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Abstract

Group Generalized Binary Search (Group GBS) is an extension of the well known greedy algorithm
GBS, for identifying the group of an unknown object while minimizing the number of binary questions
posed about that object. This problem referred to as group identification or the Equivalence Class
determination problem arises in applications such as disease diagnosis, toxic chemical identification, and
active learning under persistent noise. Here, we propose a modified version of Group GBS and prove
that it is competitive with the optimal algorithm. Our result holds even in the case where the queries
have unequal costs.

1 Introduction

In applications such as active learning [1, 2, 3, 4], disease/fault diagnosis [5, 6, 7], toxic chemical identi-
fication [8], computer vision [9, 10] or the adaptive traveling salesman problem [11], one often encounters
the problem of identifying an unknown object while minimizing the number of binary questions posed
about that object. In these problems, there is a set Θ = {θ1, · · · , θM} of M different objects and a set
Q = {q1, · · · , qN} of N distinct subsets of Θ known as queries. An unknown object θ is generated from
this set Θ with a certain prior probability distribution Π = (π1, · · · , πM ), i.e., πi = Pr(θ = θi), and the
goal is to uniquely identify this unknown object through as few queries from Q as possible, where a query
q ∈ Q returns a value 1 if θ ∈ q, and 0 otherwise. For example, in active learning, the objects are classifiers
and the queries are the labels for fixed test points. In active diagnosis, objects may correspond to faults,
and queries to alarms. This problem has been generically referred to as binary testing or object/entity
identification in the literature [5, 12].

The goal in object identification is to construct an optimal binary decision tree, where each internal
node in the tree is associated with a query from Q, and each leaf node corresponds to an object from Θ.
Optimality is often with respect to the expected depth of the leaf node corresponding to the unknown object
θ. In general the determination of an optimal tree is NP-complete [13]. Hence, various greedy algorithms
[5, 14] have been proposed to obtain a suboptimal binary decision tree. A well studied algorithm for this
problem is known as the splitting algorithm [5] or generalized binary search (GBS) [1, 2]. This is the greedy
algorithm which selects a query that most evenly divides the probability mass of the remaining objects
[1, 2, 5, 15].

GBS assumes that the end goal is to rapidly identify individual objects. However, in applications such
as disease diagnosis or toxic chemical identification, where Θ is a collection of possible diseases (or toxic
chemicals), it may only be necessary to identify the intervention or response to an object, rather than the
object itself. In these problems, the object set Θ is partitioned into groups and it is only necessary to
identify the group to which the unknown object belongs. It has been noted that GBS is not necessarily
efficient for group identification [16, 17].
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In [16], we proposed an extension of GBS to the problem of group identification referred to as Group
GBS and demonstrated the improved performance of Group GBS over GBS on synthetic datasets. Similarly,
Golovin et.al. [17] studied the problem of group identification in the context of object identification under
persistent noise, where they proposed an extension of an algorithm by Dasgupta [18] to the problem of
group identification. In addition, they also show that their algorithm, referred to as Equivalence Class
Edge Cutting (EC2) constructs a tree whose cost(average depth) is logarithmically close to the optimal
(least) cost when the prior probabilities are all rationals.

In this paper, we propose a modified version of Group GBS that achieves a logarithmic approximation
to the optimal solution for any prior distribution. In addition, the upper bound achieved by the proposed
algorithm is slightly better than that of EC2.

1.1 Notation

We denote a group identification problem by (B,Π,y) where B is a known M ×N binary matrix with bij
equal to 1 if θi ∈ qj , and 0 otherwise. The vector y = (y1, · · · , yM ) denotes the group labels of the objects,
where yi ∈ {1, · · · ,K}, K ≤M . A decision tree T constructed on (B,Π,y) has a query from the set Q at
each of its internal nodes, with the leaf nodes terminating in the objects from Θ. For a decision tree with L
leaves, the leaf nodes are indexed by the set L = {1, · · · , L} and the internal nodes are indexed by the set
I = {L+ 1, · · · , 2L− 1}. At any node ‘a’, let Qa ⊆ Q denote the set of queries that have been performed
along the path from the root node up to that node. Also, at any internal node a ∈ I, let l(a), r(a) denote
the “left” and “right” child nodes, and let Θa ⊆ Θ denote the set of objects that reach node ‘a’. Thus,
the sets Θl(a) ⊆ Θa,Θr(a) ⊆ Θa correspond to the objects in Θa that respond 0 and 1 to the query at node
‘a’, respectively. We denote by πa :=

