hence, as we show below, the expected worst

case rank criterion proposed in Chapter V is an upper bound on the AUC criterion.

Al(zA) =
1

M − 1

M∑
i=1

i · Pr(Xr(i) = 1|zA)

=
1

M − 1

M∑
i=1

r(i) · Pr(Xi = 1|zA)

≤ 1

M − 1

M∑
i=1

rwc(i|zA) · Pr(Xi = 1|zA).

Choice of upper rectangles

As mentioned in the paper, query selection based on AUC approximated using

the upper rectangles performs better than the other two. We will now provide an

intuitive explanation for this phenomenon.

Using the result in Proposition VI.1, and noting that Pr(Xi = 0|zA) = 1−Pr(Xi =
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1|zA), we can re-write the expressions for the area above the ROC curve in (6.7) as

Alr(zA) =

M∑
i=1

2iPr(Xr(i) = 1|zA)−
2

Pr(Xi = 1|zA)

2(M − 1)
+ cl,

Al(zA) =

M∑
i=1

2iPr(Xr(i) = 1|zA)

2(M − 1)
+ cm,

Aur(zA) =

M∑
i=1

2iPr(Xr(i) = 1|zA) +
2

Pr(Xi = 1|zA)

2(M − 1)
+ cu,

where cl, cm and cu are constants that do not contribute to query selection.

Now note that all three approximations have the same first term, which corre-

sponds to the expected rank of the faults in the ranked list. However, they differ with

respect to the second term, which makes the crucial difference in terms of the query

selected. More specifically, given two or more queries with the the same expected

rank value (i.e., same value for the first term), query selected using Aur(zA) chooses

the one that most evenly distributes the posterior probability mass of 1 among all

the objects, while query selected using Alr(zA) chooses the one that assigns most of

the probability mass to one object, and the query selected using Al(zA) just picks

one at random. Hence, the queries selected using Alr(zA) and Al(zA) are more prone

to increasing the posterior fault probability of one (or few) object(s), thereby creat-

ing a bias towards those objects in the queries selected there after. However, this is

overcome by the AUC-based query selection criterion approximated using the upper

rectangles.
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Control, 8 (4), 423–429.

Campbell, L. L. (1966), Definition of entropy by means of a coding problem,
Z.Wahrscheinlichkeitstheorie und verwandte Gebiete, 6, 113–118.

Chakaravarthy, V. T., V. Pandit, S. Roy, P. Awasthi, and M. Mohania (2007), De-
cision Trees for Entity Identification: Approximation algorithms and hardness re-
sults, Proceedings of the ACM SIGMOD Symposium on Principles of Database
Systems.

Chakaravarthy, V. T., V. Pandit, S. Roy, and Y. Sabharwal (2009), Approximating
Decision trees with multiway branches, ICALP, pp. 210–221.

Chen, L., and P. Pu (2004), Survey of preference elicitation methods, Tech. Rep.
IC/200467, Swiss Federal Institute of Technology in Lausanne(EPFL).

Cheng, L., X. Qui, L. Meng, Y. Qiao, and R. Boutaba (2010), Efficient active probing
for fault diagnosis in large scale and noisy networks, IEEE INFOCOM.

Cicalese, F., T. Jacobs, E. Laber, and M. Molinaro (2010), On greedy algorithms for
decision trees, In Proceedings of ISAAC.

Cortes, C., and M. Mohri (2003), AUC optimization vs. error rate minimization,
Advances in Neural Information Processing Systems (NIPS) 15.

Cover, T. M., and J. A. Thomas (1991), Elements of Information Theory, John Wiley.

Culver, M., K. Deng, and S. Scott (2006), Active learning to maximize area under
the ROC curve, Proceedings of the 6th International Conference on Data Mining.

Dasgupta, S. (2004), Analysis of a greedy active learning strategy, Advances in Neural
Information Processing Systems.

