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Abstract 

Although many cancer patients experience multiple 
concurrent symptoms, most studies have focused on 
the analysis of single symptoms. Furthermore, the few 
studies that have analyzed how symptoms co-occur 
across patients have used methods such as factor 
analysis that have a priori assumptions of how the 
data is structured. To address these limitations, we 
used networks to visualize how 665 cancer patients 
reported 18 symptoms, and verified the results using 
appropriate quantitative methods. The results suggest 
that symptoms co-occur in a nested structure, where 
there is a small set of symptoms that co-occur in 
many patients, and larger inclusive sets of symptoms 
that co-occur among a few patients. These results (1) 
demonstrate how network analyses can reveal 
complex relationships between patients and 
symptoms while avoiding a priori assumptions, and 
(2) provide implications for cancer treatment and 
management that address complexities in symptom 
co-occurrence.  

Introduction 

Although cancer patients experience on average 
between 11-13 symptoms [1], most research has 
focused on the etiology, progression, and treatment of 
single symptoms. Furthermore, because of the 
additive impact of multiple symptoms, patients with 
many co-occurring symptoms generally fare worse 
than others. Understanding how symptoms co-occur 
in patients can therefore lead to more efficient 
assessment and management of symptoms, with the 
goal of significantly improving the overall function 
and quality of life for cancer patients.  

To address this need, recent research has used data 
reduction methods such as factor analysis and 
hierarchical clustering to identify symptom clusters in 
different granularities of data [1]. For example, 
hierarchical cluster analysis was used to identify a 
cluster of five symptoms (e.g., hot flashes and weight 
gain) in menopausal women with breast cancer [2], 
and factor analysis was used to identify three clusters 
of symptoms across patients of all types of cancer [3]. 
While these early studies have made important 
inroads into identifying symptom clusters, several 

researchers have admitted that such methods produce 
results that are inherently unverifiable [2]. For 
example, there is no objective method to select cut-
off points in a dendrogram (generated by hierarchical 
clustering [4]) to identify disjoint clusters. More 
importantly, these methods are based on a priori 
assumptions about the existence of disjoint symptom 
clusters, potentially masking more complex 
relationships in the data. 

Inspired by the importance of symptom cluster 
research, but concerned about the a priori 
assumptions of the current methods, we used 
networks to first visualize the complex relationship 
between cancer patients and symptoms. This 
approach enabled us to visually inspect the data, with 
minimal assumptions about the underlying 
relationships. These visual observations then enabled 
us to select the appropriate methods to quantitatively 
verify the nature of the co-occurrence. Such a multi-
method approach helped us to arrive at a new 
understanding of how symptoms co-occur across 
cancer patients, with insights about the treatment and 
management of co-occurring symptoms.  

Method 

Our research began with the question: How do 
symptoms co-occur across cancer patients? To 
address this research question, we made critical 
decisions regarding data selection, data 
representation and data analysis as discussed below: 

Data Selection. We conducted a secondary analysis 
on data collected in a published study on cancer 
symptom management [5]. The data consisted of 671 
cancer patients undergoing chemotherapy. The 
patients reported 18 symptoms using the M.D. 
Anderson Symptom Inventory which measures 
symptom severity ranging from 0 (not present) to 10 
(worst imaginable). Six patients did not report any 
symptoms and therefore were dropped from the 
analysis, resulting in a total of 665 patients. The 
patients varied on a number of different disease and 
demographic variables including type and stage of 
cancer, gender and age. Similar to several previous 
studies [3], the focus of our analysis was to analyze 



  

how symptoms co-occurred across all 665 patients in 
a single observation, and use insights from that 
analysis for more focused partitioning of the data 
(e.g., controlling for disease stage) in the future. 

Data Representation. Networks are increasingly 
being used to analyze a wide range of phenomena, 
such as how diseases relate to genes [6]. A network is 
a graph consisting of nodes and edges; nodes 
represent one or more types of entities (e.g., patients 
or symptoms), and edges between the nodes represent 
a specific relationship between the entities (e.g., a 
patient has reported a symptom). Figure 1 shows a 
bipartite network (where edges exist only between 
two different types of entities) of patients and their 
symptoms. Our analysis first considers an unweighted 
network, with edges indicating symptom prevalence 
at any severity. We then analyze a network with edges 
weighted by severity (1-10). Finally, nodes are 
colored to represent disease type (e.g, black nodes 
represent breast cancer patients).  