∑
{i:θi∈Θa} πi, the probability mass of the objects reaching node ‘a’

in the tree.
In addition, let {Θk}Kk=1 be the partition of Θ, where Θk = {θi ∈ Θ : yi = k}. Then, Θk

a denotes the
objects at node ‘a’ that belong to group k, and πka :=

∑
{i:θi∈Θk

a} πi denotes the probability mass of the
objects in Θk

a. For a decision tree T constructed on (B,Π,y), and for any θ ∈ Θ, let Q(T, θ) denote the
queries along the path from the root node to the leaf node ending in object θ. Then, the cost of identifying
the group of an unknown object using the tree T is given by cavg(T ) := Eθ[|Q(T, θ)|] =

∑M
i=1 πi|Q(T, θi)|.

2 Modified GGBS

Group GBS (GGBS) is a top-down, greedy algorithm that minimizes the expected number of queries
required to identify the group of an unknown object θ [16]. At any internal node ‘a’ in the tree, the
algorithm chooses a query that maximizes

H(ρa)−
K∑
k=1

πka
πa
H(ρka) (1)

where ρa := max{πl(a), πr(a)}/πa, ρka := max{πkl(a), π
k
r(a)}/π

k
a and H(ρ) := −ρ log2 ρ− (1− ρ) log2(1− ρ) is

the binary entropy function. Though GGBS performs significantly better than GBS on synthetic datasets
as shown in [16], it is possible to construct datasets where it can perform significantly worse than the
optimal solution [17].

Here, we present a modified version of GGBS and show that the proposed algorithm achieves a log-
arithmic approximation to the optimal solution. The new algorithm is to construct a top-down, greedy
decision tree where at each internal node, a query that maximizes

πl(a)πr(a) −
K∑
k=1

πka
πa
πkl(a)π

k
r(a) (2)
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is chosen, where the binary entropy terms H(ρa) and H(ρka) in (1) are approximated by the weighted
Gini indices, π2

a(ρa(1− ρa)) and
(
πka
)2 (ρka(1− ρka)), respectively. Note that in the special case where each

group is of size 1, the query selection criterion in (2) reduces to πl(a)πr(a), thereby reducing the proposed
algorithm to GBS.

Given a group identification problem (B,Π,y), let T (B,Π,y) denote the set of all possible trees that
can uniquely identify the group of any object from the set Θ. Then, let T ∗ denote a tree with the least
expected depth, i.e.,

T ∗ ∈ arg min
T∈T (B,Π,y)

cavg(T ),

and let T̂ denote a tree constructed using the proposed greedy algorithm. The following theorem states
that the expected depth of T̂ is logarithmically close to that of an optimal tree.

Theorem 1. Let (B,Π,y) denote a group identification problem. For a greedy decision tree T̂ constructed
using the greedy policy in (2), it holds that

cavg(T̂ ) ≤
(

2ln
(

1√
3πmin

)
+ 1
)
cavg(T ∗) (3)

where πmin := mini πi is the minimum prior probability of any object, and T ∗ is an optimal tree for the
given problem.

Proof. In Appendix B.

2.1 Unequal Query costs

Consider a group identification problem where the query costs are not the same for all queries in Q.
Particularly, let c(q) denote the cost incurred by querying q. Then, for a tree T constructed on a group
identification problem (B,Π,y), the expected cost of identifying the group of an unknown object θ using
the tree T is given by cavg(T ) = Eθ[c(Q(T, θ))], where c(Q(T, θ)) =

∑
q∈Q(T,θ) c(q). Once again, an optimal

tree corresponds to the tree with the least cost cavg(T ).
The top-down, greedy decision tree is now constructed by choosing a query that maximizes ∆a(q)

c(q) at
each internal node, where ∆a(q) is as defined in (2). Note that the quantity defined in (2) is a function of
the query chosen, as πl(a), π

k
l(a), πr(a) and πkr(a) depends on the query chosen at node ‘a’ in the tree. The

algorithm can be summarized as shown in Figure 1. Finally, the result in Theorem 1 holds for the case of
unequal costs as well.

2.2 Simulation Results

We compare the performance of GBS, GGBS and modified GGBS on synthetic datasets constructed us-
ing the random data model of [16]. Note from Figure 2.1 that the modified GGBS algorithm performs
significantly better than GBS and almost similar to that of GGBS.

