1 Supplementary Material: Complete Proof of Theorem 4

Define two new functions \widetilde{L}_{λ} and \widetilde{H}_{α} as

$$
\begin{aligned}
& \widetilde{L}_{\lambda}:=\frac{1}{\lambda-1}\left[\sum_{j \in \mathcal{L}} \pi_{\Theta_{j}} \lambda^{d_{j}}-1\right]=\sum_{j \in \mathcal{L}} \pi_{\Theta_{j}}\left[\sum_{h=0}^{d_{j}-1} \lambda^{h}\right] \\
& \widetilde{H}_{\alpha}:=1-\frac{1}{\left(\sum_{k=1}^{K} \pi_{\Theta^{k}}^{\alpha}\right)^{\frac{1}{\alpha}}},
\end{aligned}
$$

where \widetilde{L}_{λ} is related to the cost function $L_{\lambda}(\Pi)$ as

$$
\begin{equation*}
\lambda^{L_{\lambda}(\Pi)}=(\lambda-1) \widetilde{L}_{\lambda}+1, \tag{1}
\end{equation*}
$$

and \widetilde{H}_{α} is related to the α-Rényi entropy $H_{\alpha}\left(\Pi_{\mathbf{y}}\right)$ as

$$
\begin{align*}
H_{\alpha}\left(\Pi_{\mathbf{y}}\right) & =\frac{1}{1-\alpha} \log _{2} \sum_{k=1}^{K} \pi_{\Theta^{k}}^{\alpha}=\frac{1}{\alpha \log _{2} \lambda} \log _{2} \sum_{k=1}^{K} \pi_{\Theta^{k}}^{\alpha}=\log _{\lambda}\left(\sum_{k=1}^{K} \pi_{\Theta^{k}}^{\alpha}\right)^{\frac{1}{\alpha}} \tag{2a}\\
\Longrightarrow \lambda^{H_{\alpha}\left(\Pi_{\mathbf{y}}\right)} & =\left(\sum_{k=1}^{K} \pi_{\Theta^{k}}^{\alpha}\right)^{\frac{1}{\alpha}}=\left(\sum_{k=1}^{K} \pi_{\Theta^{k}}^{\alpha}\right)^{\frac{1}{\alpha}} \widetilde{H}_{\alpha}+1 \tag{2b}
\end{align*}
$$

where we use the definition of α, i.e., $\alpha=\frac{1}{1+\log _{2} \lambda}$ in (2a).
Now, we note from Lemma 1 that \widetilde{L}_{λ} can be decomposed as

$$
\begin{align*}
\widetilde{L}_{\lambda} & =\sum_{a \in \mathcal{I}} \lambda^{d_{a}} \pi_{\Theta_{a}} \\
\Longrightarrow \lambda^{L_{\lambda}(\Pi)} & =1+\sum_{a \in \mathcal{I}}(\lambda-1) \lambda^{d_{a}} \pi_{\Theta_{a}} \tag{3}
\end{align*}
$$

$\underset{\sim}{w}$ where d_{a} denotes the depth of internal node ' a ' in the tree T. Similarly, note from Lemma 2 that \widetilde{H}_{α} can be decomposed as

$$
\begin{align*}
\widetilde{H}_{\alpha} & =\frac{1}{\left(\sum_{k=1}^{K} \pi_{\Theta^{k}}^{\alpha}\right)^{\frac{1}{\alpha}}} \sum_{a \in \mathcal{I}}\left[\pi_{\Theta_{a}} \mathcal{D}_{\alpha}\left(\Theta_{a}\right)-\pi_{\Theta_{l(a)}} \mathcal{D}_{\alpha}\left(\Theta_{l(a)}\right)-\pi_{\Theta_{r(a)}} \mathcal{D}_{\alpha}\left(\Theta_{r(a)}\right)\right] \\
\Longrightarrow \lambda^{H_{\alpha}\left(\Pi_{\mathbf{y}}\right)} & =1+\sum_{a \in \mathcal{I}}\left[\pi_{\Theta_{a}} \mathcal{D}_{\alpha}\left(\Theta_{a}\right)-\pi_{\Theta_{l(a)}} \mathcal{D}_{\alpha}\left(\Theta_{l(a)}\right)-\pi_{\Theta_{r(a)}} \mathcal{D}_{\alpha}\left(\Theta_{r(a)}\right)\right] . \tag{4}
\end{align*}
$$