Dasgupta, S. (2006), Coarse sample complexity bounds for active learning, Advances
in Neural Information Processing Systems.

Du, D.-Z., and F. K. Hwang (2000), Combinatorial Group Testing and its Applica-
tions, World Scientific.

156



Fano, R. M. (1961), Transmission of Information, MIT Press.

Ferri, C., P. Flach, and J. Hernández-Orallo (2002), Learning decision trees using the
area under the ROC curve, In Proceedings of International Conference on Machine
Learning.

Garey, M. (1970), Optimal binary decision trees for diagnostic identification problems,
Ph.D. thesis, University of Wisconsin, Madison.

Garey, M. (1972), Optimal binary identification procedures, SIAM Journal on Applied
Mathematics, 23(2), 173–186.

Geman, D., and B. Jedynak (1996), An active testing model for tracking roads in
satellite images, IEEE Transactions on Pattern Analysis and Machine Intelligence,
18 (1), 1–14.

Goldman, S. A., M. J. Kearns, and R. E. Schapire (1990), Exact identification of
circuits using fixed points of amplification functions, Proceedings of the Thirty-
First Annual Symposium on Foundations of Computer Science.

Golovin, D., and A. Krause (2010), Adaptive Submodularity: A new approach to
active learning and stochastic optimization, In Proceedings of International Con-
ference on Learning Theory (COLT).

Golovin, D., D. Ray, and A. Krause (2010), Near-optimal Bayesian active learning
with noisy observations, In Advances in Neural Information Processing Systems
(NIPS) 23.

Guillaume, J., and M. Latapy (2004), Bipartite Graphs as Models of Complex Net-
works, 127-139 pp., Springer.

Gupta, A., R. Krishnaswamy, V. Nagarajan, and R. Ravi (2010), Approximation
algorithms for optimal decision trees and adaptive TSP problems, In Proceedings
of ICALP, LNCS.

Gupta, R. (2001), Quantization strategies for low-power communications, Ph.D. the-
sis, University of Michigan, Ann Arbor.

Hanawal, M. K., and R. Sundaresan (2008), Guessing revisited: A large deviations
approach, Tech. Rep. TR-PME-2008-08, DRDO-IISc Program in Mathematical
Engineering.

Hanneke, S. (2007), Teaching dimension and the complexity of active learning, Pro-
ceedings of the 20th Conference on Learning Theory.

Heckerman, D. (1990), A tractable inference algorithm for diagnosing multiple dis-
eases, In Proceedings of International Conference on Uncertainty in Artificial In-
telligence (UAI), 5, 163 – 171.

157



Hu, T. C., D. J. Kleitman, and J. T. Tamaki (1979), Binary trees optimal under
various criteria, SIAM Journal on Applied Mathematics, 37 (2), 246–256.

Huffman, D. A. (1952), A method for the construction of minimum-redundancy codes,
Proceedings of the Institute of Radio Engineers.

Humblet, P. A. (1981), Generalization of Huffman coding to minimize the probability
of buffer overflow, IEEE Transactions on Information Theory, IT-27 (2), 230–232.

Hyafil, L., and R. Rivest (1976), Constructing optimal binary decision trees is NP-
complete, Information Processing Letters, 5(1), 15–17.

Jaakkola, T. S., and M. I. Jordan (1999), Variational methods and the QMR-DT
databases, Journal of Artificial Intelligence Research, 10, 291–322.

Jackson, J., E. Shamir, and C. Shwartzman (1997), Learning with queries corrupted
by classification noise, Proceedings of the Fifth Israel Symposium on the Theory of
Computing Systems, pp. 45–53.

Johnson, R., J. Huber, and L. Bacon (2003), Adaptive Choice based Conjoint Anal-
ysis, Sawtooth Software Conference Proceedings.

Johnson, R. M. (1987), Adaptive Conjoint Analysis, Sawtooth Software Conference
Proceedings, pp. 253–265.
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