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1 Introduction

Density estimation forms the backbone for numerous machine learning algorithms like
classification, clustering and level set estimation. One of the most common nonparametric
methods for density estimation is the Kernel Density Estimate (KDE). The standard KDE
assigns equal weights for all the kernels. The number of kernels in the standard KDE is
therefore equal to the size of the training data.

A. Motivation

When the training data available is large, the standard KDE becomes intractable for
subsequent use. One specific application which suffers from this drawback of standard
KDE’s is Flow cytometry data analysis. Flow cytometry data (FCD) is biological data
which distinguishes the major categories of leukocytes in blood. It is primarily used for
classifying patients by their disorder.The FCD for each patient has up to 10,000 data
samples, each of 6 dimensions.

Recently, Carter et.al [1] have developed an algorithm which can be used for low di-
mensional representation of the collective flow cytometry data of the patients. Their
algorithm requires computation of the Kullback Liebler (KL) divergence matrix between
the underlying densities corresponding to each patient. Computation of KL divergence
estimates using standard KDE’s is extremely time consuming in the context of flow cy-
tometry because of the huge amount of data involved. For n data samples, the order of
complexity for computing KL divergence is O(n2).

We seek to develop KDE’s which are sparse in the weight coefficients. Our motivation
behind developing sparse KDE’s is a need for reduced computational complexity while
computing KL divergence estimates.

B. Related Work

Sparse weight coefficients have been observed previously in literature while developing
kernel density estimates. Schafföner et.al.[2] presented an algorithm for sparse KDE by
regression of the empirical cumulative density function. Similarly, Chen et.al.[3] con-
structed a sparse kernel density estimate using an orthogonal forward regression that
incrementally minimizes the leave-one-out test score. Weston et.al.[4] extended the Sup-
port vector technique of solving linear operator equations to the problem of density
estimation, which induces sparsity by the nature of the SVM. Our work here is primarily
motivated by the promising results of Girolami et.al.[5], where the authors considered
minimization of the Integrated Squared Error to estimate sparse kernel densities.

C. Contribution

All of the methods described above do not explicitly impose sparsity constraints. These
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methods therefore cannot produce kernel density estimates with a specified degree of
sparsity. Given the large amount of data involved in real life applications (for example in
FCD analysis), it becomes imperative to develop sparser estimates than those provided
by the above algorithms (at the cost of reduced quality of the KDE’s).

To this end, we have developed methods that can generate KDE’s with a specified degree
of sparsity. The developed methods can also provide sparse solutions while satisfying
constraints on the quality of the estimates. These methods therefore provide for choosing
a trade-off between the sparsity and the quality of the density estimates.

2 Penalized Sparse KDE using ISE

The Integrated Squared Error (ISE) between the true density and the estimated
density is defined as

∫

(f(x) −
n

∑

i=1

αikσ(x − xi))
2dx (1)

For gaussian kernels, the ISE reduces to

αTQα − cTα (2)

where α is the vector of weights, Qij = k√
2σ(xi, xj), ci = (2/m)

∑m
j=1 kσ(yj, xi), xi’s are

independent realization of f used as training data and yi’s are independent realizations
of f used as test data.

Girolami et.al. estimate KDE’s by minimizing the ISE.

(PISE) min
α

αTQα − cTα (3)

Observe that the Gram matrix Q is Positive Semi-definite. Therefore, the ISE is convex
in α’s. This optimization problem can be solved efficiently using Sequential Minimal
Optimization(SMO)[5].

They observed that the weights obtained from minimizing the ISE were sparse. The sparse
estimates can be explained by observing that the term cTα in the objective function is
a convex combination of positive weights. Such a convex combination is minimized by
assigning a unit weight to the largest, and setting the rest to zero - a sparse estimate.

In order to increase the sparsity further, we can impose additional penalties on the weight
coefficients. The l1 penalty is a popular choice for inducing sparsity. However, in the
problem of Kernel density estimation, the weights are subject to the constraint

∑n
i=1 αi =
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1, and therefore the l1 penalty becomes redundant. To circumvent this problem, we
consider alternative choices of penalty terms.

The overall objective is to obtain sparse estimates of the density which approximate the
true density in some sense. We have developed the following methods.

2.1 Weighted l1 penalty

Clearly, the sparsity achieved by Girolami et.al. can be improved by increasing the
contribution of the convex term cTα in the objective function of PISE. The modified
objective function then reads as

(PWl1) min
α

αTQα − λcTα (4)

where λ is the regularization parameter which controls the extent of sparsity. The objec-
tive function in (4) stays convex, and can be solved using SMO.

Observe that PWl1 can be viewed as a weighted l1 penalized version of PISE, with the
penalty term (λ − 1)cTα.