Finally, the result follows from (3) and (4) above.
Lemma 1. The function \widetilde{L}_{λ} can be decomposed over the internal nodes in a tree T, as

$$
\widetilde{L}_{\lambda}=\sum_{a \in \mathcal{I}} \lambda^{d_{a}} \pi_{\Theta_{a}}
$$

where d_{a} denotes the depth of internal node $a \in \mathcal{I}$ and $\pi_{\Theta_{a}}$ is the probability mass of the objects at that node.

Proof. Let T_{a} denote a subtree from any internal node ' a ' in the tree T and let $\mathcal{I}_{a}, \mathcal{L}_{a}$ denote the set of internal nodes and leaf nodes in the subtree T_{a}, respectively. Then, define $\widetilde{L}_{\lambda}^{a}$ in the subtree T_{a} to be

$$
\widetilde{L}_{\lambda}^{a}=\sum_{j \in \mathcal{L}_{a}} \frac{\pi_{\Theta_{j}}}{\pi_{\Theta_{a}}}\left[\sum_{h=0}^{d_{j}^{a}-1} \lambda^{h}\right]
$$

where d_{j}^{a} denotes the depth of leaf node $j \in \mathcal{L}_{a}$ in the subtree T_{a}.

Now, we show using induction that for any subtree T_{a} in the tree T, the following relation holds

$$
\begin{equation*}
\pi_{\Theta_{a}} \widetilde{L}_{\lambda}^{a}=\sum_{s \in \mathcal{I}_{a}} \lambda^{d_{s}^{a}} \pi_{\Theta_{s}} \tag{5}
\end{equation*}
$$

where d_{s}^{a} denotes the depth of internal node $s \in \mathcal{I}_{a}$ in the subtree T_{a}.
The relation holds trivially for any subtree T_{a} rooted at an internal node $a \in \mathcal{I}$ whose both child nodes terminate as leaf nodes, with both the left hand side and the right hand side of the expression equal to $\pi_{\Theta_{a}}$. Now, consider a subtree T_{a} rooted at an internal node $a \in \mathcal{I}$ whose left child (or right child) alone terminates as a leaf node. Assume that the above relation holds true for the subtree rooted at the right child of node ' a '. Then,

$$
\begin{aligned}
\pi_{\Theta_{a}} \widetilde{L}_{\lambda}^{a} & =\sum_{j \in \mathcal{L}_{a}} \pi_{\Theta_{j}}\left[\sum_{h=0}^{d_{j}^{a}-1} \lambda^{h}\right] \\
& =\sum_{\left\{j \in \mathcal{L}_{a}: d_{j}^{a}=1\right\}} \pi_{\Theta_{j}}+\sum_{\left\{j \in \mathcal{L}_{a}: d_{j}^{a}>1\right\}} \pi_{\Theta_{j}}\left[\sum_{h=0}^{d_{j}^{a}-1} \lambda^{h}\right] \\
& =\pi_{\Theta_{l(a)}}+\sum_{\left\{j \in \mathcal{L}_{a}: d_{j}^{a}>1\right\}} \pi_{\Theta_{j}}\left[1+\lambda \sum_{h=0}^{d_{j}^{a}-2} \lambda^{h}\right] \\
& =\pi_{\Theta_{a}}+\lambda \sum_{j \in \mathcal{L}_{r(a)}} \pi_{\Theta_{j}}\left[\sum_{h=0}^{d_{j}^{r(a)}-1} \lambda^{h}\right] \\
& =\pi_{\Theta_{a}}+\lambda \sum_{s \in \mathcal{I}_{r(a)}} \lambda^{d_{s}^{r(a)}} \pi_{\Theta_{s}}
\end{aligned}
$$

