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Summary 
Objective: Although many cancer patients 
experience multiple concurrent symptoms, 
most studies have either focused on the 
analysis of single symptoms, or have used 
methods such as factor analysis that make a 
priori assumptions about how the data is 
structured. This article addresses both limi-
tations by first visually exploring the data to 
identify patterns in the co-occurrence of 
multiple symptoms, and then using those 
 insights to select and develop quantitative 
measures to analyze and validate the results. 
Methods:   We used networks to visualize 
how 665 cancer patients reported 18 symp-
toms, and then quantitatively analyzed the 
observed patterns using degree of symptom 
overlap between patients, degree of symptom 
clustering using network modularity, cluster-
ing of symptoms based on agglomerative 
hierarchical clustering, and degree of nested-
ness of the symptoms based on the most fre-
quently co-occurring symptoms for different 
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sizes of symptom sets. These results were vali-
dated by assessing the statistical significance 
of the quantitative measures through com-
parison with random networks of the same 
size and distribution. 
Results: The cancer symptoms tended to co-
occur in a nested structure, where there was a 
small set of symptoms that co-occurred in 
many patients, and progressively larger sets 
of symptoms that co-occurred among a few 
patients.  
Conclusions: These results suggest that can -
cer symptoms co-occur in a nested pattern as 
opposed to distinct clusters, thereby demon-
strating the value of exploratory network 
 analyses to reveal complex relationships be-
tween patients and symptoms. The research 
also extends methods for exploring symptom 
co-occurrence, including methods for quanti -
fying the degree of symptom overlap and for 
examining nested co-occurrence in co-occur-
rence data. Finally, the analysis also sug-
gested implications for the design of systems 
that assist in symptom assessment and man-
agement. The main limitation of the study was 
that only one dataset was considered, and 
 future studies should attempt to replicate the 
results in new data.  
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1.  Introduction 
Although cancer patients experience on 
average between 11 and 13 symptoms [1], 
most research has focused on the etiology, 
progression, and treatment of single symp-
toms. Furthermore, because of the additive 
impact of multiple symptoms, patients 
with many co-occurring symptoms gen-
erally fare worse than those who have only a 
few [2–8]. Understanding how symptoms 
co-occur in patients can therefore lead to 
more efficient assessment and manage-
ment of symptoms, and significantly im-
prove the overall function and quality of 
life for cancer patients [9]. 

To address this need, recent research has 
used data reduction methods such as factor 
analysis [10] and hierarchical clustering 
[10] to identify symptom clusters in differ-
ent granularities of data. For example, hier-
archical cluster analysis was used to identify 
a cluster of five symptoms (e.g., hot flashes) 
in menopausal women with breast cancer 
[11], and factor analysis was used to iden -
tify three clusters of symptoms across pa-
tients of all types of cancer [12]. While 
these early studies have made important in-
roads into identifying symptom clusters, 
researchers have admitted that such meth-
ods produce results that are inherently un-
verifiable [11]. For example, there is no 
commonly accepted method to select cut-
off points in a dendrogram (generated by 
hierarchical clustering [10]) to identify dis-
joint clusters. More importantly, these 
methods are based on a priori assumptions 
about the existence of disjoint symptom 
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clusters, potentially masking more com-
plex relationships in the data. 

Inspired by the importance of symptom 
cluster research, but concerned about the a 
priori assumptions in current methods about 
the structure of clusters in the data, we used a 
network layout algorithm to first visualize the 
complex relationship between cancer pa-
tients and symptoms. This approach enabled 
us to visually inspect the data, with minimal 
assumptions about the underlying structure 
of symptom co-occurrence in the data. For 
example, networks enable the identification 
of multiple structures (e.g., hierarchical, dis-
joint, overlapping, nested) in a single repre-
sentation, and therefore can guide the selec-
tion of cluster analysis methods that are de-
signed to analyze only specific types of struc-
tures. Using the visual observations from the 
networks, we therefore selected and devel-
oped the appropriate quantitative methods to 
verify the nature of the co-occurrence. Such a 
multi-method approach helped us to arrive at 
a new understanding of how symptoms co-
occur across cancer patients, with insights 
about the treatment and management of co-
occurring symptoms. 

We begin with an overview of the rel-
evant clinical literature referred to as 
“symptom cluster research”. Next, we pre -
sent how the current literature motivated 
our research question, followed by a de-
scription of the data, and how we used a 
combination of network visualizations and 
quantitative methods to address that re-
search question. The results of the analyses 
were     then   used   to   explore   implications for 
the design of   decision-support  systems and 
methods to understand symptom co-oc-
currence. We conclude with a description of 
our future research in using networks and 
associated quantitative methods to under-
stand patient factors associated with symp-
tom clusters, and their implications for 
symptom management and treatment. 

2.  Background on Symptom 
Co-occurrence 
2.1  Current Research on  
Identifying Symptom Clusters  

The research topic of symptoms clusters 
was first introduced by Dodd et al. [13] to 

bring attention to the fact that although 
many patients experience multiple co-oc-
curring symptoms, most research in symp-
tom management had until then focused 
on the etiology and treatment of single 
symptoms. They proposed the following 
working definition of a symptom cluster: 
“When three or more concurrent symp-
toms (e.g., pain, fatigue, and sleep disturb-
ances, or nausea, vomiting, and poor appe-
tite) are related to each other, they are called 
a symptom cluster” [13]. Since then there 
have been other definitions proposed in-
cluding two or more concurrent symptoms 
[14], but currently there is no resolution on 
the definition of a symptom cluster [1].  