Networks have two advantages for analyzing complex 
relationships. (1) They do not require a priori 
assumptions about the data, such as whether the data 
are hierarchically clustered or contain fuzzy clusters. 
Instead, by using a simple pair-wise representation of 
nodes and edges, networks enable identification of 
complex relationships using the above representation. 
(2) They can be rapidly visualized and analyzed using 
a set of network algorithms to reveal global 
regularities in the data. For example, Figure 1 shows 
how a force-directed layout algorithm [5] helps to 

visualize the relationship between diseases and genes. 
The algorithm pulls together nodes that are tightly 
connected, and pushes apart nodes that are not. As 
shown, the result is that patients that have similar 
symptoms (e.g., P-338 and P-381 on the right hand 
side of the symptoms in Figure 1) are placed close to 
each other, and close to their symptoms (e.g., 
Difficulty Remembering Things). The networks were 
created using Pajek (version 1.24). 

Data Analysis. We used 6 visual and statistical 
analysis methods: (1) To understand the overall 
relationship of patients and symptoms we visually 
analyzed the bipartite network. (2) To provide a 
quantitative verification of the observed overlap of 
symptoms across patients, we plotted the mean 
number of patients sharing symptom sets of different 
sizes. (3) To assess the degree of clustering in the 
network, we used the RGraph algorithm [7] which 
measures modularity (existence of clusters) in 
bipartite networks. (4) To understand the structure of 
symptom co-occurrence, we transformed the bipartite 
network using a method called a one-mode projection 
[6]. Here, all patient nodes were removed, and an 
edge was placed between two symptoms if they 
shared one or more patients as shown in Figure 3. 
The resulting network represented how pairs of 
symptoms co-occurred across patients. (5) To verify 
our observations of the structure underlying symptom 
co-occurrence, we used agglomerative hierarchical 
clustering [3] using the Ward2 clustering method. To 
identify the sets of symptoms that co-occur together 

 

 
    Symptom      Lung (ns)     GI.     Non-Hodgkins 
    Breast     Lung (sc)     Gyn.     Mesothelioma 
    Colon     GU.     Pancreas     Other   
 

 
a. Rare symptom 
b. Common symptom 
c. Patient with many symptoms 
d. Patient with few symptoms 
 

 
 

Figure 1. A bipartite network in the top left (automatically generated by the Fruchterman Rheingold algorithm [6]) shows the 
high overlap of 18 symptoms (white nodes) across 665 patients (solid colored nodes). The size of the nodes is proportional to 
the edges that connect to them. Therefore common symptoms have large nodes, whereas rare symptoms have smaller nodes. The 
inset shows the common symptoms in the center of the network, and rare symptoms that are off center. The patients that have 
many symptoms are closer to the center and closer to the symptoms they have; the colors represent each patient’s type of cancer.  
 



  

across patients, we developed an algorithm to identify 
the most frequent co-occurring symptoms of different 
sizes. (6) To understand the role of symptom severity, 
we redid the above analyses with severity scores. To 
test the significance of all our findings, we compared 
them to random bipartite networks of the same size. 

Results 

We first analyzed a bipartite network where the edges 
had a weight of 1 representing severity at any level. 
The analysis revealed six patterns related to cancer 
patients and symptoms: 

1. Many common symptoms, few rare symptoms. As 
shown in Figure 1, the bipartite network visually 
represents the explicit relationships between the 665 
patients and 18 symptoms. The size of a node is 
proportional to its degree (number of edges that 
connect to that node), and the color of the nodes 
represent the cancer types. There are 15 commonly-
occurring symptoms in the center of the network, and 
3 less common symptoms off center. For example, 
Fatigue (a) is the most commonly occurring symptom 
with 602 edges each connected to a patient. In 
contrast, Fever (b) is off center with only 64 edges. 
This pattern of connections results in a high mean and 
standard deviation in symptom degree 
(Mean=287.61, SD=132.68).  

2. High overlap of symptoms across patients. The 
patients form a ring around the 18 symptoms in the 
center. Patients close to the inner set of symptoms 
have many symptoms compared to patients in the 
outer ring. For example, the patient P-338 (c) has 16 
symptoms, whereas the patient P-138 (d) has 1 
symptom. This pattern of connections also results in a 
high mean and standard deviation in the degree of 
patients (Mean=7.78, SD=3.20). This network 
topology where there are many high degree patients 

(in the ring) connecting to a smaller number of high 
degree symptoms (in the center), suggests a high 
overlap in the number of symptoms for most patients 
(resulting in a gray mass of indistinguishable edges). 
This is verified through an analysis of curves shown 
in Figure 2, which plots the mean number patients 
sharing symptom sets of different sizes. The symptom 
overlap in the cancer network (as measured by the 
area under this curve) was significantly (p< .01) more 
than the overlap in 1000 random networks of the 
same size. 

3. Absence of patient or symptom clusters. Figure 1 
shows the absence of patient, symptom, or patient-
symptom clusters. Most of the symptoms are in an 
indistinguishable mass in the center, and the patients 
and cancer types are evenly distributed around the 
symptoms. Modularity, as measured by the RGraph 
algorithm [7], was extremely low at 0.067 (cooling 
factor [c]=0.999, iteration factor [f]=1) for symptoms, 
indicating that the symptoms exhibit no significant 
clustering beyond what would be expected by chance.  