where the last step follows from the induction hypothesis. Finally, consider a subtree T_{a} rooted at an internal node $a \in \mathcal{I}$ whose neither child node terminates as a leaf node. Assume that the relation in (5) holds true for the subtrees rooted at its left and right child nodes. Then,

$$
\begin{aligned}
\pi_{\Theta_{a}} \widetilde{L}_{\lambda}^{a} & =\sum_{j \in \mathcal{L}_{a}} \pi_{\Theta_{j}}\left[\sum_{h=0}^{d_{j}^{a}-1} \lambda^{h}\right] \\
& =\sum_{j \in \mathcal{L}_{l(a)}} \pi_{\Theta_{j}}\left[1+\lambda \sum_{h=0}^{d_{j}^{a}-2} \lambda^{h}\right]+\sum_{j \in \mathcal{L}_{r(a)}} \pi_{\Theta_{j}}\left[1+\lambda \sum_{h=0}^{d_{j}^{a}-2} \lambda^{h}\right] \\
& =\pi_{\Theta_{a}}+\lambda \sum_{j \in \mathcal{L}_{l(a)}} \pi_{\Theta_{j}}\left[\sum_{h=0}^{d_{j}^{l(a)}-1} \lambda^{h}\right]+\lambda \sum_{j \in \mathcal{L}_{r(a)}} \pi_{\Theta_{j}}\left[\sum_{h=0}^{d_{j}^{r(a)}-1} \lambda^{h}\right] \\
& =\pi_{\Theta_{a}}+\lambda\left[\sum_{s \in \mathcal{I}_{l(a)}} \lambda^{d_{s}^{l(a)}} \pi_{\Theta_{s}}+\sum_{s \in \mathcal{I}_{r(a)}} \lambda^{d_{s}^{r(a)}} \pi_{\Theta_{s}}\right]=\sum_{s \in \mathcal{I}_{a}} \lambda^{d_{s}^{a}} \pi_{\Theta_{s}}
\end{aligned}
$$

thereby completing the induction. Finally, the result follows by applying the relation in (5) to the tree T whose probability mass at the root node, $\pi_{\Theta_{a}}=1$.

Lemma 2. The function \widetilde{H}_{α} can be decomposed over the internal nodes in a tree T, as

$$
\tilde{H}_{\alpha}=\frac{1}{\left(\sum_{k=1}^{K} \pi_{\Theta^{k}}^{\alpha}\right)^{\frac{1}{\alpha}}} \sum_{a \in \mathcal{I}}\left[\pi_{\Theta_{a}} \mathcal{D}_{\alpha}\left(\Theta_{a}\right)-\pi_{\Theta_{l(a)}} \mathcal{D}_{\alpha}\left(\Theta_{l(a)}\right)-\pi_{\Theta_{r(a)}} \mathcal{D}_{\alpha}\left(\Theta_{r(a)}\right)\right]
$$

where $\mathcal{D}_{\alpha}\left(\Theta_{a}\right):=\left[\sum_{k=1}^{K}\left(\frac{\pi_{\Theta_{a}^{k}}}{\pi_{\Theta_{a}}}\right)^{\alpha}\right]^{\frac{1}{\alpha}}$ and $\pi_{\Theta_{a}}$ denotes the probability mass of the objects at any internal node $a \in \mathcal{I}$.

