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The correlational analysis of dyad-level
data in the distinguishable case
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Abstract

Many theories of interpersonal relationships distinguish between individual-level processes and dyadic or
group-level processes. This suggests that two-person relationships should be studied at the level of the dyad as
well as at the level of the individual. We discuss correlational methods for dyads when each dyad contains two
different types of individuals (e.g., a husband and wife, a mother and child, or an expert and a novice). In such

dyadic interaction designs, the dyad members are said to be distinguishable. We present a method for
computing the overall correlation for distinguishable dyads, and we discuss a model for separating the
dyad-level and individual-level components of such a correlation. The computational techniques and their
interpretation are described using data from 98 heterosexual couples.

By definition, interpersonal interaction in-
volves more than one person. The simplest
interaction to study, and likely the most
common (Bakeman & Beck,1974),involves
two people. However, despite their relative
simplicity, dyadic designs present both con-
ceptual and methodological challenges
(Kenny, 1996; Gonzalez & Griffin, 1997).
Dyadic designs, like all group designs, pose a
conceptual “levels of analysis” problem
(Robinson, 1950). One could test theory at
either the level of the individual, the level of
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the dyad, or both. Statistically, correlational
methods developed for independent indi-
viduals are not appropriate for designs fea-
turing interdependent dyad members (Grif-
fin & Gonzalez,1995; Kenny, 1995). Instead,
the degree of relatedness, or “statistical non-
independence,” between dyadic partners
must be taken into account when correla-
tions are tested and interpreted.
Furthermore, the statistical analysis de-
pends on whether the dyadic partners are
exchangeable (i.e.,the two members of each
dyad are drawn from the same class or cate-
gory) or distinguishable (i.e., the two mem-
bers of each dyad are drawn from different
classes or categories).! Two examples will
help make this distinction clear. Research
on romantic relationships might focus on
male homosexual couples (which contain
exchangeable dyad members) or heterosex-
ual couples (which contain distinguishable
dyad members). Research on social devel-
opment might focus on dyadic play in same-
sex children (exchangeable dyad members)
or dyadic play between fathers and sons

1. Kenny (1996) uses the terms “interchangeable”
and “noninterchangeable” to denote this distinc-
tion.
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(distinguishable dyad members). In the ex-
changeable case, each partner is drawn from
the same category or type (e.g.,adult males),
and thus both scores are treated as though
they are sampled from the same statistical
distribution. In the distinguishable case,
each partner belongs to a different category
or type (e.g., fathers vs. sons), and their
scores on each variable are drawn from dis-
tributions that may differ, yielding the possi-
bility that these two samples may differ in
their means, their variances, or their covari-
ances.

The decision to treat dyadic partners as
distinguishable or exchangeable should be
guided by theoretical assumptions rather
than empirical tests. Thus, even if the two
types of partners do not differ in mean,
variance, or covariance terms, they should
be treated as distinguishable rather than ex-
changeable if they are distinguished in the
relevant theory. When other variables are
tested, the two types of partners may well
differ. Furthermore, no power is lost by
treating the partners as distinguishable as
long as the relevant parameter estimates
are pooled across both types of partners.

We now turn to a specific research exam-
ple that we will use throughout this article.
Murray, Holmes, and Griffin (1996) col-
lected trust and conflict ratings from both
members of 98 heterosexual couples. One
question of interest addressed by this study
is: Across the entire sample of men and
women, do ratings of trust relate to reports
of conflict? In other words, is there a signifi-
cant overall within-partner correlation be-
tween trust and conflict? A second question
of interest involves a different overall cor-
relation: Across the entire sample, do rat-
ings of an individual’s trust relate to the
partner’s report of conflict? In other words,
is there a significant overall cross-partner
correlation between trust and conflict?

The meaning of these “overall” correla-
tions could then be examined in light of a
model of the underlying process that gave
rise to it. Although the data could be mod-
eled in a number of ways (Kenny, 1996),
two specific underlying models seem of
greatest relevance: a dyadic version of the
group effects model (Kenny & La Voie,
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1985) that decomposes the observed over-
all within-partner correlation into latent dy-
adic and individual-level components, and
the generalized actor-partner model (Gon-
zalez & Griffin, 1997; Kenny, 1996) that de-
composes the observed relations into par-
tial path coefficients (beta weights). The
latter model was used by Murray et al.
(1996). This article will focus on the dyadic
effects model and discuss the meaning and
computation of couple-level and individ-
ual-level correlations. However, it must be
emphasized that the choice of an underly-
ing model is a theoretical rather than a sta-
tistical question (Kenny, 1996).