4. Hierarchy of symptom occurrence. The range in 
symptom degree, with a high overlap across patients, 
and absence of disjoint clusters suggested that the 
symptoms were hierarchically structured. To verify 
this observation we analyzed the one-mode projection 
that showed how symptoms co-occurred. Figure 3 
shows the pair-wise relationship between symptoms, 
where the edge weights between two nodes represent 
how many times the connected symptoms co-
occurred. As shown, there are highly co-occurring 
symptoms at the core the network (Fatigue and 
Insomnia co-occur as a pair most frequently with 442 
patients), with a systematic decrease in the edge 
weights toward the periphery (Fever and Vomiting 
co-occur the most infrequently in 12 patients). 
Besides suggesting a hierarchical structure of 
symptom co-occurrence, this core-periphery topology 
also suggests a nested structure.  

5. Nested structure of symptoms. Because the one-
mode projection is designed to show only the pair-
wise association between symptoms, it cannot reveal 
the boundaries of sets of symptoms, which is required 
to reveal the nested nature of the symptoms. We 
therefore generated a dendrogram by using the 
agglomerative hierarchical clustering method. As 
shown in Figure 3b, the depth of the resulting 
dendrogram is 9. In addition, it takes only 8 steps 
(edits) to transform this tree to a tree that is perfectly 
nested (maximally lopsided). This suggests that 
symptoms are nested in their co-occurrence pattern. 
Furthermore, although we could select an arbitrary 
cut-off point to identify disjoint clusters, there is 

 
Figure 2. The mean number of symptoms shared by 
different numbers of patients suggests that many patients 
share 1-4 symptoms, and a decreasing number of patients 
share more than 4 symptoms. The area under the curve is 
significantly different from the curve of random networks 
of the same size. 
 



  

actually no natural break in the dendrogram to 
reliably determine such clusters.  

The above tree depth and number of edits for the 
network were compared against dendrograms 
generated from 1000 random networks of the same 
size. The results revealed that the probability of the 
nested structure of cancer symptoms occurring by 
chance was less than 0.1 percent (p < 0.001). 

Because of the agglomerative nature of the 
dendrogram, it conceals specific co-occurrence 
frequencies. For example, although Weakness (third 
from the top in Figure 3B) is closest to both Fatigue 
and Insomnia, the method conceals how frequently 
Weakness co-occurs with either of them. We 
therefore used an exhaustive search algorithm to 
identify the most frequently co-occurring symptoms 
for different set sizes. Figure 4 shows the resulting 
block diagram that lists the most frequently co-
occurring symptoms, ranging from 1 to the maximum 
set size of 16 co-occurring symptoms. With the 

exception of set sizes 7 and 11, the most frequently 
occurring symptom sets are a proper subset of the 
next larger set size. The analysis therefore verified the 
strongly nested nature of symptom co-occurrence. 

6. Effect of symptom severity. Because the data 
contained symptom severity, we redid the entire 
analysis by adding symptom severity to the edge 
weights in the bipartite network. The main results did 
not change. Modularity was low at 0.1, and symptoms 
were strongly nested with the dendrogram exhibiting 
high depth and few edits from perfect nesting.  
Finally, we analyzed only patients with breast cancer 
which was the most common type of cancer in the 
data set. Although a detailed report is beyond the 
scope of the current analysis, the co-occurrence 
pattern of symptoms was also strongly nested.  

Discussion 

Based on the clinical literature, we hypothesized that 
our analysis would identify disjoint symptom clusters. 
However, no matter how we partitioned the data (by 
cancer type, age, etc. details of which are not reported 
in this paper), we repeatedly found the absence of 
such clusters. Disjoint clusters occur infrequently in 
random networks, and therefore if they occur are 
highly suggestive of a meaningful underlying process. 
Fortunately, our seemingly null results led us to probe 
deeper into the structure of co-occurring symptoms 
using multiple methods, starting with visualizations 
and verifying observations through existing and new 
quantitative methods. This exploratory process led us 
to the conclusion that symptom co-occur in a nested 
pattern rather in disjoint clusters. Furthermore, the 
comparison of the results with equivalent random 
networks has led us to conclude that cancer symptom 
co-occurrence is more complex than we originally 
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Figure 4. The most frequently co-occurring symptoms for 
each size of symptom set. With the exception of set sizes 7 
and 11, the symptoms follow a strongly nested pattern. 
 

   A             B    
 

Figure 3. A. The one-mode projection of the bipartite network (shown in Figure 1), reveals how pairs of symptoms co-occur 
across patients. The edge thickness is proportional to the number of times two symptoms co-occur in a patient. Highly co-
occurring symptom are pulled together and because of the hierarchical structure, have also been pulled to the center. B. The 
dendrogram suggests the nested structure of symptom co-occurrence. 



