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1 AUC Estimation

The area under the ROC curve can be approximated
using lower rectangles, upper rectangles or by using
a linear approximation, as shown in Figure 1. The
expressions related to each of these approximations are

Al(zA) =

M−1∑
t=0

(1− M̂Rt)(F̂ARt+1 − F̂ARt)

Au(zA) =

M−1∑
t=0

(1− M̂Rt+1)(F̂ARt+1 − F̂ARt)

Am(zA) =

M−1∑
t=0

(1− M̂Rt + M̂Rt+1

2
)(F̂ARt+1 − F̂ARt).

Substituting the estimates for miss rate and false alarm
rate, the corresponding approximations for the area
above the ROC curve are given by

Al(zA) =

M∑
i=1

M∑
j=i

Pr(Xr(i) = 0|zA)Pr(Xr(j) = 1|zA)

M∑
i=1

Pr(Xi = 1|zA)

M∑
i=1

Pr(Xi = 0|zA)

(1a)

Au(zA) =

M−1∑
i=1

M∑
j=i+1

Pr(Xr(i) = 0|zA)Pr(Xr(j) = 1|zA)

M∑
i=1

Pr(Xi = 1|zA)

M∑
i=1

Pr(Xi = 0|zA)

(1b)

Am(zA) =

M−1∑
i=1

M∑
j=i+1

Pr(Xr(i) = 0|zA)Pr(Xr(j) = 1|zA)

M∑
i=1

Pr(Xi = 1|zA)

M∑
i=1

Pr(Xi = 0|zA)

+

M∑
i=1

Pr(Xi = 0|zA)Pr(Xi = 1|zA)

2

M∑
i=1

Pr(Xi = 1|zA)

M∑
i=1

Pr(Xi = 0|zA)

. (1c)
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Figure 1: Demonstrates the different approximations
for area under the ROC curve

1.1 Choice of Upper rectangles

As mentioned in the paper, query selection based on
AUC approximated using the upper rectangles per-
forms better than the other two. We will now provide
an intuitive explanation for this phenomenon.

Using the result in Proposition 1 below, note that un-
der a single fault assumption, the approximations to



the area above the ROC curve in (1) reduce to

Al(zA) =

M∑
i=1

2iPr(Xr(i) = 1|zA)− Pr2(Xi = 1|zA)

2(M − 1)
+ cl,

Am(zA) =

M∑
i=1

2iPr(Xr(i) = 1|zA)

2(M − 1)
+ cm,

Au(zA) =

M∑
i=1

2iPr(Xr(i) = 1|zA) + Pr2(Xi = 1|zA)

2(M − 1)
+ cu,

where cl, cm and cu are constants that do not con-
tribute to query selection.

Now note that all the three approximations have the
same first term, which corresponds to the expected
rank of the faults in the ranked list. However, they
differ with respect to the second term, which makes
the crucial difference in terms of the query selected.
More specifically, given two or more queries with the
the same expected rank value (i.e., same value for the
first term), query selected using Au(zA) chooses the
one that most evenly distributes the posterior prob-
ability mass of 1 among all the objects, while query
selected using Al(zA) chooses the one that assigns
most of the probability mass to one object, and the
query selected using Am(zA) just picks one at ran-
dom. Hence, the queries selected using Al(zA) and
Am(zA) are more prone to increase the posterior fault
probability of one (or few) object(s), thereby creating
a bias towards those objects in the queries selected
there after. However, this is overcome by the AUC-
based query selection criterion approximated using the
upper rectangles.

2 Proof of Proposition 1

Proposition 1. (Extended) The estimates for the
area above the ROC curve, Al(zA), Am(zA) and
Au(zA) in (1) can be equivalently expressed as

Al(zA) =
1

2
+

U(zA) + V(zA)

2W(zA)

Am(zA) =
1

2
+

U(zA)

2W(zA)

Au(zA) =
1

2
+

U(zA)−V(zA)

2W(zA)

where

U(zA) =

M∑
i=1

(2i−M − 1)Pr(Xr(i) = 1|zA) (2a)

V(zA) =

M∑
i=1

Pr(Xi = 1|zA)Pr(Xi = 0|zA) (2b)

W(zA) =

M∑
i=1

Pr(Xi = 1|zA)

M∑
i=1

Pr(Xi = 0|zA).

