Characterization of Signals from Multiscale edges

Gowtham Bellala

Points of sharp variations

□ Why do we need edge information?

- to discriminate objects from their background

- a very important precursor in many applications like region segmentation, image retrieval, data hiding or recognition and tracking of objects in image sequences.

- Reconstruct Images from Multiscale edges
 - Process Image information with edge based algorithms
 - Image compression
 - Image restoration

Detection of edges

Edge Detection via Wavelet transform

- How is edge detection related to wavelet transform?
- The difference coefficients of a wavelet transform are nothing but the differentiation of the signal smoothed at different scales.
 - Consider the daub 1 wavelet filter $g = [-1 \ 1]$ $W_{j}f(x) = f * \Psi_{j}(x)$ $= f_{j-1} * g$ $= f_{j-1}(x-1) - f_{j-1}(x)$

- How to combine these different values to characterize the signal variation?
- The wavelet theory gives an answer to this question by showing that the evolution across scales of the wavelet transform depends on the local Lipschitz regularity of the signal.

Definition : Let $0 \le \alpha \le 1$. A function f(x) is uniformly Lipschitz α over an interval (a,b) if and only if there exists a constant K such that for any $(x_0, x_1) \in (a,b)^2$ $|f(x_0) - f(x_1)| \le K |x_0 - x_1|^{\alpha}$

Theorem¹ : Let $0 < \alpha < 1$. A function f(x) is uniformly Lipschitz α over (a,b)if and only if there exists a constant K > 0 such that for all $x \in (a,b)^2$ the wavelet transform satisfies

 $|W_{2^j}f(x)| \le K(2^j)^{\alpha}$

1 Meyer, 'Ondelettes et Operatuers', 1990

 $|W_{2^j}f(x)| \le K(2^j)^{\alpha}$

- □ If the uniform Lipschitz regularity is positive, the above condition implies that the amplitude of the wavelet transform modulus maxima should decrease when the scale decreases.
- □ The singularity at abscissa 3 produces wavelet transform maxima that increase when the scale decreases. These can be decribed by a negative Lipschitz exponent.

$$f(x) = h * g_{\sigma}(x)$$
$$g_{\sigma}(x) = \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp(-\frac{x^{2}}{2\sigma^{2}})$$
$$W_{2^{j}}f(x) = 2^{j}\frac{d}{dx}(f * \theta_{2^{j}})(x) = 2^{j}\frac{d}{dx}(h * g_{\sigma} * \theta_{2^{j}})(x)$$
$$\approx 2^{j}\frac{d}{dx}(h * \theta_{s_{\sigma}})(x) = \frac{2^{j}}{s_{0}}W_{s_{\sigma}}h(x)$$

where
$$s_0 = \overline{)2^{2j} + \sigma^2}$$

$$|W_{s}h(x)| \leq K(s)^{\alpha} \implies |W_{2^{j}}f(x)| \leq K2^{j}(s_{o})^{\alpha-1}$$

□ Concluding remarks:

- Complete information about the discontinuities in the signal is embedded in its wavelet transform across scales.

- the lipschitz exponent and the smoothness of the discontinuity can be completely retrieved from the wavelet transform modulus maxima values at different scales.

Task : To reconstruct the signal from this information!

Reconstruction

- □ The reconstruction of signals from multi scale edges has mainly been studied in the zero crossing framework¹.
- Issues : There are known counter examples that prove that the positions of zero crossings of W^b_s f(x) do not characterize uniquely the function f(x).
 Example : Wavelet transform of 'sin(x)' and 'sin(x) + 0.2sin(2x)' have the same zero crossings at all scales.
- □ *Mallat's Conjecture*² : To obtain a complete and stable zero crossing representation, it is sufficient to record the positions where $W^a_s f(x)$ has local extrema and its value at the corresponding locations.
- A reconstruction algorithm has been proposed by Mallat based on this conjecture.

¹ B.Logan,"Information in the zero crossings of band pass signals", Bell Syst. Tech. J., vol. 56, 1977.

² Mallat,"Zero crossings of a wavelet transform," IEEE Trans. Inform. Theory, vol. 37, July 1991.

