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Introduction

Integrated Squared Error (ISE)

Negative l2 penalty

Convexity of objective function

l0 penalty

A view from Kernel Feature Space

Comparison of Methods

Flow Cytometry Data

Low  dimensional representation

 Density Estimation – Backbone of numerous Machine               
Learning problems.

 Standard Kernel Density Estimation (KDE) assigns equal                          
weights for all the kernels.

 As the training data available becomes large, standard KDE 
becomes intractable for subsequent use. 

 For n data samples, the order of complexity for computing KL 
divergence is O(n2)

We explicitly impose sparsity constraints on the objective 
function to induce sparse KDE.

ISE is a measure of the quality of the estimate. The ISE between 
the true density and the estimated density is defined as:

The empirical estimate of the ISE can be reduced to:

where       is the weight vector,

Girolami et. al. observed that the weights obtained by minimizing 
the ISE were sparse.

We extend this by imposing different penalties to increase the 
sparsity.
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Weighted l1 penalty
By increasing the contribution of the           term we can increase 
the sparsity. The new objective function is:

(Pl1) 

As the above objective function remains convex, it can be solved 
using the Sequential Minimal Optimization (SMO) algorithm
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l1 penalty

 Obvious choice to induce sparsity

 In the problem of KDE, the weights are subject to the constraint

 Therefore, l1 penalty becomes redundant and cannot be used.
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The objective function with a negative l2 penalty imposed is :

which reduces to 

where

The above function is not convex for all values of  

To solve this con-convex problem we use the following 
continuation search strategy

Results on Synthetic Data
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The figure illustrates how the objective function reduced to 2D 
changes from convex to concave as       increases

We observed that for the final value of       used by the above 
algorithm, the objective function reduced to 2D remained convex

λ

The following figure compares the standard KDE and the sparse 
KDE obtained using negative l2 penalty for different values of 

Impose a penalty on the number of non-zero coefficients. The 
objective function is:

This is not convex. Wakin et. al. propose that the following function 
can be viewed as a relaxed version of the above function

which can be easily solved using the following iterative algorithm
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The following figure and table provide the sparsity induced by the 
different methods with and without penalty. The KL divergence for 
these values of sparsity are also specified

 x1,x2,…,xn Є Rd are i.i.d samples from multivariate Gaussian
f(x;θ) with unknown mean θ

 ML estimate is 

 Kernel density estimate can be interpreted as 

 can be interpreted as ML estimate of θ in

 Reformulated as

Conclusions
 The penalty methods allow for a user defined trade off between

the sparsity and the quality of the estimates.
 Of the different methods proposed, the performances of the 

negative l2 and l0 penalties were better compared to the weighted
l1 penalty.

 Performance of the ISE and KFS objective functions with negative
l2 penalty were quite similar.

 The sparsity induced for 1D data is much more than the sparsity 
induced for the higher dimensional data.

 Extensions : Other choices of objective functions – KL divergence
Other forms of penalties – lp and entropy

 Acknowledgements : We would like to thank Professor Clayton
Scott and Ami Wiesel for their valuable suggestions.
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The sparsity induced by the different methods with similar quality of 
the estimate
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