Proof. We will show the equivalence result for Au(zA),
and the other two results follow by observing that

Al(zA) = Au(zA) +
V(zA)

W(zA)

Am(zA) = Au(zA) +
V(zA)

2W(zA)
.

We will now show the equivalence result for
Au(zA). Let N(zA) :=

∑M−1
i=1

∑M
j=i+1 Pr(Xr(i) =

0|zA)Pr(Xr(j) = 1|zA) denote its numerator. Then,
the result follows by observing that

M∑
i=1

Pr(Xi = 0|zA)

M∑
i=1

Pr(Xi = 1|zA)

=

M∑
i=1

Pr(Xr(i) = 0|zA)

M∑
i=1

Pr(Xr(i) = 1|zA)

= N(zA) +

M∑
i=1

Pr(Xr(i) = 0|zA)

i∑
j=1

Pr(Xr(j) = 1|zA)

= N(zA) +

M∑
i=1

Pr(Xr(i) = 0|zA)Pr(Xr(i) = 1|zA)

+

M∑
i=2

i−1∑
j=1

Pr(Xr(i) = 0|zA)Pr(Xr(j) = 1|zA), (3)

where the last term in the above expression can
be expressed in terms of N(zA) using the relation
Pr(Xr(i) = 0|zA) = 1− Pr(Xr(i) = 1|zA),

M∑
i=2

i−1∑
j=1

Pr(Xr(i) = 0|zA)Pr(Xr(j) = 1|zA)

=

M∑
i=2

i−1∑
j=1

[
1− Pr(Xr(i) = 1|zA)− Pr(Xr(j) = 0|zA)

+ Pr(Xr(i) = 1|zA)Pr(Xr(j) = 0|zA)
]

=

M∑
i=2

i−1∑
j=1

[
− Pr(Xr(i) = 1|zA) + Pr(Xr(j) = 1|zA)

+ Pr(Xr(i) = 1|zA)Pr(Xr(j) = 0|zA)
]



=

M∑
i=2

−(i− 1)Pr(Xr(i) = 1|zA)

+

M−1∑
i=1

(M − i)Pr(Xr(i) = 1|zA)

+

M∑
i=2

i−1∑
j=1

Pr(Xr(i) = 1|zA)Pr(Xr(j) = 0|zA)

=

M∑
i=1

(M − 2i+ 1)Pr(Xr(i) = 1|zA)

+

M−1∑
j=1

M∑
i=j+1

Pr(Xr(j) = 0|zA)Pr(Xr(i) = 1|zA)

=

M∑
i=1

(M − 2i+ 1)Pr(Xr(i) = 1|zA) + N(zA).

Finally, substituting the above relation in (3), we get

M∑
i=1

Pr(Xi = 0|zA)

M∑
i=1

Pr(Xi = 1|zA)

= 2N(zA) +

M∑
i=1

Pr(Xr(i) = 0|zA)Pr(Xr(i) = 1|zA)

+

M∑
i=1

(M − 2i+ 1)Pr(Xr(i) = 1|zA)

= 2N(zA) +

M∑
i=1

Pr(Xi = 0|zA)Pr(Xi = 1|zA)

+

M∑
i=1

(M − 2i+ 1)Pr(Xr(i) = 1|zA)

from which, the result follows.

3 Proof of Theorem 1

Since A(zA) = 1 −A(zA), Theorem 1 corresponding
to the adaptive monotonicity of A(zA) can be equiva-
lently stated as shown below.

Theorem 1. Under the single fault assumption of
Section 4.1, the quality functions Al(ZA) and Am(ZA)
as defined in (1a), (1c) are adaptive monotone, i.e.,
∀A′ ⊆ A

Al(ZA) ≤ Al(ZA′) and Am(ZA) ≤ Am(ZA′)

Proof. Let zA denote the responses to queries in the
set A. To prove adaptive monotonicity for Al(ZA),
it suffices to show that for any query j /∈ A,
Al(zA)− EZj

[Al(zA ∪ Zj)] ≥ 0 (Golovin and Krause,

2010). Similarly, for Am(ZA), we need to show that
Am(zA)− EZj

[Am(zA ∪ Zj)] ≥ 0.

