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1 Introduction

In this paper, we study two diverse problems from a random matrix perspective. The first one is the
problem of binary testing (or object/entity identification) that arises in applications such as active learning,
fault diagnosis and computer vision, and the second is the problem of zero or bounded skew clock tree
construction which arises in applications such as VLSI circuit design and network multicasting. Though
both these problems involve construction of binary trees, the objectives and the greedy algorithms used
for binary tree construction are very different.

In the problem of binary testing, the goal is to identify an unknown object while minimizing the number
of binary questions posed about that object. A binary decision tree is a solution to this problem, where
often the goal is to minimize the average depth of the binary tree. Generalized binary search (GBS) is a
greedy algorithm that is popularly used in the literature to construct near optimal binary decision trees.
Here, we study the depth distribution of trees constructed using GBS and show that it converges to a
strange distribution known as the Airy distribution under certain random matrix models. Refer Section 3
for more details.

Next, we study the zero or bounded skew clock tree problem. The skew of an edge-weighted rooted
tree is defined to be the maximum difference between any two root-to-leaf path weights. Zero or bounded-
skew trees are needed for achieving synchronization in applications such as network multicasting and
VLSI clock routing, where the edge weights correspond to propagation delays. In these applications,
the signal generated at the root should be received by multiple recipients located at the leaves (almost)
simultaneously. The goal in these problems is to find a zero or bounded-skew tree of minimum total
weight, since the weight of the tree corresponds to the amount of resources that must be allocated. Here,
we study the skew distribution in clock trees and show that once again, this distribution converges to an
Airy distribution as the size of the clock tree increases (refer Section 4).

These observations are both surprising and unexpected. Further, they raise several interesting questions
regarding the connection of these problems to that of Catalan trees studied in the literature. Also, Airy
distribution has been observed to arise as a limit in several other problems involving binary trees in the
literature. Hence, these findings pave way for future investigations into these problems by exploiting their
relation to previously studied problems.

2 Background

We begin by providing a brief description of Catalan trees along with Airy distribution and the relation
between them.

2.1 Catalan trees

Before we describe Catalan trees, we need to briefly review Catalan numbers and full binary trees. Catalan
numbers are a sequence of natural numbers that occur in various counting problems [1] and can be described
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Figure 1: The five different full binary trees with 3 internal nodes

by the recurrence relation

C0 = 1, and Cn+1 =
n∑

i=0

CiCn−i for n ≥ 0.

Then, the nth Catalan number can be expressed directly in terms of binomial coefficients as

Cn =
1

n+ 1

(
2n
n

)
, for n ≥ 0.

A full binary tree is a rooted binary tree where every vertex has either two children or no children.
The vertices with no children are often referred to as leaves and those with two children are referred to as
internal nodes. It turns out that the number of full binary trees with n internal nodes (equivalently, n+ 1
leaves) is given by the nth Catalan number. Figure 1 shows the various full binary trees for n = 3.

A Catalan tree with n internal nodes is nothing but a full binary tree chosen uniformly at random from
the space of Cn full binary trees. Since the probability of choosing a tree from this space of full binary
trees is given by 1/Cn = (n+ 1)/

(
2n
n

)
, it is commonly referred to as Catalan trees [2].

2.2 Airy Distribution

The Airy Distribution function describes the probability distribution of the area under a Brownian ex-
cursion over a unit interval. However for combinatorialists and theoretical computer scientists, this Airy
distribution (of the “area type”) arises in a surprising diversity of contexts like parking allocations, hashing
tables, trees, discrete random walks, merge-sorting, etc. The most straightforward description of the Airy
distribution is by its moments themselves defined by a simple nonlinear recurrence.

Definition 1. The Airy distribution (of the “area type”) is the probability distribution of a random variable
X whose moments are given by

E(Xr) =
−Γ(−1

2)
Γ(3r−1

2 )
Ωr, r ≥ 1,

where the “Airy constants” Ωr are determined by the quadratic recurrence

Ω0 = −1, 2Ωr = (3r − 4)rΩr−1 +
r−1∑
j=1

(
r

j

)
ΩjΩr−j (r ≥ 1).

The normalized random variable Y = X/
√

8 is called the “Brownian excursion area” (BEA).