We now turn to a more detailed discus-
sion of these overall correlations. We will
review the pairwise coding, show how to
estimate these two overall correlations, pro-
vide tests of significance, compare the SEM
(structural equation modeling) approach to
the pairwise approach, and provide a con-
crete example. We will then review the dy-
adic model that decomposes the observed
overall within-partner correlation into la-
tent dyadic and individual-level compo-
nents. This multilevel model will not only
provide new insight for the overall correla-
tions, but will also be a useful model in
many research settings.

Estimating and Testing the Overall
Correlations in the Distinguishable Case

Suppose a researcher collected two vari-
ables, X and Y, from each individual in a
sample of heterosexual couples. For in-
stance, as in Murray et al. (1996), a re-
searcher could collect trust ratings (variable
X) from both the husband and the wife, and
reports of conflict (variable Y) from both
the husband and the wife. This results in
four variables: X}, X, Y1, and Yy, where
the subscript / represents husband and the
subscript w represents wife. There are a to-
tal of six correlations that can be computed
in this situation; these correlations are
shown in Figure 1.

The correlation between Xy, and Y, de-
noted cor(Xh, Yn) in Figure 1, is the within-
partner correlation between trust and con-
flict for husbands, and the correlation
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Figure 1. The six possible pairwise correlations in the distinguishable case.

between Xy and Y, is the within-partner
correlation between trust and conflict for
the wives. Under some conditions (de-
scribed below) it is possible to pool these
two correlations to form a single index, the
overall within-partner correlation between
trust and conflict.

The purpose of the overall within-part-
ner correlation is to index the strength of
the linear relation between two variables, X
and Y, across all individuals in the sample.
With N dyads, the overall within-partner
correlation involves 2N scores on each vari-
able. The practice of computing the overall
correlation has a number of advantages
over the more common practice of comput-
ing separate correlations within the two
types of dyadic partners (e.g., computing
the correlation between trust and conflict
separately for men and for women). First, if
the correlational structure is identical
across the two types, then the overall corre-
lation serves as a more efficient estimate of
the true correlation between variable X and
variable Y than either of the separate esti-
mates. Second, the overall correlation will
usually have substantially more power to
reject the null hypothesis relative to either
one of the separate correlations. The proce-
dure described here includes an explicit test
of whether the correlational structure is the
same within both classes, a step often ig-
nored by researchers looking at each type
of partner separately.

Returning to Figure 1, the correlation
between X}, and Yy, is the cross-partner cor-
relation between the husband’s trust and
his wife’s report of conflict, and the correla-
tion between Xy and Y is the cross-partner
correlation between the wife’s trust and the
husband’s report of conflict. Again, under
some conditions, it is possible to pool these
two “cross” correlations to form the overall
cross-partner correlation, which has advan-
tages similar to that of the overall within-
partner correlation discussed above.

Computing the overall within-partner
correlation between trust and conflict in the
exchangeable case is relatively straightfor-
ward, because the distributions of each part-
ner’s scores are by definition equivalent.
With N dyads, the 2N individual scores on
trust are correlated with the 2N individual
scores on conflict, and the result is evaluated
using a significance test that corrects for the
degree of intradyadic similarity on each
variable (see Griffin & Gonzalez, 1995, for
the development of this test). However,
when each dyad is made up of two different
types of individuals (e.g., men and women),
additional complications arise because of
the possibility of between-partner differ-
ences in means, variances, and covariances.
In this article we extend the pairwise corre-
lational model (Griffin & Gonzalez,1995) to
the more complicated case of distinguish-
able dyads and compare the pairwise ap-
proach with structural equation modeling.
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Whenever possible, we relegate statistical
details to the Appendix, allowing us to focus
the text on the conceptual “big picture.”