Despite the lack of agreement on the 
definition of a symptom cluster, there has 
been active research in identifying them in 
different patient-symptom databases. Most 
of the symptom cluster research has been in 
cancer [1, 15], although the approach is 
 increasingly being used to analyze non-
cancer conditions such as myocardial in-
farction [16], and fibromyalgia [17]. A re-
cent review of the literature on cancer 
symptom cluster research [1] identified 
two classes of studies: 1) analysis of symp-
tom clusters across all types of cancers 
pooled together, and 2) analysis of symp-
tom clusters in specific cancers such as 
breast cancer. Within each class of studies 
there was considerable variability in the 
number of patients, the instruments used 
to identify symptoms, and the methods 
used. For example, Walsh and Rybicki [18] 
analyzed 922 cancer patients with different 
cancers using a 38-item symptom checklist. 
The data were analyzed using agglomera -
tive hierarchical cluster analysis, which 
helped to identify seven different symptom 
clusters. In contrast, Chen and Tseng [12] 
analyzed 151 cancer patients using the MD 
Anderson Symptom Inventory [19]. The 
data were analyzed using factor analysis 
which helped to identify two symptom 
clusters. Across the studies, the only com-
mon symptom cluster was nausea and 
 vomiting,  with  high  variability in the rest 
of the symptom clusters identified.  

A similar variability in data collection, 
analysis methods and resulting symptom 
clusters occurs in the analysis of specific 
cancers such as breast cancer [11], and lung 
cancer [20]. To date, the research in specific 
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cancer sites has not identified any common 
clusters across studies [1]. Symptom cluster 
research is therefore clearly in its early 
stages, and while there is considerable in-
terest in identifying symptom clusters, 
there is neither consensus on the defini -
tion of symptom clusters, data collection 
methods, analytic approaches, nor result-
ing clusters [21–23].  

2.2  Current Methods Used to 
 Analyze Symptom Co-occurrence  

Although a consensus on definitions and 
data collection methods is crucial for 
symptom cluster research to move forward, 
we focus here only on the methods for 
identifying symptom clusters. As stated by 
two reviews of the symptom cluster litera-
ture [1, 15], researchers have used  two 
main methods to analyze symptom clus -
ters: 1) agglomerative hierarchical cluster-
ing, and 2) factor analysis. The first ap-
proach can be used to either cluster symp-
toms based on how they co-occur across 
patients, or to cluster patients based on how 
they share symptoms. The method entails 
first generating a dendrogram (a hierarchy 
of symptoms or patients) based on how fre-
quently the symptoms co-occur across pa-
tients or how patients are similar based on 
their symptoms. The resulting dendrogram 
is then visually inspected to determine a cut 
through the hierarchy to define disjoint 
clusters. Hierarchical clustering is highly 
dependent on the choice of dissimilarity 
and linkage measures, and the agglomera -
tive nature of the algorithm makes it very 
sensitive to small variations in the data 
[24]. Furthermore, there is no commonly 
accepted method to determine the cut 
through a dendrogram, or whether a cut is 
even appropriate. Given these methodo-
logical issues, other methods (visual or 
quantitative) should be used to confirm the 
findings. 

The second approach that is commonly 
used to identify symptom clusters is factor 
analysis [10]. This method predicts a set of 
latent factors that explain the covariance 
among a set of symptoms. For example, if 
two symptoms frequently co-occur to-
gether across patients, those two symptoms 
will be collapsed into a latent factor, with a 



significance value that denotes the amount 
of the covariance that can be explained by 
that factor. The resulting latent factors 
therefore help to identify the symptom 
clusters. Similar to hierarchical cluster 
analysis, factor analysis is also a data explo-
ration method which can be used for a wide 
range of applications to reduce data. How-
ever, factor analysis used in the above way 
assumes that the underlying data has dis-
joint clusters, and is therefore biased to find 
such types of structures in the data.  

We believe that while both these meth-
ods are powerful, they should be used and 
interpreted carefully so that they do not in-
troduce biases in the analysis of symptom 
clusters. To avoid these problems, we de-
cided to use network visualizations as a way 
to first visually analyze the data to deter-
mine how symptoms might be structured, 
and only then use data reduction methods 
with the appropriate biases to quanti-
tatively analyze the data. Furthermore, be-
cause there is no consensus in the defini-
tion of the term “symptom clusters” (which 
to us inherently suggests non-overlapping 
groups of symptoms), we use the term 
“symptom co-occurrence” to keep open the 
possibility of more complex organizations 
of symptoms than what is currently ex-
pected when using the term “cluster”. For 
example, the symptoms might co-occur 

randomly, or uniformly across patients, 
both of which are valid co-occurrence pat-
terns but which lack clusters. 

3.  Method 

Based on the above motivations, our re-
search began with the question: How do 
symptoms co-occur across cancer patients? 
To address this research question, we made 
critical decisions regarding data selection 
and data analysis as discussed below. 