Figure 2 shows the first few values of Ωr and of the moments E[Xr], while Figure 3 shows a standard
Airy distribution. The right tail of an Airy distribution decays like a Gaussian at a rate ∼ e−x2

where as
the left tail decays at a much faster rate ∼ x−5e−x2

. Some of the contexts in which an Airy distribution
arises are discussed below.
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Figure 2: A Table of the Airy constants Ωr and of the
Airy moments E[Xr]
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Figure 3: Plot of the Airy distribution function

1. Path length in trees (that is, the sum of distances from the root to all nodes) is asymptotically Airy
distributed in Catalan trees as well as in other combinatorial families of trees [3, 4, 5, 6].

2. The total displacement of a random parking sequence or equivalently the construction cost of a
hashing table under the linear probing strategy is Airy distributed in the limit [7, 8].

3. Also, the breadth first search traversal of random trees has a cumulated cost that is asymptotically
Airy distributed [9].

For a more detailed discussion on the Airy distribution, refer [10].

3 The Binary Testing Problem

Binary Testing (also known as object/entity identification) is the problem of identifying an unknown object
while minimizing the number of binary questions posed about that object. It often arises in applications
such as active learning [11, 12], disease/fault diagnosis [13], toxic chemical identification [14], computer
vision [15] or the adaptive traveling salesperson problem [16].

Following the terminology in [17], these problems can be formulated as containing a set Θ = {θ1, · · · , θM}
of M different objects and a set Q = {q1, · · · , qN} of N distinct subsets of Θ known as queries. An unknown
object θ is generated from this set Θ with a certain prior probability distribution Π = (π1, · · · , πM ), i.e.,
πi = Pr(θ = θi), and the goal is to uniquely identify this unknown object through as few queries from Q as
possible, where a query q ∈ Q returns a value 1 if θ ∈ q, and 0 otherwise. An object identification problem
can also be denoted using the pair (B,Π) where B is an M ×N binary matrix with bij equal to 1 if θi ∈ qj ,
and 0 otherwise. Figure 4(b) shows a binary matrix representation of the toy dataset in Figure 4(a).

Given (B,Π), the goal of object identification is to construct an optimal binary decision tree, where
each internal node in the tree is associated with a query from Q, and each leaf node corresponds to an
object from Θ. Optimality is often with respect to the expected depth of the leaf node corresponding to
the unknown object θ. In general the determination of an optimal tree is NP-complete [18]. Hence, various
greedy algorithms [19, 20, 21] have been proposed to obtain a suboptimal binary decision tree. A well
studied algorithm for this problem is known as the splitting algorithm [19] or generalized binary search
(GBS) [11, 12]. This is the greedy algorithm which selects a query that most evenly divides the probability
mass of the remaining objects [11, 12, 19].

3.1 Limiting Depth Distribution of Generalized Binary Search Trees

Let K be a random variable that denotes the number of queries required to identify an unknown object
using a tree T . If the unknown object is θi, then K corresponds to the number of queries made along the
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Figure 4: a) A toy object identification problem b) Corresponding binary matrix representation c) A GBS
tree constructed on the toy problem under a uniform prior distribution on the objects.

path from the root node to the leaf node terminating in object θi, i.e., depth of the leaf node corresponding
to object θi.

The trees generated using GBS have been extensively studied in terms of the expected depth of their
leaf nodes [19, 11], i.e., the expected value of the random variable K. Here, we study the entire depth
distribution of the leaf nodes. In particular, we study the limiting distribution of the random variable K
in trees generated using GBS as M (the object set size) and N (the query set size) increases. This is the
first study involving the entire depth distribution to the best of our knowledge.

We consider datasets (M×N binary matrices) generated using the standard Erdös-Rényi (ER) random
graph model [22, 23]. We note that as M and N increases, the distribution of the random variable K in
trees constructed using GBS converges to an Airy distribution. We observed the same phenomenon for
different values of p (the probability of an edge) in the ER random graph model as shown in Figure 5.

Figure 5 presents two plots for three different values of p in the ER random graph model. In each case,
the first plot compares an Airy distribution to that of the leaf depth distribution (distribution of K) in GBS
trees constructed on 1000 randomly generated datasets using the ER model. The second plot compares
the quantiles of the two distributions. Note that this plot diverges from the straight line on the right end
since the leaf depth distribution of GBS trees have a finite support as against the Airy distribution that
has an infinite support on the right end.