In the distinguishable case, computing
and testing the overall within-partner and
cross-partner correlations can be achieved
either through the pairwise correlation
method or through structural equation
modeling (SEM) programs. When SEM is
estimated through the maximum likelihood
approach, the two approaches yield identi-
cal parameter estimates because the pair-
wise approach also provides the maximum
likelihood estimate, and the two approaches
provided asymptotically equal significance
tests under the null hypothesis. For those
comfortable with SEM programs, the SEM
approach offers substantial advantages in
terms of flexibility and adaptability. How-
ever, the pairwise correlational approach is
a useful tutorial method and provides a uni-
fied framework across the distinguishable
and exchangeable cases. After discussing
the assumptions common to both ap-
proaches, we first describe the SEM method
and then describe the pairwise method,
which does not require special software.

Assumptions of the overall within-partner,
cross-partner correlations

The overall within-partner correlation ryy is
a summary of the strength of the linear re-
lation between variables X and Y across all
partners of both types. Because the overall
within-partner correlation is essentially a
weighted average of the two within-partner
correlations (e.g., the correlations between
trust and conflict for men and women sepa-
rately), it is necessary to examine whether
the components of the separate within-
partner correlations are similar enough to
be combined. For an overall within-partner
correlation to be a legitimate summary of
the linear relation between the two vari-
ables across both types of dyad members,
the following conditions must hold: (a) the
two within-category population variances
on X must be equal (e.g., the population
variance on variable X for men equals the
population variance on X for women), (b)
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the two within-category population vari-
ances on Y must be equal, and (c) the two
within-category population covariances be-
tween X and Y must be equal (e.g., the
population covariance between X and Y for
women must equal the population covari-
ance between X and Y for men). For the
overall cross-partner correlation conditions
(a) and (b) must hold, and in addition (d),
the population covariances between one
partner’s X and the other partner’s Y, must
be equal across the two classes (e.g., the
population covariance between the wife’s
X and the husband’s Y must equal the
population covariance between the hus-
band’s X and the wife’s Y). Methods for
testing each assumption separately are pre-
sented in the Appendix. Below we present
a method for testing all four assumptions
simultaneously using SEM.

These equality assumptions have con-
ceptual meaning and are more important
than mere statistical worries. First, a differ-
ence in variances between the two types of
partners might suggest that different proc-
esses may be operating in each type or cate-
gory. Second, a difference in variances may
lead to differences in the observed correla-
tions even when the population covariances
are equivalent. Third, when the assumption
of equal covariances is violated for the
within-partner comparison, the pooled cor-
relation no longer represents the relation
within either type of partner (e.g., women
or men). When pooling is appropriate, the
conceptual focus should be on the general
processes occurring for both partners.
When the pooling is not appropriate, the
conceptual focus should be on the differ-
ence between the types of partners. As
these arguments suggest, the tests of the
assumptions have implications for the di-
rection the theory should take.

Using SEM to estimate the
overall correlations

The overall within-partner correlation and
the overall cross-partner correlation can be
estimated within SEM (using covariances
or raw data as input; see Footnote 4). The
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SEM model presented in Figure 1 con-
strains the two X variables to have equal
variances, and also constrains the two Y
variables to have equal variances. Of the six
observed covariances, the two within-part-
ner covariances between variables X and Y
are constrained to be equal as are the two
cross-partner cross-variable covariances.
The resulting SEM analysis yields a (2 with
4 degrees of freedom (df) that provides an
omnibus test on all four constraints. Note
that it is also possible to test each assump-
tion separately within SEM by relaxing
each assumption and comparing the differ-
ence in 2 from the full model (df = 4) to
each reduced model (df = 3).

If the omnibus %2 test is nonsignificant,
then the pooled covariance between X and
Y is an appropriate estimate of the “overall
within-partner covariance,” and the signifi-
cance test associated with this parameter
tests the overall correlation against the null
hypothesis. Similarly, the pooled covariance
between an individual’s X and the partner’s
Y is an estimate of the “overall cross-part-
ner covariance,” and the significance test
associated with this parameter tests the
overall cross-partner correlation against
the null hypothesis.2 In the SEM output, the
overall within-partner and cross-partner
correlations will appear as standardized co-
efficients.