3.1  Data Selection 

We conducted a secondary analysis on data 
collected in a published study on cancer 
symptom management [25]. The data con-
sisted of 671 cancer patients who were 21 
years of age or older, had a solid tumor 
cancer or non-Hodgkins lymphoma, were 
undergoing chemotherapy, and spoke and 
read English. The patients reported 18 
symptoms using the M.D. Anderson Symp-
tom Inventory [19] which measures symp-
tom severity ranging from zero (not pres-
ent) to ten (worst imaginable), with symp-
tom management advice given to patients 
whose symptom severity was greater or 
equal to four on any given symptom. Six 

patients did not report any symptom sever-
ity values and therefore were dropped from 
the analysis, resulting in a total of 665 pa-
tients. The patients varied on a number of 
disease and demographic variables includ-
ing type and stage of cancer, sex and age 
(see �Table 1 for descriptive statistics of 
the dataset). Similar to several studies [12], 
the focus of our study was to analyze how 
symptoms co-occurred across all 665 pa-
tients at baseline (i.e., prior to any inter -
ventions) and to use insights from that 
analysis for partitioning of the data based 
on cancer type and symptom severity. 

3.2  Data Analysis 

Our analysis consisted of two steps: 1) ex-
ploratory visual analysis using network 
 visualizations, and 2) quantitative analysis 
of visual patterns by selecting appropriate 
existing methods, and developing new ones 
when the existing methods did not suffice. 
The results of these analyses were validated 
by assessing the statistical significance of 
the quantitative measures through com-
parison with random permutations of the 
networks of the same size and distribution. 
The overall methodology is therefore to 
visually inspect the data to determine the 
nature of the symptom co-occurrence, be-
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Table 1 Patient demographics 

Cancer type Number of patients  
(percentage of total  
patients (rounded)) 

Sex Cancer Stage 

Male Female Early Late Missing 
Data 

Breast 231 (35%)   0 231 53 176 2 

Lung (non-small) 112 (17%)  58  54 13  99 0 

Colon  79 (12%)  26  53  9  70 0 

GU   51 (8%)  44   7  2  49 0 

Gynecological  47 (7%)   0  47  6  41 0 

Non-Hodgkins   38 (6%)  19  19  6  31 1 

Gastrointestinal  32 (5%)  21  11  0  30 2 

Lung (small cell)  27 (4%)   5  22  0  27 0 

Pancreas   21 (3%)  14   7  2  19 0 

Other   19 (3%)  11   8  2  16 1 

Mesothelioma   8 (1%)   4   4  2   6 0 

Total 665 (100%) 202 463 95 564 6 

Age 

<36 

11 

 1 

 5 

 2 

 2 

 2 

 0 

 0 

 0 

 0 

 0 

23 

36–70 

206 

 87 

 64 

 32 

 39 

 26 

 29 

 20 

 15 

 18 

  8 

544 

>70 

14 

24 

9 

17 

 6 

10 

 3 

 7 

 6 

 1 

 0 

97 

Missing 
Data 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

1



fore selecting quantitative methods to ana-
lyze the observed patterns. 

3.2.1  Exploratory Visual Analysis  

Networks are increasingly being used to 
analyze a wide range of phenomena, such 
as how diseases relate to genes [26], how 
diseases spread through a social network 
[27], and how information is scattered 
across web pages [28]. A network is a col-
lection of nodes joined in pairs by edges; 
nodes represent one or more types of en-
tities (e.g., patients or symptoms), and 
edges connecting pairs of nodes represent a 
specific relationship between the entities 
(e.g., a patient has reported a symptom). 
�Figure 1a shows a sample bipartite net-
work (where there are two classes of nodes, 
and edges exist only between different 
classes of nodes) of patients and their 
symptoms. 

As shown in �Figure 1a, the sample bi-
partite network visually represents the ex-
plicit relationships between the six patients 
and eight symptoms. In this network, the 
black nodes represent patients, the white 
nodes represent symptoms, and the size of 
a node is proportional to its degree 
(number of edges that connect to that 
node). For example, Fatigue is the most 
commonly occurring symptom with six 
edges each connected to a patient. In 
contrast,  Dry Mouth is less common with 
only three edges, and located off-center 
close to the patients to which it is con-
nected. 

Network layout algorithms have two ad-
vantages for analyzing complex relation-

ships. 1) They do not require a priori as-
sumptions about the structure of clusters 
within the data, such as the hierarchical as-
sumption of hierarchical clustering, or sub-
space model of factor analysis. Instead, by 
using a simple pairwise representation of 
nodes and edges, network layouts enable the 
identification of multiple structures (e.g., 
hierarchical, disjoint, overlapping, nested) 
in a single representation [29]. 2) They can 
be visualized and analyzed using a set of net-
work algorithms to reveal global regularities 
in the data. For example, �Figure 1a shows 
how a force-directed layout algorithm [30] 
helps to visualize the relationship between 
patients and symptoms. The algorithm pulls 
together nodes that are tightly connected to 
each other, and pushes apart nodes that are 
not. As shown, the result is that patients that 
have similar symptoms (e.g., P1, P2, and P3 
in �Fig. 1a) are placed close to each other, 
and close to their symptoms (e.g., Fever). 
The layouts were created using Pajek [31] 
(version 1.24). While this layout depends on 
the force-directed assumption and its imple-
mentation, we view such algorithms as less 
biased for data exploration, because they do 
not impose a particular cluster structure on 
the data. 