Proof. Let T_{a} denote a subtree from any internal node ' a ' in the tree T and let \mathcal{I}_{a} denote the set of internal nodes in the subtree T_{a}. Then, define $\widetilde{H}_{\alpha}^{a}$ in a subtree T_{a} to be

$$
\widetilde{H}_{\alpha}^{a}=1-\frac{\pi_{\Theta_{a}}}{\left[\sum_{k=1}^{K} \pi_{\Theta_{a}^{j}}^{\alpha}\right]^{\frac{1}{\alpha}}}
$$

Now, we show using induction that for any subtree T_{a} in the tree T, the following relation holds

$$
\begin{equation*}
\left[\sum_{k=1}^{K} \pi_{\Theta_{a}^{k}}^{\alpha}\right]^{\frac{1}{\alpha}} \widetilde{H}_{\alpha}^{a}=\sum_{s \in \mathcal{I}_{a}}\left[\pi_{\Theta_{s}} \mathcal{D}_{\alpha}\left(\Theta_{s}\right)-\pi_{\Theta_{l(s)}} \mathcal{D}_{\alpha}\left(\Theta_{l(s)}\right)-\pi_{\Theta_{r(s)}} \mathcal{D}_{\alpha}\left(\Theta_{r(s)}\right)\right] \tag{6}
\end{equation*}
$$

Note that the relation holds trivially for any subtree T_{a} rooted at an internal node $a \in \mathcal{I}$ whose both child nodes terminate as leaf nodes. Now, consider a subtree T_{a} rooted at any other internal node $a \in \mathcal{I}$. Assume the above relation holds true for the subtrees rooted at its left and right child nodes. Then,

$$
\begin{aligned}
{\left[\sum_{k=1}^{K} \pi_{\Theta_{a}^{k}}^{\alpha}\right]^{\frac{1}{\alpha}} \widetilde{H}_{\alpha}^{a}=} & {\left[\sum_{k=1}^{K} \pi_{\Theta_{a}^{k}}^{\alpha}\right]^{\frac{1}{\alpha}}-\pi_{\Theta_{a}}=\left[\sum_{k=1}^{K} \pi_{\Theta_{a}^{k}}^{\alpha}\right]^{\frac{1}{\alpha}}-\pi_{\Theta_{l(a)}}-\pi_{\Theta_{r(a)}} } \\
= & {\left[\sum_{k=1}^{K} \pi_{\Theta_{a}^{k}}^{\alpha}\right]^{\frac{1}{\alpha}}-\left[\sum_{k=1}^{K} \pi_{\Theta_{l(a)}^{k}}^{\alpha}\right]^{\frac{1}{\alpha}}-\left[\sum_{k=1}^{K} \pi_{\Theta_{r(a)}^{k}}^{\alpha}\right]^{\frac{1}{\alpha}} } \\
& +\left(\left[\sum_{k=1}^{K} \pi_{\Theta_{l(a)}^{k}}^{\alpha}\right]^{\frac{1}{\alpha}}-\pi_{\Theta_{l(a)}}\right)+\left(\left[\sum_{k=1}^{K} \pi_{\Theta_{r(a)}^{k}}^{\alpha}\right]^{\frac{1}{\alpha}}-\pi_{\Theta_{r(a)}}\right) \\
= & {\left[\pi_{\Theta_{a}} \mathcal{D}_{\alpha}\left(\Theta_{a}\right)-\pi_{\Theta_{l(a)}} \mathcal{D}_{\alpha}\left(\Theta_{l(a)}\right)-\pi_{\Theta_{r(a)}} \mathcal{D}_{\alpha}\left(\Theta_{r(a)}\right)\right] } \\
& +\left[\sum_{k=1}^{K} \pi_{\Theta_{l(a)}^{\alpha}}^{\alpha}\right]^{\frac{1}{\alpha}} \widetilde{H}_{\alpha}^{l(a)}+\left[\sum_{k=1}^{K} \pi_{\Theta_{r(a)}^{\alpha}}^{\alpha}\right]^{\frac{1}{\alpha}} \widetilde{H}_{\alpha}^{r(a)} \\
= & \sum_{s \in \mathcal{I}_{a}}\left[\pi_{\Theta_{s}} \mathcal{D}_{\alpha}\left(\Theta_{s}\right)-\pi_{\Theta_{l(s)}} \mathcal{D}_{\alpha}\left(\Theta_{l(s)}\right)-\pi_{\Theta_{r(s)}} \mathcal{D}_{\alpha}\left(\Theta_{r(s)}\right)\right]
\end{aligned}
$$

where the last step follows from the induction hypothesis. Finally, the result follows by applying the relation in (6) to the tree T.