Using the pairwise approach to estimate
the overall correlations

The pairwise approach offers an alternative
method for estimating the overall correla-
tions; it provides parameter estimates that
are identical to those given by SEM under
maximum likelihood. In the pairwise corre-

2. One possible generalization of this model is a re-
laxation of the variance constraints (i.e., a model
that has all four variances as free parameters). On
the surface this generalized model may appear at-
tractive; however, it is difficult to interpret because
the resulting parameters are standardized accord-
ing to the particular variances involved. Thus, even
when the covariances are set equal across classes,
the standardized solutions for each class (e.g., the
correlations for men and women) will be unequal.
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lation approach, the estimation of the over-
all within-partner and overall cross-partner
correlations proceeds in four steps. First,
the data are arranged in the pairwise man-
ner (Griffin & Gonzalez, 1995). Second, the
assumptions necessary for pooling the cor-
relations across the two categories of indi-
viduals (i.e., equality of variances within
variables and equality of covariances within
and across categories) are checked. Third,
the overall within-partner and cross-part-
ner correlations are computed as partial
correlations with between-class mean dif-
ferences (e.g., sex differences) partialled
out. Fourth, the overall within-partner and
overall cross-partner correlations are tested
for significance by a method that takes into
account the degree of nonindependence
within dyad members.

In the distinguishable case, the pairwise
correlation model requires five columns of
data (see Griffin & Gonzalez, 1995, for a
general discussion of the pairwise model).
As shown in Table 1, the first column (la-
beled C) consists of binary codes repre-
senting the “category” variable (e.g., sex of
subject). If the researcher decided to code
wives as “1” and husbands as “2” the first
column would consist of “1” in the first row
and “2” in the second row. This pattern
would be repeated for each of the N dyads in
the sample, yielding a column containing 2N
binary codes. The second column (labeled
X) contains the scores on variable X corre-
sponding to the dyad member represented
by the category code in column one. For ex-
ample, the first woman’s score on trust is ad-
jacent to the first “1” in column one. Below
that, the first man’s score on trust is adjacent
to the first “2” in column one. This pattern
continues, yielding a total of 2N scores.

Column three is created by the pairwise
reversal of column two. For example, adja-
cent to each person’s score on trust in col-
umn two is placed her or his partner’s score
on trust in column three. This “reversed”
column of scores on X is referred to as X
Columns four and five consist of the scores
on variable Y (e.g., conflict), which are also
coded in the “pairwise” format and labeled
Y and Y', respectively. Table 1 presents
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Table 1. Symbolic representation for the pairwise data setup for two variables in the

distinguishable case

Variable
Dyad
No. C X X' Y Y’
1 1 X X2 Y Y,
2 X2 1 Y, Yy
2 1 X Xn Yu Yy,
2 Xn 21 Y Yo
3 1 X1 X3 Y, Yi
2 X2 X Y» Y;
4 1 Xa Xn Ya Ya
2 2 Xa Yi 41

Note: The first subscript represents the dyad and the second subscript represents the individual. Categorization
of individuals as 1 or 2 is based on the class variable C. Primes denote the reverse coding described in the text.

these five columns in symbolic form. The
reasoning behind the pairwise coding is
that interdependence is built directly into
the data matrix. By constructing such links
between data points, subsequent analyses
become relatively straightforward.

The Appendix provides statistical tests
for each of the assumptions discussed in the
previous section. Note that the pairwise ap-
proach tests assumptions separately,
whereas above we described an omnibus
test for the set of assumptions in SEM.
Those concerned about inflated Type 1 er-
ror rates for the separate tests of the as-
sumptions in the pairwise approach may
wish to use a Bonferroni corrected a-level.
Separate tests may be desirable because the
omnibus test could mask violations (e.g., an
assumption may be violated even when the
omnibus test is not statistically significant).

Given that the assumptions are met, the
overall within-partner correlation is com-
puted using all 2N individual scores in col-
umns two (X) and four (Y) of Table 1—or
equivalently, columns three (X') and five
(Y'). However, the simple correlation be-
tween column X and column Y does not, in
general, estimate the “true” overall within-
partner correlation. Instead, if there are
between-category mean differences on one
or both variables (e.g., men have a higher
score on trust than do women or vice versa),
these mean differences will bias the ob-

served overall within-partner correlation,
with the direction of the bias controlled by
the magnitudes and directions of the two
mean differences. The overall within-
partner correlation must be corrected for
these mean differences by partialling on the
category variable. Thus, the appropriate esti-
mate of the overall within-partner correla-
tionis

Feype = M

This equation is simply the partial correla-
tion between variables X and Y, holding C
constant, denoted by rxyc (Where variables
to the right of the dot have been partialled
out). In our ongoing example, the corrected
estimate of the overall within-partner cor-
relation would be the partial correlation
between trust and conflict with sex of sub-
ject partialled out. Most statistical packages
have procedures for computing partial cor-
relations.