3 Conclusions

We study the problem of group identification where the objects are partitioned into groups, and the goal is
to identify the group of an unknown object using as few binary queries as possible. We present a modified
version of a previously proposed algorithm known as Group GBS, and show that the modified algorithm
achieves a logarithmic approximation to its optimal counterpart, under arbitrary prior distribution Π. We
also extend the algorithm and the approximation result to the case of unequal query costs, where the goal
is to minimize the expected cost of identifying the group of an unknown object.
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Modified GGBS

Initialize: L = {root node}, Qroot = ∅
while some a ∈ L has more than one group

Choose query q∗ = arg maxq /∈Qa

∆a(q)
c(q)

Form child nodes l(a), r(a)
Replace ‘a’ with l(a), r(a) in L

end

∆a(q) = πl(a)πr(a) −
∑K

k=1
πk

a
πa
πkl(a)π

k
r(a)

Figure 1: Greedy algorithm for group identifica-
tion with unequal query costs
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Appendix A. Short Review on Adaptive Submodularity

We briefly review the concept of adaptive submodularity introduced by Golovin et.al. [4]. Let f : 2Q×Θ→
R≥0 be a utility/reward function that depends on the queries chosen and the unknown object θ ∈ Θ. Given
a tree T , the expected cost of a tree is given by cavg(T ) = Eθ[c(Q(T, θ))]. Given an S > 0, the optimal
tree T ∗ is defined to be

T ∗ = arg min
T

cavg(T ) such that f(Q(T, θ), θ) ≥ S, ∀θ ∈ Θ

Finding an optimal tree T ∗ is NP-complete and hence we need to resort to greedy approaches.

Definition 1. (Conditional Expected Marginal Gain) Given the responses zA to previously chosen
queries QA, the conditional expected marginal gain of choosing a new query q /∈ QA is given by

∆(q|zA) := Eθ[f(QA ∪ {q}, θ)− f(QA, θ)|ZA = zA], (4)

where the expectation is taken with respect to Π.

The greedy algorithm constructs a decision tree in a top-down manner, where at each stage a query
that maximizes ∆(q|zA)/c(q) is chosen, i.e. arg maxq /∈QA ∆(q|zA)/c(q).

Definition 2. (Strong Adaptive Monotonicity) A function f : 2Q × Θ → R≥0 is strongly adaptive
monotone with respect to Π if, informally “selecting more queries never hurts” with respect to the expected
reward. Formally, for all QA ⊆ Q, all q /∈ QA and all z ∈ {0, 1} such that Pr(Z = z|ZA = zA) > 0, we
require

Eθ[f(QA, θ)|ZA = zA] ≤ Eθ[f(QA ∪ {q}, θ)|ZA = zA, Z = z]. (5)
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Definition 3. (Adaptive Submodular) A function f : 2Q × Θ → R≥0 is adaptive submodular with
respect to distribution Π if the conditional expected marginal gain of any fixed query does not increase as
more queries are selected and their responses are observed. Formally, f is adaptive submodular w.r.t. Π if
for all QA and QB such that QA ⊆ QB ⊆ Q and for all q /∈ QB, we have

∆(q|zB) ≤ ∆(q|zA) (6)

Theorem 2. Suppose f : 2Q × Θ → R≥0 is adaptive submodular and strongly adaptive monotone with
respect to Π and there exists S such that f(Q, θ) = S for all θ ∈ Θ. Let η be any value such that
f(QA, θ) > S − η implies f(QA, θ) = S for all QA ⊆ Q and all θ. Let T ∗ be an optimal tree with the least
expected cost and let T̂ be a suboptimal tree constructed using the greedy algorithm, then

cavg(T̂ ) ≤ cavg(T ∗)
(

ln
(
S

η

)
+ 1
)

(7)

Appendix B. Proof of Theorem 1

Define the utility function to be f(QA, θi) := 1−π2
a+
(
πki
a

)2, where πa is the probability mass of the objects
remaining after observing responses to queries in QA with θi as the unknown object, and ki denotes the
group to which θi belongs. Note that f(Q, θ) = 1, ∀θ ∈ Θ. Also, for any QA ⊆ Q, if f(QA, θi) > 1−3π2

min,
it implies f(QA, θi) = 1, hence η = 3π2

min. It also follows from Lemma 1 and Lemma 2 that f is adaptive
submodular and strongly adaptive monotone. Hence, the result follows from Theorem 2 in Appendix A.

Lemma 1. The objective function f defined above is adaptive submodular.