2 Proof of Theorem 3

The result in Theorem 3 follows from the above result where each group is of size one, thereby reducing $\mathcal{D}_{\alpha}\left(\Theta_{a}\right)$ to

$$
\mathcal{D}_{\alpha}\left(\Theta_{a}\right)=\left[\sum_{i=1}^{M}\left(\frac{\pi_{i} \mathbb{I}_{\left\{\theta_{i} \in \Theta_{a}\right\}}}{\pi_{\Theta_{a}}}\right)^{\alpha}\right]^{\frac{1}{\alpha}}=\left[\sum_{\left\{i: \theta_{i} \in \Theta_{a}\right\}}\left(\frac{\pi_{i}}{\pi_{\Theta_{a}}}\right)^{\alpha}\right]^{\frac{1}{\alpha}}
$$

where $\mathbb{I}_{\left\{\theta_{i} \in \Theta_{a}\right\}}$ is the indicator function which takes the value one when $\theta_{i} \in \Theta_{a}$, and zero otherwise.

3 Proof of Theorem 2

The result in Theorem 2 is a special case of that in Theorem 4 when $\lambda \rightarrow 1$. It follows by taking the logarithm to the base λ on both sides of equation
$\lambda^{L_{\lambda}(\Pi)}=\lambda^{H_{\alpha}\left(\Pi_{\mathbf{y}}\right)}+\sum_{a \in \mathcal{I}} \pi_{\Theta_{a}}\left[(\lambda-1) \lambda^{d_{a}}-\mathcal{D}_{\alpha}\left(\Theta_{a}\right)+\frac{\pi_{\Theta_{l(a)}}}{\pi_{\Theta_{a}}} \mathcal{D}_{\alpha}\left(\Theta_{l(a)}\right)+\frac{\pi_{\Theta_{r(a)}}}{\pi_{\Theta_{a}}} \mathcal{D}_{\alpha}\left(\Theta_{r(a)}\right)\right]$, and then finding the limit as $\lambda \rightarrow 1$.

Using L'Hôpital's rule, the left hand side (LHS) of the equation reduces to

$$
\lim _{\lambda \rightarrow 1} \log _{\lambda}(\mathrm{LHS})=\lim _{\lambda \rightarrow 1} L_{\lambda}(\Pi)=\sum_{j \in \mathcal{L}} \pi_{\Theta_{j}} d_{j}
$$

where $L_{\lambda}(\Pi)=\log _{\lambda}\left(\sum_{j \in \mathcal{L}} \pi_{\Theta_{j}} \lambda^{d_{j}}\right)$. Similarly, the right hand side (RHS) of the equation reduces to

$$
\lim _{\lambda \rightarrow 1} \log _{\lambda}(\mathrm{RHS})=H\left(\Pi_{\mathbf{y}}\right)+\sum_{a \in \mathcal{I}} \pi_{\Theta_{a}}\left[1-\left(H\left(\Theta_{a}\right)-\frac{\pi_{\Theta_{l(a)}}}{\pi_{\Theta_{a}}} H\left(\Theta_{l(a)}\right)-\frac{\pi_{\Theta_{r(a)}}}{\pi_{\Theta_{a}}} H\left(\Theta_{r(a)}\right)\right)\right]
$$