Under single fault assumption,

Al(zA) =
1

2
+

U(zA) + V(zA)

2(M − 1)
,

Am(zA) =
1

2
+

U(zA)

2(M − 1)
,

where U(zA) and V(zA) are as defined in (2a) and
(2b), respectively. Hence, the adaptive monotonicity
of Al(zA) and Am(zA) follows by showing that ∀j /∈ A

U(zA)− EZj
[U(zA ∪ Zj)] ≥ 0, and

V(zA)− EZj
[V(zA ∪ Zj)] ≥ 0,

which follow from Lemma 1 and 2, below.

Lemma 1. Let zA denote the observed responses to
queries in the set A. Then, for any query j /∈ A,

U(zA)− EZj
[U(zA ∪ Zj)] ≥ 0

Proof. Under single fault assumption, U(zA) =

−(M+1)+
∑M

i=1 2iPr(Xr(i) = 1|zA). Hence, the result
follows by showing that ∀ j /∈ A,

M∑
i=1

i

{
Pr(Xr(i) = 1|zA)

−

[
Pr(Zj = 0|zA)Pr(Xr0(i) = 1|zA, 0)

+ Pr(Zj = 1|zA)Pr(Xr1(i) = 1|zA, 1)

]}
≥ 0. (4)

As mentioned earlier, the rank order depends on the
queries chosen A and their observed responses zA.
Hence, to differentiate the rank orders in the above
expression, we use r(i) to denote the rank order of the
objects based on the observed responses zA, and r0(i),
r1(i) to denote the rank order of the objects based on
the observed responses zA ∪ 0 and zA ∪ 1 to queries in
A ∪ {j}.

Note that (4) is equivalent to showing

M∑
i=1

(M − i+ 1)

{[
Pr(Zj = 0|zA)Pr(Xr0(i) = 1|zA, 0)

+ Pr(Zj = 1|zA)Pr(Xr1(i) = 1|zA, 1)

]

− Pr(Xr(i) = 1|zA)

}
≥ 0. (5)

Let ft(r, zA) :=
∑t

i=1 Pr(Xr(i) = 1|zA), i.e., the prob-
ability mass of the top t objects in the ranked list given



by r. Then,

M∑
i=1

(M − i+ 1)Pr(Xr(i)|zA) =

M∑
t=1

ft(r, zA),

and hence (5) is equivalent to showing

M∑
t=1

[
Pr(Zj = 0|zA)ft(r0, zA ∪ 0)

+ Pr(Zj = 1|zA)ft(r1, zA ∪ 1)

]
− ft(r, zA) ≥ 0.

Now, note that

ft(r0, zA ∪ 0) ≥ ft(r, zA ∪ 0)

=

t∑
i=1

Pr(Xr(i) = 1|zA, 0).

Since the rank order r0 corresponds to the decreas-
ing order of the posterior probabilities in {Pr(Xi =
1|zA, 0)}Mi=1, the probability mass of the top t objects
in this ranked list is greater than any other t objects.
Similarly, ft(r1, zA ∪ 1) ≥ ft(r, zA ∪ 1). Hence,

Pr(Zj = 0|zA)ft(r0, zA ∪ 0)

+ Pr(Zj = 1|zA)ft(r1, zA ∪ 1) (6a)

≥ Pr(Zj = 0|zA)ft(r, zA ∪ 0)

+ Pr(Zj = 1|zA)ft(r, zA ∪ 1) (6b)

=

t∑
i=1

[
Pr(Zj = 0|zA)Pr(Xr(i) = 1|zA, 0)

+ Pr(Zj = 1|zA)Pr(Xr(i) = 1|zA, 1)

]
(6c)

=

t∑
i=1

[
Pr(Zj = 0|Xr(i) = 1)Pr(Xr(i) = 1|zA)

+ Pr(Zj = 1|Xr(i) = 1)Pr(Xr(i) = 1|zA)

]
(6d)

=

t∑
i=1

Pr(Xr(i) = 1|zA) = ft(r, zA). (6e)

Thus proving the inequality.