Proof. Consider two subsets of Q such that QA ⊆ QB. Let zA, zB denote the responses to the queries in
QA and QB, respectively. Then, we need to show that for any q /∈ QB, ∆(q|zA) ≥ ∆(q|zB).

Let Θa ⊆ Θ denote the set of objects whose responses to queries in QA are same as those in zA. Then
substituting f(QA, θ) = 1− π2

a + (πka)2 in (4), we get

∆(q|zA) =
K∑
k=1

πkl(a)

πa

[
π2
a − π2

l(a) − (πka)2 + (πkl(a))
2
]

+
K∑
k=1

πkr(a)

πa

[
π2
a − π2

r(a) − (πka)2 + (πkr(a))
2
]

=
πl(a)

πa
πr(a)(πa + πl(a))−

K∑
k=1

πkl(a)

πa
πkr(a)(π

k
a + πkl(a)) +

πr(a)

πa
πl(a)(πa + πr(a))−

K∑
k=1

πkr(a)

πa
πkl(a)(π

k
a + πkr(a))

= 3πl(a)πr(a) −
K∑
k=1

3
πka
πa
πkl(a)π

k
r(a).

Similarly, let Θb ⊆ Θ denote the set of objects whose responses to queries in QB are equal to those in zB.
Then, substituting f(QB, θ) = 1− π2

b + (πkb )2 in (4), we get ∆(q|zB) = 3πl(b)πr(b) −
∑K

k=1 3π
k
b
πb
πkl(b)π

k
r(b).

To prove f is adaptive submodular, we need to show that

πl(a)πr(a) −
K∑
k=1

πka
πa
πkl(a)π

k
r(a) ≥ πl(b)πr(b) −

K∑
k=1

πkb
πb
πkl(b)π

k
r(b),

=⇒ πaπbπl(a)πr(a) −
K∑
k=1

πkaπbπ
k
l(a)π

k
r(a) ≥ πaπbπl(b)πr(b) −

K∑
k=1

πkb πaπ
k
l(b)π

k
r(b)

Note that since QA ⊆ QB, Θb ⊆ Θa and hence πb ≤ πa, πkb ≤ πka , ∀k. For any query q /∈ QB, let Θl(a) and
Θr(a) correspond to the objects in Θa that respond 0 and 1 to query q respectively. Similarly, let Θl(b) and
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Θr(b) correspond to the objects in Θb that respond 0 and 1 to query q respectively. Then, πl(b) ≤ πl(a),
πkl(b) ≤ π

k
l(a), ∀k, and πr(b) ≤ πr(a), πkr(b) ≤ π

k
r(a), ∀k. Hence

πaπbπl(a)πr(a) −
K∑
k=1

πkaπbπ
k
l(a)π

k
r(a) = πaπb

K∑
k=1

πkl(a)π
k
r(a) + πaπb

∑
k 6=m

πkl(a)π
m
r(a) −

K∑
k=1

πkaπbπ
k
l(a)π

k
r(a)

=
K∑
k=1

πkl(a)π
k
r(a)(πa − π

k
a)πb + πaπb

∑
k 6=m

πkl(a)π
m
r(a) (8a)

≥
K∑
k=1

πkl(a)π
k
r(a)(πa − π

k
a)πb + πaπb

∑
k 6=m

πkl(b)π
m
r(b) (8b)

=
K∑
k=1

πkl(a)π
k
r(a)(πa − π

k
a)(πb − πkb ) +

K∑
k=1

πkl(a)π
k
r(a)(πa − π

k
a)πkb + πaπb

∑
k 6=m

πkl(b)π
m
r(b) (8c)

≥
K∑
k=1

πkl(b)π
k
r(b)(πa − π

k
a)(πb − πkb ) +

K∑
k=1

πkl(a)π
k
r(a)(πa − π

k
a)πkb + πaπb

∑
k 6=m

πkl(b)π
m
r(b) (8d)

≥
K∑
k=1

πkl(b)π
k
r(b)(πa − π

k
a)(πb − πkb ) +

K∑
k=1

πkl(b)π
k
r(b)(πb − π

k
b )πka + πaπb

∑
k 6=m

πkl(b)π
m
r(b) (8e)

=
K∑
k=1

πkl(b)π
k
r(b)πa(πb − π

k
b ) + πaπb

∑
k 6=m

πkl(b)π
m
r(b)