where $H\left(\Theta_{a}\right)=-\sum_{k=1}^{K} \frac{\pi_{\Theta_{a}^{k}}}{\pi_{\Theta_{a}}} \log _{2}\left(\frac{\pi_{\Theta_{a}^{k}}}{\pi_{\Theta_{a}}}\right)$.
Finally, the result follows by noticing that

$$
\begin{align*}
& H\left(\Theta_{a}\right)- \frac{\pi_{\Theta_{l(a)}}}{\pi_{\Theta_{a}}} H\left(\Theta_{l(a)}\right)-\frac{\pi_{\Theta_{r(a)}}}{\pi_{\Theta_{a}}} H\left(\Theta_{r(a)}\right) \\
&= \frac{1}{\pi_{\Theta_{a}}}\left[\sum_{k=1}^{K} \pi_{\Theta_{a}^{k}} \log _{2}\left(\frac{\pi_{\Theta_{a}}}{\pi_{\Theta_{a}^{k}}}\right)-\pi_{\Theta_{l(a)}^{k}} \log _{2}\left(\frac{\pi_{\Theta_{l(a)}}}{\pi_{\Theta_{l(a)}^{k}}}\right)-\pi_{\Theta_{r(a)}^{k}} \log _{2}\left(\frac{\pi_{\Theta_{r(a)}}}{\pi_{\Theta_{r(a)}^{k}}}\right)\right] \tag{7a}\\
&= \frac{1}{\pi_{\Theta_{a}}}\left[\sum_{k=1}^{K} \pi_{\Theta_{l(a)}^{k}} \log _{2}\left(\frac{\pi_{\Theta_{a}}}{\pi_{\Theta_{l(a)}}} \cdot \frac{\pi_{\Theta_{l(a)}^{k}}}{\pi_{\Theta_{a}^{k}}}\right)+\pi_{\Theta_{r(a)}^{k}} \log _{2}\left(\frac{\pi_{\Theta_{a}}}{\pi_{\Theta_{r(a)}}} \cdot \frac{\pi_{\Theta_{r(a)}^{k}}}{\pi_{\Theta_{a}^{k}}}\right)\right] \tag{7b}\\
&= \frac{1}{\pi_{\Theta_{a}}}\left[\pi_{\Theta_{l(a)}} \log _{2}\left(\frac{\pi_{\Theta_{a}}}{\pi_{\Theta_{l(a)}}}\right)+\pi_{\Theta_{r(a)}} \log _{2}\left(\frac{\pi_{\Theta_{a}}}{\pi_{\Theta_{r(a)}}}\right)\right. \\
&\left.\quad+\sum_{k=1}^{K} \pi_{\Theta_{l(a)}^{k}} \log _{2}\left(\frac{\pi_{\Theta_{l(a)}^{k}}}{\pi_{\Theta_{a}^{k}}}\right)+\pi_{\Theta_{r(a)}^{k}} \log _{2}\left(\frac{\pi_{\Theta_{r(a)}^{k}}}{\pi_{\Theta_{a}^{k}}}\right)\right] \tag{7c}\\
&= H\left(\rho_{a}\right)+\sum_{k=1}^{K} \frac{\pi_{\Theta_{a}^{k}}}{\pi_{\Theta_{a}}} H\left(\rho_{a}^{k}\right) \tag{7d}
\end{align*}
$$

where (7b) follows from (7a) by using the relation $\pi_{\Theta_{a}^{k}}=\pi_{\Theta_{l(a)}^{k}}+\pi_{\Theta_{r(a)}^{k}}$, and (7d) follows from (7c) using the definitions of ρ_{a} and ρ_{a}^{k}.

4 Proof of Theorem 1

The result in Theorem 1 follows from the above result where each group is of size one, thereby having $\rho_{a}^{k}=1 \forall k$ at each internal node $a \in \mathcal{I}$. It can also be derived as the limiting case of the relation in Theorem 3 by taking logarithm to the base λ on both sides of the relation and letting $\lambda \rightarrow 1$.