2.2 Negative l2 penalty

When we constrain the solution to lie on the hyperplane
∑n

i=1 αi = 1, observe that a
negative l2 penalty will induce sparsity. The objective function obtained when imposing
a negative l2 penalty is

min
α

∫

(f(x) −
n

∑

i=1

αikσ(x − xi))
2dx − λ

n
∑

i=1

αi
2 (5)

As earlier, this reduces to

(Pl2) min
α

αTQ̂α − cTα (6)

where Q̂ij = k√
2σ(xi, xj) − λδij,and ci = (2/m)

∑m
j=1 kσ(yj, xi). Observe that for λ = 0,

our problem reduces to that of [5].

Since Q̂ is P.S.D, observe that the above objective function is convex for λ = 0 but starts
becoming non-convex as we increase the value of λ.

Continuation Search: In order to deal with this non-convex optimization problem, we
employed a continuation search strategy. We initialized the SMO algorithm with equal
weights for all kernels. We then iteratively solved the optimization problem for increasing
values of λ. At each iteration, we initialized the SMO algorithm with the weights obtained
from the previous iteration. We observed that this produced results such that the sparsity
consistently increased as we increased the value of λ, while the quality of the estimate
consistently decreased.
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Algorithm 1: Continuation Search to solve (Pl2)

Step 1: Initialize λ(0) =0 and α
(0)
i = 1/n , i=1,2,...n

Step 2: α
(j+1)
i = SMO(Q̂(j),c,α

(j)
i )

Step 3: λ(j+1) = λ(j) + ǫ, where ǫ is a small value

Update Q̂(j+1)

Step 4: Compute KL Divergence between the standard KDE

and the KDE with the weights α
(j+1)
i

Step 5: Goto Step 2 if KL divergence less than threshold

We have employed a threshold of twice the initial KL divergence between the standard
KDE and the KDE with no penalty.

The above algorithm was found to produce good results despite the non-convex nature
of the optimization problem.

The SMO reduces the optimization problem to a sequence of lower dimensional optimiza-
tion problems. We observed that in the lower dimensions, the objective function appeared
to be convex for the value of λ that was used to produce the sparse estimate. Figure 1
illustrates how the objective function changes from a convex function to a concave func-
tion as we increase λ from the minimum to the maximum eigenvalue of the Gram matrix
Q. The objective function corresponding to the λ that was used to produce the sparse
estimate is shown in red and looks convex. This provides an explanation for the good
quality of solutions obtained using the continuation search strategy in conjunction with
SMO.

2.3 l0 penalty

Given that we are looking for sparse solutions, a common sense approach would be to
impose a penalty on the number of non-zero weight coefficients. The l0 penalized objective
function is

(Pl0) min
α

αTQα − cTα + λ‖α‖0 (7)

The above objective function is non-convex, and can only be solved using combinatorial
search methods, which are intractable given the large dimension of the problem. It is
therefore of little practical value in its current form.

Recently, Wakin et. al.[6] have shown that a Weighted l1 minimization problem P̂l0 can
be viewed as a relaxed version of the original problem involving the ‖α‖0 norm

(P̂l0) min
α

αTQα − cTα + λwTα (8)

where the weights wi are given by

wi =

{

1
α∗

i

if α∗
i 6= 0;

∞ if α∗
i = 0.
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Figure 1: Variation of objective function with penalty

where α∗ is the optimal solution to Pl0 . Further, they have proposed an iterative scheme
for obtaining the solution to the relaxed problem. The details of the algorithm are
included below

Algorithm 2 : Iterative algorithm to solve (P̂l0)

Step 1: Set iteration count l to zero and w
(0)
i = 1, i=1,2,...n

Step 2: Set α
(l)
i = argmin αTQα − cTα + λw(l)Tα

Step 3: Update the weights for each i=1,2,..,n,

w
(l+1)
i = 1

α
(l)
i

+ǫ

Step 4: Terminate after specified iterations lmax

where n is the number of kernels. ǫ > 0 is a parameter introduced for stability. In our
algorithm, we set ǫ = 1/(.1 ∗ n) and lmax = 6. Note that the optimization problem in
Step 2 is convex. SMO was again used to solve this problem.

2.4 Kernel density estimation: A view from kernel feature space

Given i.i.d samples x1, x2, · · · , xn ∈ Rd generated from a multi variate Gaussian distribu-
tion f(x; θ) with unknown mean θ and covariance matrix σ2I, the Maximum likelihood
(ML) estimate of θ is known to be given by θ̂ =

∑n
i=1 xi/n. It has been shown by Kim et.
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al. [7] that the standard kernel density estimate of f can be viewed in high dimensional
feature space as

f̂(x) =
1

n

n
∑

i=1

< Φ(x), Φ(xi) > =

〈

Φ(x),
1

n

n
∑

i=1

Φ(xi)

〉

where θ̂ = 1
n

∑n
i=1 Φ(xi) can be considered as the Maximum Likelihood (ML) estimate of

θ.