Our analysis first considered an un-
weighted network, with edges indicating 
symptom prevalence at any severity (see 
later section on replication that takes sever-
ity into consideration when analyzing the 
network). In addition, nodes were colored 
to represent disease type (e.g., black nodes 
represent breast cancer patients). 

To understand the structure of symp-
tom co-occurrence, we transformed the bi-

partite network using a standard network 
reduction method called a one-mode pro-
jection [26]. As shown in �Figure 1b, all 
patient nodes were removed, an edge was 
placed between two symptoms if they co-
occurred in one or more patients, with a 
number (called the edge weight) denoting 
the frequency of the symptom co-occur-
rence. This network therefore showed the 
frequency with which pairs of symptoms 
co-occurred across patients. 

3.2.2  Quantitative Analysis 

We used two existing (modularity, and 
hierarchical clustering), and two novel (de-
gree of symptom overlap, and co-occur-
rence block diagram) quantitative methods 
to analyze the patterns of symptom co-
 occurrence suggested by the network visu-
alizations. The choice of these methods was 
the direct result of visual patterns observed 
from the bipartite and one-mode networks 
described above.  

Each method computes a numerical 
measure that quantifies some aspect of the 
network, and the significance of this 
measure is determined by comparison to 
random permutations of the networks. 
Comparison to random permutations of an 
observed network is a standard approach in 
network science to test the validity of a 
quantitative pattern identified in the real 
data [26]. Random networks are generated 
by random reassignment of network edges 
while preserving the total number of edges 
and nodes observed in the original network. 
For all methods except modularity (which 
is a measure that incorporates comparison 
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Fig. 1 A sample patient-symptom bipartite network (a) showing patients 
as black nodes, and symptoms as white nodes. The size of a node represents 
the number of edges that are connected to it. Therefore the Fatigue node in 
the center is large because many patients have that symptom. Bipartite net-

works can be reduced to analyze how symptoms co-occur using a method 
called a one-mode projection. (b) Here the nodes represent symptoms, and 
the edges represent one or more times that the connected symptoms co-
occur in a patient. 

a) b) 



to random networks), we calculated a 
p-value as the fraction of times the random 
network’s measure was more extreme 
(larger or smaller, depending on the 
method) than that of the observed network. 
To ensure that our results were not caused 
merely by the prevalence of the symptoms 
(e.g., if two symptoms occur frequently, 
there is a high probability they will also co-
occur), we also preserved symptom degree 
distribution when generating the random 
networks for agglomerative hierarchical 
clustering, and for the block diagram.  

3.2.2.1 Degree of Symptom Overlap 
across Patients  
To quantitatively analyze the observed 
overlap of symptoms across patients, we 
plotted the mean number of patients shar-
ing symptom sets of different sizes. More 
precisely, for each number k ranging from 
one to the total number of symptoms, we 
generated a random k-tuple of symptoms, 
and calculated the number of patients in 
which at least those k symptoms co-occur. 
By averaging over the random choice of 
symptoms, we obtain a smooth curve. We 
then calculated the area under this curve as 
a measure of how many patients on average 
share a progressively increasing number of 
symptoms. Comparison of this area (which 
we call degree of symptom overlap) to ran-
dom networks was done to reveal whether 
the symptom overlap was greater or less 
than what could be expected to occur by 
random chance.  

3.2.2.2 Modularity  
To assess the degree of clustering in the net-
work, we used the RGraph algorithm [32] 
which attempts to partition a bipartite net-
work into clusters (or modules) by opti-
mizing modularity. The modularity of a 
partition is defined as the number of edges 
falling within clusters, minus the expected 
number of such edges in a network of the 
same size with randomly reassigned edges. 
Modularity values range from – 1 to +1, 
where high values (>  0.3) represent signifi-
cantly more edges within clusters com-
pared to random networks of the same size, 
zero represents no difference compared to 
random networks, and negative values rep-
resent fewer edges within clusters com-
pared to random networks.  

As discussed by the authors [32], the 
 algorithm uses simulated annealing to op-
timize modularity, and takes as input a 
cooling factor and an iteration factor. These 
parameters determine tradeoffs between 
accuracy and computational efficiency. The 
values for these parameters were set to 
those suggested by the authors [32] in their 
instructions to use the algorithm, with an 
emphasis on accuracy (cooling factor (c) = 
0.999, iteration factor (f) = 1). 

3.2.2.3 Agglomerative Hierarchical  
Clustering 
We used agglomerative hierarchical clus-
tering to test if the symptoms were nested. 
By nested we mean that given a symptom 
ranking (e.g., from most common to least 
common), they are considered nested if a 
patient that exhibits a particular symptom 
in that list (e.g., the fifth ranked symptom), 
then that patient is highly likely to have all 
symptoms of higher rank (i.e., symptoms 
of rank one, two, three, and four). In addi-
tion, if a patient does not exhibit a particu-
lar symptom (e.g., the fifth ranked symp-
tom), then that patient is highly likely to 
not have symptoms of lower rank (i.e., 
symptoms of rank six, seven, etc.). Intu-
itively, the symptoms are nested if, when-
ever a patient has a symptom, then that 
 patient tends to have all other symptoms 
that are more prevalent in the data. 