Note that in the above equation, (6d) follows from
(6c) by observing that under a single fault assumption,
Xi = 1 ⇐⇒ X = Ii, and hence, using the conditional
independence assumption of Section 2, the posterior

probability can be expressed as

Pr(Xi = 1|zA, z) = Pr(X = Ii|zA, z)

=
Pr(X = Ii)Pr(zA|X = Ii)Pr(Zj = z|X = Ii)

Pr(Zj = z|zA)Pr(ZA = zA)

=
Pr(X = Ii|zA)Pr(Zj = z|X = Ii)

Pr(Zj = z|zA)

=
Pr(Xi = 1|zA)Pr(Zj = z|Xi = 1)

Pr(Zj = z|zA)
. (7)

Lemma 2. Let zA denote the observed responses to
queries in the set A. Then, for any query j /∈ A,

V(zA)− EZj
[V(zA ∪ Zj)] ≥ 0

Proof. Note that under single fault assumption,
V(zA) = 1 −

∑M
i=1 Pr2(Xi = 1|zA). Hence, we need

to show that ∀ j /∈ A,

M∑
i=1

{[
Pr(Zj = 0|zA)Pr2(Xi = 1|zA, 0)

+ Pr(Zj = 1|zA)Pr2(Xi = 1|zA, 1)

]

− Pr2(Xi = 1|zA)

}
≥ 0. (8)

Substituting the expression for posterior probability
from (7) in the LHS of (8), we get

M∑
i=1

{
Pr2(Xi = 1|zA)

[
Pr2(Zj = 0|Xi = 1)

Pr(Zj = 0|zA)

+
Pr2(Zj = 1|Xi = 1)

Pr(Zj = 1|zA)
− 1

]}

=

M∑
i=1

{
Pr2(Xi = 1|zA)

[(
1− Pr(Zj = 1|Xi = 1)

)2
Pr(Zj = 0|zA)

+
Pr2(Zj = 1|Xi = 1)

Pr(Zj = 1|zA)
− 1

]}
,

=

M∑
i=1

{
Pr2(Xi = 1|zA)

[(Pr(Zj = 1|Xi = 1)− Pr(Zj = 1|zA)

)2

Pr(Zj = 1|zA)Pr(Zj = 0|zA)

]}
≥ 0

where the last equality follows by using the relation
Pr(Zj = 0|zA) = 1 − Pr(Zj = 1|zA), and completing
the square. Thus, proving the result.



4 Proof of Proposition 2

Proposition 2. Under the single fault assumption
along with the conditional independence assumption of
Section 2, the entropy-based query selection criterion
in (2) reduces to

j∗ := argmin
j /∈A

M∑
i=1

Pr(Xi = 1|zA)H
(

Pr(Zj = 0|Xi = 1)
)

−H
(

Pr(Zj = 0|zA)
)

where H(p) := −p log2 p − (1 − p) log2(1 − p) denotes
the binary entropy function.

Proof. The entropy-based query selection criterion is
given by

j∗ = argmin
j /∈A

∑
z=0,1

Pr(Zj = z|zA)H(X|ZA, z). (9)

Since, under single fault assumption, Xi = 1⇐⇒ X =
Ii, we need to show that the above query selection
criterion reduces to

j∗ := argmin
j /∈A

M∑
i=1

Pr(X = Ii|zA)H
(

Pr(Zj = 0|X = Ii)
)

−H
(

Pr(Zj = 0|zA)
)
.

We show this by first noting that under the single fault
assumption, the conditional entropy reduces to

−
M∑
i=1

Pr(X = Ii|zA, z) log Pr(X = Ii|zA, z).

In addition, as noted in (7), under the conditional inde-
pendence assumption of Section 2, the posterior prob-
ability can be expressed as

Pr(X = Ii|zA, z)

=
Pr(X = Ii|zA)Pr(Zj = z|X = Ii)

Pr(Zj = z|zA)
. (10)

Substituting the above expression in (9), we get∑
z=0,1

Pr(Zj = z|zA)H(X|ZA, z)

= −
∑
z=0,1

M∑
i=1

[
Pr(Zj = z|zA)Pr(X = Ii|zA, z)

log
Pr(X = Ii|zA)Pr(Zj = z|X = Ii)

Pr(Zj = z|zA)

]
. (11)

This expression can be broken down into 3 different
terms. The first term is given by

−
∑
z=0,1

M∑
i=1

[
Pr(Zj = z|zA)Pr(X = Ii|zA, z)

log Pr(X = Ii|zA)

]

= −
M∑
i=1

[
Pr(X = Ii|zA) log Pr(X = Ii|zA)

∑
z=0,1

Pr(Zj = z|X = Ii)

]
= H(X|zA),

where the second equality follows from (10) and the
last equality follows since

∑
z Pr(Zj = z|X = Ii) = 1.

