W2008 EECS 452 Project

Active Noise Cancellation Headsets

Kuang-Hung liu, Liang-Chieh Chen, Timothy Ma, Gowtham Bellala, Kifung Chu

4 / 15 / 2008

Outline

- Motivation & Introduction
- Challenges
- Approach 1
- Approach 2
- Demonstration
- Conclusion & future work

Motivation

- Noise levels in human settings have come under scrutiny for reasons including health concerns and improvement of the quality of life.
- For low-frequency noises, passive methods are either ineffective or tend to be very expensive or bulky.
- Active Noise Cancellation(ANC) systems have become an effective technique for designing ANC headphones.

Introduction

- Application of adaptive signal processing.
- Use destructive interference to cancel out unwanted noise.
- ANC headsets works best for cancelling lower frequency sounds that are continuous and periodic.
- Higher frequency and impulse are hard to control.

Adaptive Filter Framework

Equivalent Model

Challenge

Fig. 2. System identification viewpoint of ANC.

Difficulty:

- (1) The acoustic superposition in the space (from the canceling loudspeaker to the error microphone) is sensitive to phase mismatch.
- (2) ANC system is sensitive to uncorrelated noise.

Solution:

- Compensate for the secondary-path transfer function S(z), which includes the D/A converter, reconstruction filter, anti-aliasing filter, A/D converter.
- (2) Use FPGA to reduce system delay.
- (3) Add protection to the algorithm.

Matlab Example

Approach 1 : off-line estimation of S(z)

Adaptively adjust

• Off-line estimation:

Send a sequence of training data to estimate S(z) before Noise Cancellation.

Challenge:

It's better to train the filter with white noise. But because of the limited number of coefficients of the filter, we just train the filter with 200Hz sine waveform.

Adaptive Algorithms

Adaptively adjust

FxLMS algorithm

x'(n)

LMS

Advantages:

- Simple and neat
- Incorporates secondary path effect
- Tolerant to errors made in estimation of S(z)
 offline estimation sufficient

Disadvantages:

- Higher order filters slow
- > Acoustic feedback
- Convergence rate depends on accuracy of the estimation of S(z)

<u>Equations:</u> $y(n) = w^{T}(n)x(n)$ Update weights : $w(n+1) = w(n) + \mu x'(n)e(n)$ where $x'(n) = \hat{s}(n) \otimes x(n)$

FxLMS algorithm

Advantages:

- Simple and neat
- Incorporates secondary path effect
- Tolerant to errors made in estimation of S(z)
 offline estimation sufficient

Disadvantages:

- ➤ Higher order filters → slow
- Acoustic feedback
- Convergence rate depends on accuracy of the estimation of S(z)

<u>Equations:</u> $y(n) = w^{T}(n)x(n)$ Update weights: $w(n+1) = w(n) + \mu x'(n)e(n)$ where $x'(n) = \hat{s}(n) \otimes x(n)$

FuLMS Algorithm

Advantages:

Feedback Neutralization

Feedback path designed using IIR filter

IIR filter – lower order sufficient

Disadvantages: ➤ IIR filter – can become unstable ➤ Global convergence not guaranteed

Equations: $y(n) = a^{T}(n)x(n) + b^{T}(n)y(n-1)$ Update weights: $a(n+1) = a(n) + \mu x'(n)e(n)$ $b(n+1) = b(n) + \mu \hat{y}'(n-1)e(n)$ where $\hat{y}'(n-1) = \hat{s}(n) \otimes y(n-1)$

Feedback ANC

Advantages:

- Requires only one microphone
- Additional filter not required for acoustic feedback neutralization
- Computationally less complex

Disadvantages: ➤ Same issues with IIR filter

 $\frac{Equations:}{y(n) = w^{T}(n)x(n)}$ $x(n) = e(n) + \sum_{m=0}^{M-1} \hat{s}_{m}y(n-m)$ $Update \ weights: w(n+1) = w(n) - \mu \ x'(n)e(n)$

Hybrid ANC

Advantages:

- Combines advantages of feedforward and feedback systems
- Iower order filters
- relatively more stable than feedback ANC

Disadvantages: → High computational complexity

Equations:

$$y(n) = a^{T}(n)x(n) + c^{T}(n)\hat{d}(n)$$
Update weights: $a(n+1) = a(n) + \mu x'(n)e(n)$
 $c(n+1) = c(n) + \mu \hat{d}'(n)e(n)$
where $\hat{d}'(n) = \hat{s}(n) \otimes \hat{d}(n)$
 $\hat{d}(n) = e(n) + \hat{s}(n) \otimes y(n-1)$

How to adaptively adjust the filter coefficients?

- Considering the computation time, we use LMS:
 - W(n+1) = W(n) + u * e(n) * W(n)
 - u: step size
 - e(n): error
 - W(n): filter coefficients
- To make our system more stable, we use variations of LMS:
 - (a) Leaky LMS: Introducing 'a' makes W(n) not change too rapidly

W(n+1) = a * W(n) + u * e(n) * W(n), where a < 1

(b) Normalize the coefficients W(n) to stabilize the output W(n+1) = W(n+1) / sqrt(sum(W(n+1)))

Approach 2:System architecture

Input analog/digital interface

Output digital/analog interface

Amplification with gain 20

Headphone driving circuit

Sampling rate & filter size design consideration

- Sampling rate determines processing speed constraint.
- Fix sampling rate
 - Large filter size: fine freq resolution, slow processing, slow response.
 - Small filter size: low freq resolution, fast processing, fast response.

Fix filter size

- High sampling rate: low freq resolution, less artifact in the D/A output.
- Low sampling rate: high freq resolution, more artifact in the D/A output.

Experiment result (1)

W2008 EECS 452 / ANC headset project

Experiment result (2)

W2008 EECS 452 / ANC headset project

Experiment result (3)

W2008 EECS 452 / ANC headset project

Experiment result (4)

Incorporate music source

- Assume music source is uncorrelated with the noise, and noise is a zero mean w.s.s random sequences.
- Adaptive algorithm will adjust filter coefficient so as to minimize MSE.
 - $E[e^2] = E[(d_i Y)^2]$

 $= E[m^{2}] + E[(y_{i} Y)^{2}] + 2E[(y_{i} Y)m]$

= 0 Y,X uncorrelated with m

E[m²]
 Since does not depend on filter eqeff, adaptive algorithm will select coeff to minimize .

ANC system demonstration part 1:

Single tone and multiple tone artificial noise

ANC system demonstration part 2:

Real engine noise

ANC system demonstration part 3:

Noise with music source

Future work (1)

Future work (2)

- Use more precise microphone and ADC, DAC to acquire more accurate measurement.
- Integrate the design components into a build-in embedded system to avoid feedback interference.
- Implementation in assembly language to save computation time.

Conclusion

- A workable ANC headset for both artificial and real world noise.
- Works for noise frequency ranging from 100 to 800 Hz.
- Incorporate music source.
- Implemented and compared LMS, FxLMS, Feedback, FuLMS and Hybrid algorithms:
 - For stability, Hybrid is the best.
 - □ For simplicity, FxLMS is recommended.

Thank you

References

- S.M. Kuo, D.R. Morgan, Active noise control: a tutorial review, Proc. IEEE 87 (6) (June 1999) 943-975.
- S. M. Kuo and D. R. Morgan, Active Noise Control Systems Algorithms and DSP Implementations. New York: Wiley, 1996.
- A. Miguez-Olivares, M. Recuero-Lopez, Development of an Active Noise Controller in the DSP Starter Kit. TI SPRA336. September 1996.
- S. Haykin, Adaptive Filter Theory, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 1991.