To test for nestedness, we used agglom-
erative hierarchical clustering with the 
 Jaccard dissimilarity measure and Ward2 
linkage criteria [10]. The Jaccard dissimi-
larity measure between two symptoms is 
one minus the ratio of the number of pa-
tients experiencing both symptoms to the 
number of patients experiencing either 
symptom [33]. The algorithms starts with 
each symptom as a singleton cluster, and 
recursively merges clusters based on mini-
mum similarity, where dissimilarity is ex-
tended from symptoms to sets of symp-
toms using the linkage.  

The dendrogram is often used to impose 
a clustering by thresholding at a certain 
level. However, there is no clear level at 
which to threshold. Instead, we use the fol-
lowing more systematic approach to assess 
whether the symptom co-occurrence fol-
lows a nested structure. We calculated the 
minimum number of edits it would take to 

transform the dendrogram generated from 
the real data into a perfectly nested dendro-
gram (that is, a dendrogram whose depth is 
one minus the number of symptoms). The 
significance of this measure was deter-
mined by comparison to 1000 random net-
works, where the size and symptom degree 
distribution were preserved. 

3.2.2.4 Co-occurrence Block Diagram 
A limitation of the hierarchical clustering is 
that the agglomerative algorithm does not 
guarantee an optimal solution. This is be-
cause it aggregates sets of symptoms in 
 incremental steps, and therefore the sets 
identified at any level of the dendrogram 
are not necessarily globally optimal. 

Because we wished to understand the 
explicit relationship of how each symptom 
was related to the rest of the symptoms 
based on their co-occurrence across pa-
tients, we developed an exhaustive algo-
rithm to create a block diagram of symp-
tom co-occurrences. The rows in the block 
diagram represent the most frequent co-
occurring symptom sets of different sizes, 
and the columns represent an ordered list 
of symptoms based on the frequency of 
their co-occurrence (explained below). 
This block diagram was generated by the 
following method: 
1. Exhaustively identified all co-occurring 

symptom sets of different sizes. In other 
words we identified all co-occurring 
symptom sets of size one, two, three, … 
maximum number of co-occurring 
symptoms (which was 16). 

2. Selected the most frequent symptom set 
for each set size generated in the above 
step. For example, the most frequent co-
occurring set size of three was Fatigue, 
Insomnia, and Weakness. When there 
were two or more equally frequent sets, 
then a conservative approach was taken 
by selecting the one that least matched 
the symptom members of the last symp-
tom set size. 

3.  Progressively added new symptoms to 
the columns in the block diagram for 
each additional row. For example, the 
most frequently co-occurring set size of 
four was Fatigue, Insomnia, Weakness, 
and Distress. Therefore, Distress was 
added to the fourth column of the block 
diagram. 
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4.  Cells in the block diagram were colored 
black to indicate the symptoms compris-
ing each co-occurring set. For example, 
the most frequent symptom set size of 
seven did not contain Pain, which was 
present in the most frequent set size of 
six. Therefore the respective cell in the 
block diagram was not colored black. To 
understand the role of symptom severity, 
we redid the above analyses with severity 
scores at greater or equal to four. 

 
We used the block diagram to assess whether 
the symptoms co-occurred in a nested struc-
ture. If the pattern from left to right is a uni-
formly descending staircase pattern, then 
the symptoms are perfectly nested. However, 
if there are gaps in the perfectly staircase pat-
tern, then the degree of nestedness is based 
on how many cells are out of place from a 
perfectly nested pattern. In particular, we 
calculated the number of edits needed in the 
block diagram to make it perfectly nested, 
where an edit is defined to be the operation 
of swapping two consecutive boxes on the 
same row. To test the significance of the de-
gree of nestedness, we compared it to the 

same measure generated from 1000 random 
networks of the same size and symptom 
 degree distribution. 

3.2.2.5 Replication of Results in Subsets 
of the Data.  
To test whether the overall results changed if 
we considered only high symptom severity, 
or cancer type, we replicated two key analyses 
in subsets of the data. This was done by ana-
lyzing modularity and nestedness on a net-
work which only had symptom severity 
greater or equal to four (the threshold for in-
terventions to occur), and then on three of 
the most frequent cancers: breast (n = 231), 
lung (n = 112), and colon cancer (n = 79). 

4.  Results 

The analysis of the cancer data revealed 
three distinct patterns. For each of the three 
patterns we describe the results of the ex-
ploratory visual analysis, and the results of 
the quantitative analysis including their 
validation. 

4.1  High Overlap of Symptoms 
across Patients  

4.1.1 Visual Analysis  

As shown in �Figure 2, the patients form a 
ring around the 18 symptoms in the center. 
Patients close to the inner set of symptoms 
tend to have many symptoms compared to 
patients in the outer ring. For example, the 
patient P-338 (c) has sixteen symptoms, 
whereas the patient P-138 (d) has only one 
symptom. This network topology where 
there are many high-degree patients (with 
respect to the total number of symptoms) 
in the ring connecting to a small number of 
high-degree symptoms in the center, sug-
gests a high overlap in the number of symp-
toms for most patients (resulting in a gray 
mass of indistinguishable edges). 