- Goal : To reconstruct an approximation of $(W_{2^j}f(x))_{j\in Z}$ given the positions of the local maxima of $|W_{2^j}f(x)|$ and the values of $W_{2^j}f(x)$ at these locations.
- Assume that the wavelet $\Psi(x)$ is differentiable in the sense of Sobolev, hence the wavelet transform of f(x) is also differentiable in the sense of Sobolev, and it has, at most, a countable number of modulus maxima.
- The maxima constraints on $W_{2^j}h(x)$ can be decomposed in two conditions :
 - At each scale 2^j , for each local maximum located at x_n^j , $W_{2^j}h(x_n^j) = W_{2^j}f(x_n^j)$.
 - At each scale 2^{j} , the local maxima of $|W_{2^{j}}h(x)|$ are located at the abscissa $(x_{n}^{j})_{n \in \mathbb{Z}}$
- Condition 1 is equivalent to: $\langle f(k), \psi_{2^j}(x_n^j k) \rangle = \langle h(k), \psi_{2^j}(x_n^j k) \rangle$ Hence the solution to this would be h(x) = f(x) + g(x) with $g(x) \in O$ where O is the orthogonal complement to the space spanned by $\{\psi_{2^j}(x_n^j - x)\}_{(j,n) \in \mathbb{Z}^2}$
- Condition 2 is more difficult to analyze because it is not convex. It can be replaced by an equivalent convex constraint

$$Min \sum_{j=-\infty}^{+\infty} \left(\left\| \mathbf{W}_{2^{j}} h \right\|^{2} + 2^{2^{j}} \left\| \frac{dW_{2^{j}} h}{dx} \right\|^{2} \right)$$

$$Min \sum_{j=-\infty}^{+\infty} \left(\left\| \mathbf{W}_{2^{j}} h \right\|^{2} + 2^{2^{j}} \left\| \frac{dW_{2^{j}} h}{dx} \right\|^{2} \right)$$

h(x) = f(x) + g(x) with $g(x) \in O$

- □ Instead of computing the solution itself, we reconstruct its wavelet transform with an algorithm based on alternate projections.
- The solutions to condition 1 belong to the space $\Lambda = V \cap \Gamma$ where *V* is the space of all dyadic wavelet transforms of functions in $L^2(R)$ and Γ is the affine space of sequences of functions $(g_j(x))_{j \in Z}$ such that for any index *j* and all maxima positions $x_n^j, g_j(x_n^j) = W_{2^j}f(x_n^j)$
- The sequence that satisfies both the conditions is the element of Λ whose norm | is minimum. This is done by alternately projecting onto V and Γ .

- □ The projection operator on V is $P_V = WoW^{-1}$ since any dyadic wavelet transform will be invariant under this operator.
- The projection operator P_{Γ} is implemented by adding piecewise exponentials curves to each function of the sequence that we project on Γ .

$$\varepsilon_j(x) = \alpha e^{2^{-j}x} + \beta e^{-2^{-j}x}$$

where $\varepsilon_j(x_o) = W_{2^j}f(x_o) - g_j(x_o)$
 $\varepsilon_j(x_1) = W_{2^j}f(x_1) - g_j(x_1)$

 Any spurious oscillations that may result can be suppressed by imposing sign constraints.

$$\begin{cases} sign(g_j(x) = sign(x_n^j)) & \text{if } sign(x_n^j) = sign(x_{n+1}^j) \\ sign(\frac{dg_j(x)}{dx}) = sign(x_{n+1}^j - x_n^j) & \text{if } sign(x_n^j) \neq sign(x_{n+1}^j) \end{cases}$$

Reconstructed Lena

Edge Map

Reconstructed Image

Application

Image Restoration

Noisy Image

Reconstructed Image

Drawbacks!!

- The completeness of the representation used in the algorithm depends on the choice of the smoothing function $\theta(x)$ and the conjecture is not valid in general¹.
- □ A discrete analysis of the completeness conjecture was done independently by Berman², who found numerical examples that contradict the completeness conjecture.
- □ Convergence Issues : The computation of the solution might be unstable, in which case, the alternate projections converge very slowly.

¹ Meyer, "Un contre-example a la conjecture de Marr et a celle de S.Mallat," 1991

² Z.Berman, "The uniqueness question of discrete wavelet maxima representation," Tech. Rep, Univ of Maryland, Apr 1991.

Failure!!

Thank U