The computation of the overall cross-
partner correlation proceeds in a similar
manner. The “partial” overall cross-partner
correlation is given by

o =29 (2)
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Again, this is simply the partial correlation
between an individual’s X (column 2) and
his or her partner’s Y (column 5, or Y')
holding C constant.

Significance tests for the two overall cor-
relations are presented in the Appendix.
The reader may examine the symbolic form
of the significance test to develop intuition
for how interdependence influences these
tests. Even though significance tests for the
pairwise approach are asymptotically
equivalent to the Z-tests in SEM under the
null hypothesis, in a single sample the two
tests will not be identical. A Monte Carlo
simulation that assesses the performance of
the pairwise and SEM tests for ryy is given
in the Appendix. The simulation suggests
that the pairwise approach performs at
least as well as the SEM approach with re-
spect to the effective Type I error rate, with
the SEM approach tending to be slightly
liberal.

Hllustrating the overall within-partner and
cross-partner correlations for the
distinguishable case

In the following section we use data col-
lected by Murray et al. (1996) to illustrate
the pairwise analysis of the overall within-
partner correlation when dyadic partners
are distinguishable. Murray and colleagues
collected data from both members of 98
heterosexual couples. We chose two vari-
ables from their data: trust (Holmes &
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Rempel, 1989) and conflict (a 5-item index
adapted from Braiker & Kelley, 1979, in-
dexing the self-rating of the frequency of
overt behavioral conflict). The relevant
means, variances, covariances, and correla-
tions are presented in Table 2. The relevant
partial pairwise correlations needed for
testing the overall within-partner correla-
tion ryy and the overall cross-partner cor-
relation ryy are presented in Table 3. Each
entry in Table 3 is a partial correlation in
that the category variable C has been par-
tialled out. The information needed to
compute all statistics and tests presented
in this article is contained in those two
tables.

The SEM analysis estimating the overall
within-partner and cross-partner correla-
tions tests all assumptions simultaneously;
the omnibus test with 4 degrees of freedom
was nonsignificant (y2 = 7.98, p = .09), in-
dicating that it was appropriate to interpret
the pooled overall correlations as summa-
ries of the relation between trust and con-
flict across the entire sample.

In the pairwise approach, the assump-
tions are tested individually. An examina-
tion of the diagonal elements in Table 2
reveals that men and women had approxi-
mately equal variances on each variable.
The ¢t values corresponding to the depend-
ent variances test presented in the Appen-
dix were 1.31 for trust and 1.04 for conflict,
neither of which is statistically significant at
a = .05 with 96 degrees of freedom. The

Table 2. Correlations, variances, and covariances from 98 couples

Trust Conflict
Female Male Female Male
Female Trust 1.351 0.440 — 0.857 —0.443
Male Trust 0.287 1.743 - 0.365 - 0.438
Female Conflict - 0474 —-0.178 2421 1.025
Male Conflict - 0.269 -0.234 0.465 2.006
Means 7.631 7.509 2.992 2.882

Note: Correlations appear below the diagonal, variances on the diagonal, and covariances above the diagonal.
The means on each variable (e.g., the mean female trust score) are presented in the last row. From Murray et

al., 1996.
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Table 3. Partial pairwise correlation
matrices for trust (T) and conflict (C) from
Murray et al. (1996)

Trust and Conflict

T T C
T 284
C —-.350 —.218
C —.218 —.350 463

Note: The prime denotes the “reverse” coding of the
variable as described in the text. Boldfaced values
are the partial intraclass correlations.

assumption that covyy for women equals
covyy for men is tested next3 (again, see the
Appendix for details on tests of dependent
covariances). For trust and conflict, covxy
equaled —.857 for women and —.438 for
men. This difference was not statistically
significant by the test on dependent covari-
ances given in the Appendix, Z = —1.64.
The final assumption tested is that the two
cross-partner covariances are equal. The as-
sumption that cov,y for one partner (e.g.,
the population covariance between
women’s trust and partner’s report of con-
flict) equals covyy for the other partner
(e.g., the population covariance between
men’s trust and partner’s report of conflict)
appears to fit. The difference between the
trust—conflict covariances across partners
was not statistically significant by the co-
variance test presented in the Appendix, Z
= -33.