θ̂ = arg max
θ

−‖Φ(x) − θ‖2

= arg min
θ

‖Φ(x) − θ‖2

The above problem can be reformulated as follows

α̂ = arg min
α

‖Φ(x) −
n

∑

i=1

αiΦ(xi)‖
2

which reduces to the following quadratic optimization problem

min
α

αTQ̃α − cTα

where Q̃ij = kσ(xi, xj) and ci = (2/m)
∑m

j=1 kσ(yj, xi).

The resemblance between this objective function (KFS) and the ISE defined in (1) is strik-
ing. Indeed, the KFS can be used in conjunction with the above penalization strategies
instead of the ISE to obtain sparse estimates.

Given the similar nature of the ISE and KFS, we chose to restrict our exploration of this
alternative measure to developing sparse estimates with the negative l2 penalty alone.

3 Results

3.1 Synthetic Data

We applied the different methods developed to obtain sparse KDE’s on one dimensional
synthetic data sets. We used the KL divergence between the standard KDE and the
sparse KDE as a measure to assess the quality of the sparse KDE’s.

Figure 2 compares the standard KDE and the sparse KDE obtained using (Pl2) for dif-
ferent values of λ for the flare solar data. We can see that the percentage of non-zero
coefficients decreases from 88.5% to 3% while the KL divergence increases from 0.37572
to 0.38327.

Figure 3 compares the standard KDE and the sparse KDE obtained using the Kernel
Feature Space method for different values of λ for the flare solar data. We can see that the
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ISE −ve l2 penalty
(lambda=0.05,
KL div=0.37572,
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ISE −ve l2 penalty
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ISE −ve l2 penalty
(lambda=0.15,
KL div=0.37618,
sparsity=0.105)
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ISE −ve l2 penalty
(lambda=0.2,
KL div=0.37745,
sparsity=0.06)
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Figure 2: KDE’s on Flare solar data set using ISE with negative l2 penalty
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Standard KDE
KFS (lambda=0,
KL div=0.0068039,
sparsity=0.955)
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Standard KDE
KFS (lambda=0.1,
KL div=0.0059903,
sparsity=0.32)
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Standard KDE
KFS (lambda=0.2,
KL div=0.0059277,
sparsity=0.14)
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Standard KDE
KFS (lambda=0.3,
KL div=0.01033,
sparsity=0.07)
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Standard KDE
KFS (lambda=0.4,
KL div=0.012043,
sparsity=0.07)
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Figure 3: KDE’s on Flare solar data set using KFS with negative l2 penalty
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Method Dataset No Penalty With Penalty
Sparsity KL Div Sparsity KL Div

(Pl2) Banana 14.5% 0.0518 2.5% 0.15
Flare Solar 88.5% 0.3757 1% 0.7176

Breast Cancer 84.5% 0.3083 23% 0.7271
(PWl1) Banana 14.5% 0.0518 6% 0.1020

Flare Solar 88.5% 0.3757 41% 0.7349
Breast Cancer 84.5% 0.3083 8.5% 0.5929

(Pl0) Banana 14.5% 0.0518 4% 0.0537
Flare Solar 88.5% 0.3757 1% 0.5124

Breast Cancer 84.5% 0.3083 2% 0.3146
KFS Banana 79.5% 0.0147 4.5% 0.0364

Flare Solar 95.5% 0.0068 3% 0.3811
Breast Cancer 89.5% 0.1240 1.5% 1.6319

Table 1: Comparison of methods for Synthetic Data

percentage of non-zero coefficients decreases from 95.5% to 3% while the KL divergence
increases from 0.0068 to 0.38109.

Figure 4 illustrates the sparse density estimates obtained by the different methods for
comparable KL divergence. Table 3.1 compares the sparsity and KL divergence with and
without penalty for the different methods developed.

It is clear from the results provided that the sparse KDE methods we have developed
produce significant improvement in sparsity of the estimates while producing KDE’s of
nearly similar quality as the standard KDE.

3.2 Flow Cytometry Data

We have data from 20 patients with Mixed Lineage Leukemia (MLL) and 23 patients with
Chronic Lymphocytic Leukemia (CLL). The sparse KDE techniques developed above
were applied to this collection of Flow Cytometry Data. Table 3.2 lists the sparsity
achieved by the different penalty methods in conjunction with the ISE for comparable
KL divergence values.