The second term is given by

−
∑
z=0,1

M∑
i=1

[
Pr(Zj = z|zA)Pr(X = Ii|zA, z)

log
1

Pr(Zj = z|zA)

]

= −
∑
z=0,1

[
Pr(Zj = z|zA) log

1

Pr(Zj = z|zA)

M∑
i=1

Pr(X = Ii|zA, z)

]
= −H

(
Pr(Zj = 0|zA)

)
,

where the last equality follows since
∑M

i=1 Pr(X =
Ii|zA, z) = 1.

The last term is given by

−
∑
z=0,1

M∑
i=1

[
Pr(Zj = z|zA)Pr(X = Ii|zA, z)

log Pr(Zj = z|X = Ii)

]

= −
M∑
i=1

[
Pr(X = Ii|zA)

( ∑
z=0,1

Pr(Zj = z|X = Ii)

log Pr(Zj = z|X = Ii)

)]

=

M∑
i=1

Pr(X = Ii|zA)H
(

Pr(Zj = 0|X = Ii)
)
.



Substituting these 3 terms back into (11), we get∑
z=0,1

Pr(Zj = z|zA)H(X|ZA, z)

= H(X|zA)−H
(

Pr(Zj = 0|zA)
)

+

M∑
i=1

Pr(X = Ii|zA)H
(

Pr(Zj = 0|X = Ii)
)
,

and the result follows since H(X|zA) does not depend
on the query j.

5 Experiments

In this section, we provide more experimental evidence
to support our argument that AUC-based query se-
lection under single-fault assumption (AUC+SF) is a
reliable, practical alternative to BPEA in large scale
diagnosis problems.

We compare the performance of the three query se-
lection criteria, i.e., BPEA, AUC-based query selec-
tion under single fault assumption (AUC+SF), and
entropy-based query selection under single fault as-
sumption (Entropy+SF), on two different datasets.
The first dataset is a random bipartite diagnosis graph
generated using the standard Preferential Attachment
(PA) random network model. The second dataset is
a network topology built using the BRITE generator,
which simulates an Internet-like topology at the Au-
tonomous Systems level.

Figures 2 and 3 compare the performance of the three
query selection criteria on the two datasets, for differ-
ent values of prior probability α, leak and inhibition
probabilities ρl and ρi. In these figures, the area un-
der the ROC curve (AUC) is obtained by ranking the
objects based on their posterior probabilities, which
in turn are computed using a single-fault assumption.
Alternatively, note that these posterior probabilities
could be estimated using belief propagation on these
networks (as the networks are small in size), and the
ranking obtained there after could be used to compute
the AUC. Figures 4 and 5 compare the three query
selection criteria using AUC computed through BP
based ranking. Finally, the information gain is com-
puted using BPEA as described in (Zheng et al., 2005).

Note from these figures that AUC+SF invariably per-
forms better than Entropy+SF, and often comparable
to BPEA, while having a computational complexity
that is orders less than that of BPEA, thereby mak-
ing it a robust, practical alternative to BPEA in large
scale diagnosis problems.
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Figure 2: The plots in the first column correspond to a dataset generated using the PA model, and the second
column corresponds to a BRITE network. The figure in the top corresponds to (α, ρi, ρl) = (0.03, 0.05, 0.05),
and the figure in the bottom corresponds to (α, ρi, ρl) = (0.03, 0.1, 0.1).
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Figure 3: The plots in the first column correspond to a dataset generated using the PA model, and the second
column corresponds to a BRITE network. The figure in the top corresponds to (α, ρi, ρl) = (0.05, 0.05, 0.05),
and the figure in the bottom corresponds to (α, ρi, ρl) = (0.05, 0.1, 0.1).
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Figure 4: The plots in this figure correspond to a dataset generated using PA model. The AUC is computed by
ranking the objects using posterior probabilities obtained from Belief Propagation.
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Figure 5: The plots in this figure correspond to a dataset generated using BRITE. The AUC is computed by
ranking the objects using posterior probabilities obtained from Belief Propagation.