Estimates of the two overall correlations
are identical for the SEM and pairwise ap-
proaches, although the tests of significance
differ slightly. The overall within-partner
correlation (partialled on sex) between
trust and conflict was —.350. Thus, a nega-
tive correlation existed between trust and
reports of conflict when pooling both sexes
and controlling for mean differences. In the
pairwise analysis, the effective sample size
Nx; = 166.24, and the Z value was —4.51,

3. Note that when the variances are equal across
classes, the equality of covariance assumption can
be tested using either covariances or correlations.
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p < .001. The SEM Z was —4.27. The over-
all cross-partner correlation was —.218,
with an effective sample size of 175.0 and
a pairwise Z of —2.88. The SEM Z was
—2.67 for the identical standardized esti-
mate.

Separating Dyad-Level and
Individual-Level Effects

In contrast to the overall correlations dis-
cussed above, the dyadic effects model fo-
cuses on three different questions. First,
are dyadic members similar to each other
on each variable? That is, is there signifi-
cant dyad-level variance in each variable?
Second, if there is dyad-level variance in
each variable, are the two variables corre-
lated at the dyadic level? That is, is there
a significant dyad-level correlation be-
tween the trust ratings and the reports of
conflict? Third, within each dyad, does the
relative standing of the two individuals on
one variable relate to their relative stand-
ing on the second variable? That is, is there
a significant individual-level correlation
between trust and conflict? These ques-
tions assess whether the overall within-
partner correlation reflects dyad-level
processes, individual-level processes, or
both.

The overall within-partner correlation
serves as a summary of the relation between
variables X and Y across all individuals, but
it does not reveal whether the relation be-
tween variables X and Y exists at the level
of the individual, at the level of the dyad, or
both. Figure 2 presents one model of the
sources of the linear relation between X and
Y that allows the separation of individual-
level and dyad-level effects (Kenny & La
Voie, 1985). Once again, we emphasize that
the appropriateness of this model is not
provable by statistical means; alternate
structural models (e.g., Kenny, 1996) may be
theoretically justified. In the dyadic effects
model for the distinguishable case, the vari-
ance of a given observed variable is as-
sumed to result from three different
sources: variation due to category member-
ship (which is partialled out from the model
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d

Figure 2. A latent variable model separating individual-level (unique) and dyad-level

(shared) effects using the pairwise approach.

shown here), variation due to dyads, and
variation due to individuals within dyads.
The dyadic component of a given variable is
the portion of that variable that is shared
between dyadic partners; the individual
component is the portion of a variable that
is unshared between dyadic partners.

As Figure 2 illustrates, in this model the
covariation of two variables is also assumed
to result from the same three sources. First,
mean category differences on X and Y
(which are held constant in the pairwise
model) give rise to one portion of the ob-
served overall correlation. Second, the dy-
adic (shared) portions of X and Y are re-
lated through the dyadic correlation rq.
Finally, the individual (unshared or unique)
portions of X and Y are related through the
individual-level correlation ri. After the
class differences are partialled out, the cor-
rected overall within-partner correlation
can be decomposed into the remaining two
parts:

Iye T Vixxc \/ryy’lc gt
\/1 T Hxe \/i Ty hi (3)

In words, the overall within-partner partial
correlation between all X scores and all Y

scores in a distinguishable dyadic design is
modeled as a weighted sum of the dyad-
level correlation (rq) and the individual-
within-dyad correlation (r;). The dyad level
correlation contributes more to the overall
within-partner partial correlation when the
shared variance between partners is large
(as indexed by the partial intraclass correla-
tions rxx' ¢ and ryyc), whereas the individ-
ual-level correlation contributes more to
the overall within-partner partial correla-
tion when the shared dyadic variance is
small.

