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Edges
Points of sharp variations

Why do we need edge information?
- to discriminate objects from their background
- a very important precursor in many applications like region segmentation,       
image retrieval, data hiding or recognition and tracking of objects in image 
sequences.

Reconstruct Images from Multiscale edges
- Process Image information with edge based algorithms
- Image compression
- Image restoration



Detection of edges



Edge Detection via Wavelet transform
How is edge detection related to 
wavelet transform?
The difference coefficients of a 
wavelet transform are nothing 
but the differentiation of the 
signal smoothed at different 
scales.

- Consider the daub 1 wavelet filter
g = [-1 1]
Wj f (x) = f * Ψj (x)

= fj-1 * g
= fj-1(x-1) – fj-1(x)



- How to combine these different values to characterize the 
signal variation?

- The wavelet theory gives an answer to this question by 
showing that the evolution across scales of the wavelet 
transform depends on the local Lipschitz regularity of the 
signal.



Definition : Let 0 ≤ α ≤ 1. A function f(x) is uniformly Lipschitz α over an 
interval (a,b) if and only if there exists a constant K such that for 
any (x0,x1) Є (a,b)2

| f(x0) – f(x1) | ≤ K | x0 – x1|α

Theorem1 : Let 0 < α < 1. A function  f(x) is uniformly Lipschitz α over (a,b)
if and only if there exists a constant K > 0 such that for all x Є (a,b)2

the wavelet transform satisfies

1 Meyer, ‘Ondelettes et Operatuers’, 1990

α)2(|)(| 2
jKxfW j ≤



If the uniform Lipschitz regularity is 
positive, the above condition implies that 
the amplitude of the wavelet transform 
modulus maxima should decrease when 
the scale decreases.

The singularity at abscissa 3 produces 
wavelet transform maxima that increase 
when the scale decreases. These can be 
decribed by a negative Lipschitz
exponent.
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Concluding remarks:

- Complete information about the discontinuities in the signal 
is embedded in its wavelet transform across scales.

- the lipschitz exponent and the smoothness of the 
discontinuity can be completely retrieved from the wavelet 
transform modulus maxima values at different scales.

Task : To reconstruct the signal from this information!



Reconstruction
The reconstruction of signals from multi scale edges has mainly been 
studied in the zero crossing framework1.
Issues : There are known counter examples that prove that the positions of 
zero crossings of Wb

s f(x) do not characterize uniquely the function f(x).
Example : Wavelet transform of ‘sin(x)’ and ‘sin(x) + 0.2sin(2x)’ have the 
same zero crossings at all scales.
Mallat’s Conjecture2 : To obtain a complete and stable zero crossing 
representation, it is sufficient to record the positions where Wa

s f(x) has 
local extrema and its value at the corresponding locations.
A reconstruction algorithm has been proposed by Mallat based on this 
conjecture.

1 B.Logan,”Information in the zero crossings of band pass signals”, Bell Syst. Tech. J., vol. 56, 1977.
2 Mallat,”Zero crossings of a wavelet transform,” IEEE Trans. Inform. Theory, vol. 37, July 1991.



Reconstruction Algorithm
Goal : To reconstruct an approximation of                      given the positions of 
the local maxima of                and the values of            at these locations.
Assume that the wavelet Ψ(x) is differentiable in the sense of Sobolev, hence 
the wavelet transform of f(x) is also differentiable in the sense of Sobolev, and it 
has, at most, a countable number of modulus maxima.
The maxima constraints on              can be decomposed in two conditions :
- At each scale 2j, for each local maximum located at                             .
- At each scale 2j, the local maxima of                are located at the abscissa  
Condition 1 is equivalent to:                                   
Hence the solution to this would be                             where O is the 
orthogonal complement to the space spanned by                   
Condition 2 is more difficult to analyze because it is not convex. It can be 
replaced by an equivalent convex constraint  
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Reconstruction Algorithm

Instead of computing the solution itself, we reconstruct its wavelet transform 
with an algorithm based on alternate projections.
The solutions to condition 1 belong to the space                where V is the space 
of all dyadic wavelet transforms of functions in L2 (R) and Γ is the affine space 
of sequences of functions                 such that for any index j and all maxima 
positions                                           
The sequence that satisfies both the conditions is the element of Λ whose norm    
|   | is minimum. This is done by alternately projecting onto V and Γ .

j

2+ 2 2 2
2

j = -
 W 2 jj dW h

Min h
dx

∞

∞

⎛ ⎞
⎜ ⎟+
⎜ ⎟
⎝ ⎠

∑

( ) ( ) ( )  with ( )h x f x g x g x O= + ∈

VΛ = ∩Γ

( ( ))j j Zg x ∈

2
,  ( ) ( )j

j j j
n j n nx g x W f x=



Reconstruction Algorithm
The projection operator on V is PV = WoW-1 since any dyadic wavelet 
transform will be invariant under this operator.
The projection operator PΓ is implemented by adding piecewise 
exponentials curves to each function of the sequence that we project on Γ.



Reconstruction Algorithm

Any spurious oscillations that may result can 
be suppressed by imposing sign constraints.
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Reconstructed Lena
True Image Wavelet transform, Wx Wavelet transform, Wy

Edge Map Reconstructed Image



Application



Image Restoration

True Image Noisy Image

Reconstructed Image



True Image

Wavelet transform, Wy

Edge map!

Image in salt & pepper noise

Wavelet transform, Wx

Reconstructed Image

Can you see Lena???



Drawbacks!!
The completeness of the representation used in the algorithm depends on the 
choice of the smoothing function θ(x) and the conjecture is not valid in 
general1.

A discrete analysis of the completeness conjecture was done independently 
by Berman2, who found numerical examples that contradict the completeness 
conjecture.

Convergence Issues : The computation of the solution might be unstable, in 
which case, the alternate projections converge very slowly.

1 Meyer, “Un contre-example a la conjecture de Marr et a celle de S.Mallat,” 1991
2 Z.Berman, “The uniqueness question of discrete wavelet maxima representation,” Tech. Rep, Univ of Maryland, Apr 1991.
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