4.1.2 Quantitative Analysis  

The above pattern of high overlap was 
quantitatively analyzed by plotting the mean 
number of patients sharing symptom sets of 
different sizes. As shown by the solid curve in 
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Fig. 2 A patient-symptom bipartite network in the top left (where edges 
represent symptom severity at any level) visually shows the high overlap of 
18 symptoms (white nodes) across 665 patients (black nodes). This high over-
lap results in a large cluster of symptoms in the center of the network, and a 
few symptoms that are off-center (shown in more detail in the inset). The size 
of the nodes is proportional to the edges that connect to them. Therefore 
common symptoms have large nodes, whereas rare symptoms have smaller 

nodes. The patients that have many symptoms are closer to the center and 
closer to their symptoms. The above layout was automatically generated by 
the Fruchterman Reingold algorithm [30]. Please see supplementary figure 
S1 for the same network where the patient nodes are colored by each pa-
tient’s type of cancer revealing that there exists no clustering of patients 
based on cancer type. 



�Figure 3, a high proportion of patients 
(80.41%), as measured by the area under the 
curve, share between one and three symp-
toms, and a diminishing number of patients 
share a higher number of symptoms.  

The area under this curve quantifies the 
degree of overlap. The degree of overlap 
(817.67) in the cancer network is signifi-
cantly higher (p <  .01) compared to the 
mean degree of overlap (504.08) of 1000 
random networks of the same size. This re-
sult suggests that the high overlap of symp-
toms in the cancer network is not a random 
occurrence, and therefore is a valid pattern 
of symptom co-occurrence. 

4.2  Absence of Symptom Clusters  

4.2.1 Visual Analysis 

�Figure 2 shows the absence of patient, 
symptom, or patient-symptom clusters. 
Most of the symptoms are clumped in the 
center, and the patients and cancer types 
are evenly distributed around the symp-
toms. This absence of distinct multiple 
clusters of symptoms was unexpected, as 
most of the literature on symptom clusters 
has hypothesized the presence of distinct 
symptom clusters in cancer. Futhermore, 
when we colored the patient nodes by 
cancer type (see �online supplementary 
Figure S1a), there were no patient clusters 
based on cancer type. 

4.2.2 Quantitative Analysis 

To quantitatively confirm the absence of 
symptom clusters, we used the well-known 
network measure called modularity, as im-
plemented by the RGraph algorithm [32]. 
The modularity was extremely low at 0.067, 
indicating that the symptoms exhibit no 
significant clustering. 

4.3  The Nested Structure  
of Symptom Co-occurrence 

4.3.1 Visual Analysis 

As shown in �Figure 2, there is a wide range 
in the degree of the symptoms. There are 15 

commonly-occurring symptoms in the 
center of the network, and three less com-
mon symptoms off-center. For example, Fa-
tigue (b) is the most commonly occurring 
symptom with edges to 602 of the 665 total 
patients. In contrast, Fever (a) is off-center 
with only 64 edges. This pattern of connec-
tions results in a high mean and standard 
deviation in symptom degree (mean = 
287.61, SD = 132.68), with overall low 
modularity or absence of distinct clusters. 

The absence of distinct clusters suggests 
that the symptoms are nested. To further 
probe this observation, we analyzed the 
one-mode projection on symptoms (de-
signed to show how symptoms co-occur). 
�Figure 4 shows the pairwise relationship 
between symptoms, where the edge weight 
between two nodes denotes how many 
times the connected symptoms co-oc-
curred across patients. As shown, the one-
mode projection has a core-periphery 
 topology which suggests a nested structure 
(a specific form of hierarchy). For example, 
Fatigue and Insomnia are in the center of 
the network because they co-occur most 
frequently with each other (442 times). 
However, they co-occur with progressively 
diminishing frequency with symptoms that 
are further and further away from the core 
(e.g., Fatigue co-occurs with Nausea only 
308 times) and very infrequently with 

symptoms at the periphery (e.g., Fatigue 
co-occurs with Fever only 63 times).  

4.3.2 Quantitative Analysis 

The above nested structure of symptoms 
was first quantitatively analyzed using hier-
archical clustering. As shown in �Figure 5, 
the depth of the resulting dendrogram is 
nine. Furthermore, although we could select 
an arbitrary cut-off point to identify disjoint 
clusters, there is actually no natural break in 
the dendrogram to reliably determine such 
clusters. This confirms the results of our ear-
lier modularity analysis which found that 
there appears to be an absence of distinct 
symptom clusters in the data. In addition, 
the number of edits needed to transform the 
actual dendrogram to a perfectly nested den-
drogram was eight. 

The above tree depth and number of 
edits for the network were compared 
against dendrograms generated from 1000 
random networks of the same size and 
symptom degree distribution. The mean 
tree depth of the random networks was six, 
and the mean number of edits to transform 
the random networks to perfectly nested 
networks was 11. The results revealed a low 
probability (p <  0.001) of the nested struc-
ture of cancer symptoms occurring by 
chance.  
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Fig. 3 The mean number of patients who share different numbers of symptoms shows that many pa-
tients share between one and three symptoms, and a decreasing number of patients share more than 
three symptoms. The area under the curve is significantly different from the same curve generated from 
1000 random networks of the same size (shown with 95% confidence intervals). 

a Supplementary material is published on our web-
site www.methods-online.com. 