Assumptions of the dyadic model

The assumptions for the distinguishable
dyadic model are identical to the assump-
tions for the overall correlations (equal
variances on X, equal variances on Y,
equal covariances between an individual’s
X and the partner’s Y, and equal covari-
ances between X and Y within each class).
As with the overall case, these assumptions
can be tested either separately with the
tests provided in the or simultaneously
with SEM. The omnibus test in SEM is the
4-degrees-of-freedom %2 test given by the
model in Figure 2 with the observed co-
variance matrix as input. Note that this is
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the identical 2 from the omnibus test of
the assumptions for the overall correla-
tions.

The dyadic effects model has one addi-
tional assumption that must be examined as
well: The intraclass correlations must both
be significant (Kenny & La Voie, 1985). The
partial intraclass correlation yields the pro-
portion of shared or dyad-level variance in
each variable. Stated another way, the
square root of the intraclass correlations
define the “reliability coefficients” for the
underlying dyadic latent variables. If the in-
traclass correlations are zero, then there is
no dyad-level variance, and rg is meaning-
less. A simple asymptotic test for the partial
intraclass correlation is provided in the Ap-
pendix.

The SEM framework offers more flexi-
bility than does the pairwise approach be-
cause it permits a relaxed model with dif-
ferent individual-level correlations for each
member. If the %2 is significant, then the
pooled dyadic structural model does not fit
the data. One option available in that case
is to refit the model with separate individ-
ual-level correlations, and examine the
change in %2 between the full and reduced
model (see the Appendix for the necessary
EQS syntax).

Using SEM to estimate the dyadic
model

Figure 2 also illustrates the structural
model used to estimate the two underlying
correlations rq and r; in the SEM approach.
Sample EQS syntax and guidelines for
AMOS are presented in the Appendix. The
SEM approach involves three important
changes from the pairwise structural model.
First, instead of the pairwise data setup
(e.g.,columns X and X" each with the entire
2N set of observations differing only in or-
der), the observed variables are coded
separately by categories (e.g., Xw represents
the wife’s score on trust and X}, represents
the husband’s score on trust, each column
with N observations). Second, and follow-
ing from the first point, the category effect
is not directly partialled out from the SEM
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structural model. Instead, this model is
based on the six covariances* presented in
Table 2. Third, when using SEM the model
in Figure 2 could be generalized to allow for
separate individual-level correlations r; for
each class (i.e., separate individual-level
correlations for men and women), whereas
the pairwise model can only estimate a
pooled individual-level correlation.

The output from an SEM program will
provide the estimates of r4 and r;, as well as
tests of significance for these parameters.
We identified the model by setting the vari-
ances of all latent variables to 1 (there are
two latent dyadic variables and four latent
individual variables) and requiring the two
individual-level loadings on each variable
to be equal (e.g., the individual loading on
trust is set equal for men and women) and
the two dyadic loadings on each variable to
be equal (e.g., the dyadic loading on trust is
set equal for men and women). This para-
meterization facilitates generalization to
more variables and groups of larger size, as
discussed later in this article. Under the
present identification scheme, the unstan-
dardized coefficients are the correlations.
For different identification schemes, one
would need to use the standardized coeffi-
cients rather than the unstandardized coef-
ficients. See Bentler (1995) for an illustra-
tion of different methods of identifying
such a model; Gonzalez and Griffin (1998)

4. For some simple SEM models, a correlation matrix
or a covariance matrix as input leads to identical
solutions (see Bollen, 1989, or Long, 1983, for a
nontechnical discussion of this issue). However, a
covariance matrix should be used as input when-
ever there are equality constraints in the model. In
the present models, the two dyadic loadings from
each latent variable leading to the two individual
scores are constrained to be equal and the two
individual loadings leading to a given variable are
constrained to be equal. Thus, the models pre-
sented here must be evaluated by using unstan-
dardized input. Note also that the individual-level
correlations are identical to correlated errors pro-
vided by standard SEM models; however, the para-
meterization provided here is slightly different
from usual to make the multilevel nature of the
data clearer and to allow easy generalization to
more than two variables.
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Correlational analysis of dyad-level data

discuss the implications that different iden-
tification schemes have on the Z tests.

Parameter estimation and significance
testing

In this section we show how the dyad-level
and individual-level correlations can be
computed from the partial pairwise correla-
tions given in Table 3. These estimates are
identical to those given in SEM under
maximum likelihood estimation (i.e., the
pairwise approach also provides maximum
likelihood estimators).