Table 3.3 lists the average figures for the increase in sparsity vs. increase in KL divergence
for flow cytometry data, where the average increase in sparsity and KL divergence are
computed as

SPavg = (1/N)
N

∑

i=1

SP
(i)
initial − SP (i)

sparse

SP
(i)
initial

, KLavg = (1/N)
N

∑

i=1

KL(i)
sparse

KL
(i)
initial

(9)

where N is the total number of patients, SP
(i)
initial and KL

(i)
initial are the number of non-

zero weight coefficients and KL divergence(w.r.t the standard KDE) respectively for the
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Figure 4: Comparison of KDE’s for 1D flare solar data

density estimate of the ith patient with no penalty, and SP (i)
sparse and KL(i)

sparse are the
corresponding quantities for the penalized density estimate.

where N is the total number of patients. The FCD of each patient can be viewed as
realizations of a density pi lying on a manifold. In [1], the authors show that the KL
divergence between the underlying densities {pi} can be used to approximately compute
the Fisher information distance between the densities on the manifolds. Specifically, the

fisher distance DF (p1, p2) ≈
√

DKL(p1, p2). We can therefore generate a dissimilarity
matrix using the KL divergence between the different patients and subsequently, we can
use any Euclidean embedding method to obtain a low dimensional representation of the
collective FCD of the patients. We used the classical Multi Dimensional Scaling (cMDS)
method to find the low dimensional embedding of the original data. Figure 5 shows
the scatter plot of the low dimensional representation of the different patients. The
dissimilarity matrix is computed using the standard and sparse KDE’s.

Figure 5 illustrates the MDS plot of the flow cytometry data for the different sparse
methods. We can clearly see that the low dimensional embedding obtained using the
sparse estimates is comparable to the embedding obtained using the standard KDE.
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Method Dataset No Penalty With Penalty
Sparsity KL Div Sparsity KL Div

(Pl2) CLL1 31% 1 10.5% 1.985
CLL2 24.5% 1.158 10.5% 1.9942
MLL1 14.5% 1.431 4% 1.999
MLL2 37% 0.8411 13.5% 1.6805

(PWl1) CLL1 31% 1 19.5% 1.9293
CLL2 24.5% 1.158 14.5% 1.9960
MLL1 14.5% 1.431 8% 1.9979
MLL2 37% 0.8411 23.5% 1.6659

(Pl0) CLL1 30% 0.8902 13.5% 1.7712
CLL2 30.5% 1.0486 9% 1.9962
MLL1 14% 1.4478 4.5% 1.9838
MLL2 45% 0.7659 24% 1.4259

Table 2: Comparison of methods for FCD of 4 different patients: 2 with CLL and 2 with
MLL

Method SPavg(%) KLavg

(Pl2) 67.76 1.7654
(PWl1) 62.41 1.7546
(Pl0) 42.97 1.6218

Table 3: Comparison of average improvement in sparsity vs quality of estimates for FCD

4 Discussion

Of the different methods proposed, the performance of the the negative l2 and l0 penalties
were better when compared to the weighted l1 penalty method. The performance of the
ISE and the KFS objective functions when used with the negative l2 penalty were quite
similar as expected.

We note that the sparsity for the 1D synthetic data is much more than the sparsity
achieved in the case of the 6 dimesnional FCD for similar quality of estimates. This
agrees with our intuition that the representation of signals is easier in lower dimensions.

To conclude, the methods we have developed allow us to specify the trade-off between
the sparsity of the estimates and the desired quality (in terms of KL divergence). From
the results provided for both Synthetic data and the real life flow cytometry data, we can
see that it is possible to obtain extremely sparse KDE’s by allowing for a slight reduction
in the quality of the density estimates.

5 Extensions

The methods developed can be extended to other choices of objective functions instead
of ISE (such as KL divergence), and other choices of penalty functions (such as lp norm,
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Figure 5: Low Dimensional Representation obtained using standard and sparse estimates

entropy etc.) The optimization problem with a negative l2 penalty using KL divergence
is as follows

min
α

−
1

m

m
∑

j=1

log(
n

∑

i=1

αikσ(yj, xi)) − λ
n

∑

i=1

αi
2

s.t.
k

∑

i=1

αi = 1

Unlike the ISE or KFS, this objective function is not convex leading to the necessity for
an efficient algorithm to solve the optimization problem. Note that the above objective
function is strikingly similar to the log likelihood function of a gaussian mixture model,
which can be solved efficiently using the popular Expectation Maximization algorithm.

We have formulated the above problem for the special case when λ = 0, into the form
of an EM algorithm. The results we have obtained for this case have been promising.
Currently, work is being done to try and solve the penalized version of this problem using
the EM algorithm.
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