Unfortunately, the one-mode projec-
tion and the hierarchical cluster analysis 
both have inherent limitations in revealing 
the explicit members of the nested struc-
ture: The one-mode projection is limited in 

that it can only show the pairwise associ-
ations and therefore conceals how groups 
of symptoms co-occur; the agglomerative 
nature of the dendrogram conceals globally 
optimal co-occurrence frequencies.  

To address the above limitations, we 
analyzed the symptom co-occurrence data 
using the co-occurrence block diagram. As 
shown in �Figure 6, the block diagram lists 
the most frequently co-occurring symp-
toms, ranging from one to the maximum 
set size of 16 co-occurring symptoms. With 
the exception of set sizes 7, 11, and 14, the 
most frequently occurring symptom sets 
are a proper subset of the next larger set 
size. The degree of nestedness (number of 
edits required for a perfectly nested pat-
tern) = 15, which was significantly less than 
the mean degree of nestedness of 1000 ran-
dom networks that preserved the size and 
symptom degree distribution of the orig-
inal network (mean = 228.4, p <  0.001). 
The analysis therefore explicitly revealed 
the strongly nested nature of symptom co-
occurrence, which was significant.  

4.4  Replication of Results  
in Subsets of the Data 

4.4.1 Partitioning Data  
Based on Symptom Severity 

As described in the Data Selection section, an 
important symptom severity threshold was 
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Fig. 5  
A dendrogram gener-
ated by the agglom-
erative hierarchical 
clustering method 
suggests the nested 
structure of symptom 
co-occurrence.  

Fig. 4  
The one-mode pro-
jection on symptoms 
of the bipartite net-
work (shown in  
Fig. 1) reveals how 
pairs of symptoms 
co-occur across 
 patients. The edge 
thickness is propor-
tional to the number 
of times two symp-
toms co-occur in a 
patient. Highly co-
occurring symptoms 
are pulled together, 
and because of the 
nested structure 
have also been 
pulled to the center.  
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greater than or equal to four, at which level 
tailored symptom management advice was 
given to the patients. We therefore removed 
all edges in the network that were below four, 
and repeated two key quantitative analyses 
on the resulting network: 1) modularity (to 
test if there existed  symptom  clusters),  and 
2) the degree of nestedness using the block 
diagram (to test for nestedness).  

Modularity for the new network (with 
severity greater than or equal to four) was 
extremely low at 0.078. Therefore, similar 
to the network which did not take into con-
sideration symptom severity, there was also 
strong evidence for the absence of symp-
tom clusters when taking into account 
symptom severity. Furthermore, for the 
new network, the degree of nestedness was 
high at 59 edits required to achieve perfect 
nesting, versus a mean of 282.78 edits 
required for 1000 random networks (that 
preserved the size and symptom degree dis-
tribution of the original network) to 
achieve perfect nesting. These results were 
significant (p <  0.001).  

4.4.2 Partitioning Data  
Based on Cancer Type 

As shown in �Table 1, the dataset con-
tained eleven different cancer types. We 
therefore analyzed whether the patterns 
observed in the pooled analysis changed 
when the different cancer types were ana-
lyzed individually. We extracted the three 
most frequent cancer subtypes, namely 
breast (n = 231), lung (n = 112), and colon 
cancer (n = 79), and repeated the analysis of 
modularity and degree of nestedness. As 
shown in �Table 2, there was very low 
modularity for each cancer type, suggesting 
the absence of symptom clusters, and sig-
nificantly high nestedness instead. 

5.  Discussion 

Based on the clinical literature, we expected 
that our analysis would identify distinct 
symptom clusters. Distinct clusters occur 
infrequently in random networks [26] and 
hence their occurrence would have been 
highly indicative of a meaningful under-
lying process. However, we found no such 
clusters. This result was replicated when 

taking into account symptom severity, in 
addition to specific cancer type. Fortu -
nately, our seemingly null results led us to 
probe deeper into the structure of co-oc-
curring symptoms using multiple meth-
ods, starting with visualizations and ana-
lyzing those observations through existing 
and new quantitative methods. This ex-
ploratory process led us to the conclusion 
that symptoms co-occur in a nested pattern 
rather than in distinct clusters. Further -

more, the comparison of the results with 
equivalent random networks led us to con-
clude that cancer symptom co-occurrence 
is more complex than we originally ex-
pected, but not random as we subsequently 
feared.  

We believe that our overall methodolo-
gy could address the variability in methods 
currently used to analyze symptom clusters 
[1]. By first visually analyzing their data, 
 researchers could decide on which quanti-

Fig. 6  
A block diagram 
showing the most 
frequently co-occur-
ring symptoms for 
each size of symp-
tom set. With the ex-
ception of set sizes 
7, 11, and 14, the 
symptoms follow a 
strongly nested 
 pattern. 