4 The Zero and Bounded Skew Clock tree Problem

A fundamental problem in VLSI design is clock routing, i.e., distributing a clock signal to synchronous
elements in a VLSI circuit so that the signal arrives at all elements simultaneously [24, 25]. The signal is
distributed by means of a clock routing tree (also referred to as a H-tree) rooted at a global clock source.
The difference in length between the longest and shortest root-leaf path is called the skew of the tree,
where the edge lengths translate to propagation delays. To achieve synchronization, the skew should be
zero, which is a desired property even in applications such as network multicasting [26] besides VLSI clock
routing. Figure 7 shows a typical layout of a clock tree where the weights along the edges may correspond
to propagation delays.

Though it is easy to produce zero skew clock routing trees [27], naive algorithms may lead to trees
that are expensive in terms of total wirelength (i.e., the sum of the edge lengths in the tree). This total
wirelength corresponds to circuit area or power for clock routing in VLSI, and bandwidth or buffers for
network multicasting. Thus, an ideal clock tree routing algorithm would produce a zero skew clock tree
with minimal total wirelength.

Let M be some metric space and let d denote a distance function defined on this metric space. Let S
be a set of points in M that are designated as sinks or terminals. These sinks correspond to leaves of a
clock tree. Then, the cost of a clock tree T is defined as the sum of the lengths of all edges of T . A clock
tree with skew= 0, is referred to as a zero skew clock tree and one that has a skew at most b is referred to
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(c) p = 0.15

Figure 5: Limiting distribution of leaf depth in GBS trees under different parameter values in the Erdös-
Rényi random graph model.
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Figure 6: Typical layout of a clock tree.
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Figure 7: Tree view of the layout where each
edge weight corresponds to propagation delay

as a b-bounded skew clock tree. Two problems that are often studied in this context are the,

Zero-Skew Tree (ZST) Problem: Given a set of sinks/terminals S in a metric space (M,d), find
a minimum cost zero-skew tree for S.

Bounded-Skew Tree (BST) Problem: Given a set of sinks S in a metric space (M,d) and a
bound b > 0, find a minimum cost b-bounded-skew tree for S.

For general metric spaces, it is known that the ZST and BST problems are NP-complete [28]. Hence several
approximation algorithms have been proposed in literature [28, 29]. These greedy algorithms achieve a
zero-skew tree or a b-bounded-skew tree whose total wirelength is a constant factor to the total wirelength
of their optimal counterparts.

4.1 Limiting Skew Distribution of Clock Trees

Here, we study the skew distribution of clock trees under different models for the propagation delay. In
particular, we are interested in addressing the following questions - How does this skew distribution vary
with increase in the size of the clock trees? Is there a limiting distribution? If so, is it a universal limiting
distribution, in that it does not depend on the underlying distribution of propagation delays? Addressing
these questions could lead to insights for the design of high density VLSI circuits.

We present the results of our empirical analysis that provides answers to these questions. We considered
the following experimental setting. We generated 1000 clock trees whose edge weights (propagation delays)
are generated randomly from a fixed distribution. For each clock tree generated, we compute its skew and
observe the skew distribution as we increase the size of the clock trees. Figure 8 presents two plots for
three different probability distribution on the edge weights. In each case, the first plot compares the skew
distribution of clock trees with 220 sinks to that of an Airy distribution, and the second plot compares
their quantiles. Once again, the quantiles plot diverges from the straight line at the right end since the
skew distribution has a finite support whereas the Airy distribution has an infinite support on the right
end.

Note from these plots that the skew distribution tends to converge to an Airy distribution for large clock
trees (i.e., large number of sinks). Moreover, this phenomenon seems to be invariant to the distribution of
edge weights/propagation delays.

5 Conclusions and Future Work

We present two interesting findings in this work. First, we show that the depth distribution of the leaf
nodes in trees constructed using GBS converge to a strange distribution known as the Airy distribution.
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Figure 8: Limiting skew distribution of clock trees under different distributions on edge weights. a) Uniform
distribution over the interval [0, 1] b) Normal distribution N (1, 0.25) c) Exponential distribution ∼ e−x/2.
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Then, we show that the skew distribution of clock trees also converge to this Airy distribution as the
number of sinks increases. These observations lead to interesting questions regarding the relation of these
problems to that of Catalan trees and other problems involving binary trees as described in Section 2.2.
Future work should investigate more in to these relations.
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