  

expected, but not random as we subsequently feared. 
These results could explain why our predecessors 
have found it difficult to agree on a single definition 
for clusters, or on their content [1]. 

Implications for Clinical Practice and Research 

Our findings have implications for both clinical 
practice and future research. Currently between 15 to 
27 symptoms are assessed upon every clinic visit 
during chemotherapy, at a time when patients are 
already burdened with the stress of therapy. Efficient 
means for assessing symptoms are therefore needed 
not only during office visits, but also at home where 
there is increasing interest in using telephonic or web-
based symptom monitoring. 

The absence of disjoint symptom clusters precludes a 
simple approach of asking a few questions to 
eliminate candidate symptom clusters. We therefore 
foresee our results applied to developing a simple 
computational system for symptom-assessment. The 
system will initially present a list of common 
symptoms ranked by frequency or severity. Each time 
a symptom is selected, the remaining symptoms are 
re-ranked based on their co-occurrence in the data 
with the already selected symptoms. For example, a 
patient presenting Fatigue with Insomnia may next 
be asked about Weakness, while a patient presenting 
Fatigue without Insomnia many next be asked about 
Dry Mouth as the latter most frequently co-occurs in 
patients with Fatigue but not Insomnia. Such a 
process should save time and reduce excess burden 
on the patient by obtaining a complete picture of the 
patient’s symptoms through a small set of targeted 
questions. 

The nested structure of cancer symptoms also 
suggests that the underlying biochemical mechanism 
in chemotherapy may involve a single mediator which 
causes additional symptoms as its concentration 
increases. Alternatively, it may involve a chain 
reaction where each intermediate state causes another 
symptom. Future research will need to confirm our 
results, and test such emergent hypotheses. Finally, 
the results imply that symptom cluster researchers 
should be wary of methods that have a priori 
assumptions by (1) visualizing their data to develop 
hypotheses about the underlying structure of symptom 
co-occurrence, (2) selecting appropriate multiple 
methods to verify observations realizing the 
limitations of single methods, and (3) developing new 
methods if current methods do not suffice. 

Conclusions and Future Research 

Inspired by the research on symptom clusters, but 
concerned by the limitations of using methods with a 

priori assumptions, we used networks to visually 
analyze how symptoms co-occurred across cancer 
patients. These observations were then verified 
through a series of carefully selected existing and new 
quantitative methods. Although the results 
consistently showed the absence of symptom clusters, 
the multi-method approach revealed a strongly nested 
structure, where a small set of symptoms co-occurred 
in many patients, and a progressively larger set of 
symptoms co-occurred with a decreasing number of 
patients. This result reveals a more complex co-
occurrence organization of symptoms across patients 
than previously reported. The result also suggested 
that a computational approach, if designed carefully 
to fit into current work practice, could guide 
clinicians to ask patients a small number of questions 
about symptoms based on their co-occurrence in a 
subset of data that best matches the patient.  

Because symptoms could be caused by a number of 
factors that change over time including the disease 
itself, co-morbid conditions, treatment, and other 
symptoms, our future research aims to probe deeper 
into the large number of variables that could be 
related to symptoms. Our aim is to help clinicians 
accurately identify, predict, and treat co-occurring 
symptoms, with the ultimate goal of improving 
compliance with therapy, and the overall quality of 
life for cancer patients. 

Acknowledgements 

This study is funded by NIH grant # UL1RR024986. We 
thank B. Given and C. Given (PIs for CA 79280 and CA 
30724 respectively) for the data, and Y. Cui for assistance 
in processing the data. 

 References 

1. Fan G, Filipczak L, Chow E. Symptom Clusters in 
Cancer Patients: A Review of the Literature. Current 
Oncology 2007; 14(5):173-179  

2. Glaus A, Boehme CH, Thurlimann B, et al. Fatigue 
and menopausal symptoms in women with breast 
cancer undergoing hormonal cancer treatment. Ann 
Oncol 2006;17:801–6.  

3. Chen ML, Tseng HC. Symptom clusters in cancer 
patients. Support Care Cancer 2006;14:825–30. 

4. Johnson RA, Wichern DW. Applied Multivariate 
Statistical Analysis, 1998, NJ: Prentice-Hall. 

5. Sikorskii A, Given CW, Given B, et al. Symptom 
management for cancer patients: a trial comparing two 
multimodal interventions J Pain Symptom Manage 
2007; 34(3):253-64. 

6. Newman M. The structure and function of complex 
networks. SIAM Review 2003; 45(2):167-256. 

7. Guimera R, Sales-Pardo M, & Amaral LAN. Module 
identification in bipartite and directed networks, Phys. 
Rev. E 2007;76, 036102. 