Table 2 The modularity and degree of nestedness for the top three most frequent cancer types in the 
dataset. In all cases the modularity is very low (indicating that there exists no symptom cluster), and sig-
nificantly higher degree of nestedness compared to 1000 random networks of the same size.  

Cancer type 
(number of  
patients) 

Modularity Degree of nestedness 

Number of edits 
required for 
block diagram 
(generated from 
the real network) 
to be perfectly 
nested 

Mean number of 
edits required for 
block diagrams 
(generated from 
1000 random 
networks) to be 
perfectly nested 

Significant  
difference  
between real  
network and  
random  
networks 

Breast (n = 231) 0.068 17 232.5 p = 0 

Lung (n = 112) 0.072 66 204.6 p = 0.007 

Colon (n = 79) 0.074 58 235.9 p = 0
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tative method is the most appropriate for 
analyzing patterns of symptom co-occur-
rence in their data, and therefore achieve a 
more systematic methodology for analyz-
ing symptom co-occurrence. 

5.1  Limitations 

The limitation of the overall study was that 
we considered only one dataset to analyze 
patterns in cancer symptomatology. Future 
studies should apply the same methods de-
scribed in this article to test whether the 
nested pattern of symptom co-occurrence 
is also present using similar data from an-
other populationb. 

Another limitation of our work is that 
the block diagram used to measure degree 
of nestedness requires an exhaustive search 
for the most frequent symptom com-
binations for each set size, a technique 
which is feasible only in datasets with 
relatively few symptoms. Our ongoing re-
search addresses computationally efficient 
algorithms to generate block diagrams re-
gardless of the number of symptoms. Until 
this work is completed, the existing block 
diagram approach can be used to comple-
ment existing methods such as hierarchical 
clustering, rather than to replace them. 

5.2  Implications for Clinical 
 Practice and Research 

Our findings have implications for both 
clinical practice and future research. Cur-
rently cancer patients undergoing chemo-
therapy are screened for upwards of 18 
symptoms during clinic visits [34–36]. As 
these patients are already burdened with the 
stress of therapy, efficient means for assessing 
symptoms are needed not only during office 
visits, but also at home where there is increas-
ing interest in using telephonic or web-based 
symptom monitoring [37, 38]. 

The absence of disjoint symptom clus -
ters precludes an approach of asking a few 
questions to eliminate candidate symptom 

clusters. Instead, the nested pattern of 
symptom co-occurrence suggests new ap-
proaches for developing computational 
systems for rapid symptom assessment. For 
example, to efficiently identify all severe 
symptoms, a system could initially present 
a list of common symptoms ranked by fre-
quency or severity. Each time a symptom is 
selected, the remaining symptoms are re-
ranked based on their co-occurrence in the 
data with the already selected symptoms. 
For example, a patient presenting Fatigue 
with Insomnia may next be asked about 
Weakness, while a patient presenting Fa-
tigue without Insomnia may next be asked 
about Dry Mouth as the latter most fre-
quently co-occurs in patients with Fatigue 
but not with Insomnia. Such a process 
should save time and reduce excess burden 
on the patient by obtaining a complete pic-
ture of the patient’s symptoms through a 
small set of targeted questions. 

The nested structure of cancer symp-
toms also suggests that the underlying 
 biochemical mechanism in chemotherapy 
may involve a single mediator which causes 
additional symptoms as its concentration 
increases. Alternatively, it may involve a 
chain reaction where each intermediate 
state causes another symptom. Future re-
search will need to confirm our results, and 
test such emergent hypotheses. Addition-
ally, the results imply that symptom cluster 
researchers can avoid biasing their results 
by 1) visualizing their data to develop hy-
potheses about the underlying structure of 
symptom co-occurrence, 2) selecting ap-
propriate multiple methods to verify obser-
vations realizing the limitations of single 
methods, and 3) developing new methods 
if current methods do not suffice. 

6.  Conclusions and Future 
Research 
Inspired by the research on symptom 
clusters, but concerned by the limitations of 
using methods with a priori assumptions 
about the structure of clusters in the data, we 
used networks to visually analyze how symp-
toms co-occurred across cancer patients. 
These observations were then quantitatively 
analyzed through carefully selected existing 
and novel methods, and compared against 

random permutations of the network. Al-
though the results consistently showed the 
absence of multiple distinct symptom clus -
ters, the multi-method approach revealed a 
strongly nested structure of symptom co-
 occurrence, where a small set of symptoms 
co-occurred in many patients, and a pro-
gressively larger set of symptoms co-oc-
curred with a decreasing number of patients. 
This result reveals a more complex co-occur-
rence organization of symptoms across pa-
tients than previously reported. The result 
also suggests that a computational approach 
designed carefully to fit into current work 
practice could limit the questions clinicians 
need to ask patients in order to obtain a com-
plete picture of their symptoms. 

Because symptoms can be caused by a 
number of factors that change over time in-
cluding the disease itself, co-morbid con-
ditions, treatment, and other symptoms, our 
future research aims to use networks in com-
bination with quantitative methods to probe 
deeper into this large number of variables. 
Our aim is to help clinicians accurately 
identify, predict, and treat co-occurring 
symptoms, with the ultimate goal of im-
proving compliance with therapy, and the 
overall quality of life for cancer patients. 
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