= πaπbπl(b)πr(b) −
K∑
k=1

πaπ
k
b π

k
l(b)π

k
r(b)

where (8e) follows from (8d) since

K∑
k=1

πkl(a)π
k
r(a)(πa − π

k
a)πkb =

K∑
k=1

πkl(a)π
k
l(b)π

k
r(a)(πa − π

k
a) +

K∑
k=1

πkr(a)π
k
r(b)π

k
l(a)(πa − π

k
a)

≥
K∑
k=1

πkl(a)π
k
l(b)π

k
r(b)(πb − π

k
b ) +

K∑
k=1

πkr(a)π
k
r(b)π

k
l(b)(πb − π

k
b )

=
K∑
k=1

πkl(b)π
k
r(b)(πb − π

k
b )πka ,

thus proving that f is adaptive submodular.

Lemma 2. The objective function f is strongly adaptive monotone.

Proof. Consider any subset of queries QA ⊆ Q, and let zA denote the responses to these queries. Let Θa

denote the set of objects whose responses to queries in QA are equal to those of zA. For any query q /∈ QA,
let Θl(a) and Θr(a) correspond to the objects in Θa that respond 0 and 1 to query q respectively.

For strong adaptive monotonicity, we need to show that

1− π2
a +

K∑
k=1

(πka)3

πa
≤ 1− π2

l(a) +
K∑
k=1

(πkl(a))
3

πl(a)
, if πl(a) > 0

and 1− π2
a +

K∑
k=1

(πka)3

πa
≤ 1− π2

r(a) +
K∑
k=1

(πkr(a))
3

πr(a)
, if πr(a) > 0.
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We will show the first inequality, and the second inequality can be shown in a similar manner. Given
πl(a) > 0, we need to show that

π3
aπl(a) − π3

l(a)πa ≥
K∑
k=1

(πka)3πl(a) − (πkl(a))
3πa.

Note that

π3
aπl(a) − π3

l(a)πa = (πl(a) + πr(a))
3πl(a) − π3

l(a)(πl(a) + πr(a))

= π3
r(a)πl(a) + 3π2

l(a)π
2
r(a) + 2π3

l(a)πr(a) (9a)

≥
K∑
k=1

[
(πkr(a))

3πl(a) + 3πl(a)π
k
l(a)(π

k
r(a))

2
]

+ 2π3
l(a)πr(a) (9b)

=
K∑
k=1

[
(πkr(a))

3πl(a) + 3πl(a)π
k
l(a)(π

k
r(a))

2 − (πkl(a))
3πr(a)

]
+ 2π3

l(a)πr(a) +
K∑
k=1

(πkl(a))
3πr(a) (9c)

≥
K∑
k=1

[
(πkr(a))

3πl(a) + 3πl(a)π
k
l(a)(π

k
r(a))

2 − (πkl(a))
3πr(a) + 3(πkl(a))

2πkr(a)πl(a)

]
(9d)

=
K∑
k=1

[
(πkl(a))

3 + 3(πkl(a))
2πkr(a) + 3πkl(a)(π

k
r(a))

2 + (πkr(a))
3
]
πl(a) − (πkl(a))

3πl(a) − (πkl(a))
3πr(a) (9e)

=
K∑
k=1

(πka)3πl(a) − (πkl(a))
3πa

where (9b) follows from (9a) as π3
r(a)πl(a), 3πl(a)πl(a)π

2
r(a) has more non-negative terms than

∑K
k=1(πkr(a))

3πl(a),∑K
k=1 3πl(a)π

k
l(a)(π

k
r(a))

2, respectively. Also (9d) follows from (9c) since

πr(a)

[
2π3

l(a) +
K∑
k=1

(πkl(a))
3

]
= πr(a)

 K∑
k=1

3(πkl(a))
3 + 6

∑
k 6=m

(πkl(a))
2πml(a) + 6

∑
k 6=m 6=n

πkl(a)π
m
l(a)π

n
l(a)


=

 K∑
j=1

πjr(a)

 K∑
k=1

3(πkl(a))
3 + 6

∑
k 6=m

(πkl(a))
2πml(a) + 6

∑
k 6=m6=n

πkl(a)π
m
l(a)π

n
l(a)


≥ 3

K∑
k=1

(πkl(a))
3πkr(a) + 3

∑
k 6=m

(πkl(a))
2πkr(a)π

m
l(a)

= 3πl(a)

K∑
k=1

(πkl(a))
2πkr(a),

thus proving that f is strongly adaptive monotone.
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