The dyad-level correlation addresses
the following question: Does the similarity
of the members of a dyad on X (i.e., both
tending to be high on X or both tending
to be low on X) relate to the similarity of
the members of that dyad on Y (i.e., both
tending to be high on Y or both tending
to be low on Y)? Following the logic de-
veloped in Griffin and Gonzalez (1995),
the dyad-level correlation in the distin-
guishable case is

o' )

rd = —
Vixx'c \/ryy’c

Because dyad-level correlations represent
the degree of linear relation between the
shared dyadic components of each variable,
there can be no dyad-level correlation with-
out within-dyad similarity on both vari-
ables, as indexed by a significant intraclass
correlation (or equivalently, by a significant
amount of variance in the latent variable).
Therefore, the partial intraclass correla-
tions rxx'.c and ryy'.c need to be nonzero.
Note that the dyad-level correlation is
quite different from the correlation be-
tween the dyad means because the mean-
level correlation is not constrained by the
dyadic similarity within each variable, and
instead contains a mix of dyad-level and
individual-level effects (see Griffin & Gon-
zalez, 1995, for an extended discussion).
This problem can be seen most clearly in a
“pseudo-dyadic” design where individuals
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participate individually but are randomly
collected into dyads by the experimenter
after the data have been collected. In this
situation, as long as there is a significant
individual-level correlation, correlations
computed on “dyadic” means could be sub-
stantial, even though the dyads never ex-
isted! This is because the dyad average
combines the unique qualities of the indi-
viduals with the “emergent properties” of
the dyad. A dyad-level correlation should
represent only the relation between the
shared or emergent properties of the dyad
on two variables.

The individual-level correlation ad-
dresses the following question: Does the re-
sidual of an individual’s score on variable X
(beyond what would be expected by mem-
bership in a particular dyad) reldte to the
residual of that individual’s score on vari-
able Y (beyond what would be expected by
membership in a particular dyad)? Under
the dyadic model, the individual-level cor-
relation can be expressed as

Teve = ey,
r = Xy-C xy'-c (5)

b Jli Fax’c \/T— ryy'»c

Individual-level correlations represent the
degree of relation between the unique vari-
ance on variable X (how a person differs
from his or her partner on X) and the
unique variance on variable Y (how a per-
son differs from his or her partner on Y).
The individual-level correlation can exist
whether or not there is intra-dyadic similar-
ity, as long as the intra-dyadic similarity is
not perfect. The individual-level correlation
differs from the overall within-partner cor-
relation because the latter correlation is not
constrained by the unique portion of an in-
dividual’s score, and instead contains (like
the mean-level correlation) a mix of indi-
vidual and dyadic effects (see Equation 3).

Both r4 and r; are estimated latent vari-
able correlations and are “disattenuated”
for the proportion of dyad-level and indi-
vidual-level variance, respectively, in each
variable. The disattenuation interpretation
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is driven by the denominators of Equations
4 and 5. The numerator of rg is the overall
cross-partner correlation rxy.c, which in-
dexes the strength of the dyadic relation in
raw score terms. When ryy.c is 0, then rq
must be 0.

Significance tests for the distinguishable
pairwise case are, with one slight exception,
identical to those presented in Griffin and
Gonzalez (1995) for the exchangeable case.
The asymptotic tests include those for the
partial intraclass correlations ryx.c and ryy'.,
which index the amount of dyadic or shared
variance in each variable, the partial raw-
score dyadic correlation ry'.c, which in-
dexes the dyadic relation uncorrected for
the degree of shared variance, and the la-
tent dyadic correlation r4. The individual-
level correlation r; is tested using a standard
t test for Pearson correlations, and this test
loses a degree of freedom relative to the
exchangeable case owing to the partialling
of variable C. Details of the tests can be
found in the Appendix.

Although the significance tests from the
SEM and pairwise approaches are equiva-
lent under the null hypothesis, in practice
the null hypothesis will not be exactly true
and the significance tests from the two
methods will differ. In the Appendix we
present simulation data comparing the tests
of significance provided by the two models.
Note that the significance test from the
pairwise approach is slightly more well-be-
haved than the SEM version (see Gonzalez
& Griffin, 1998, for a discussion of the limi-
tations in SEM significance tests).

An illustration of the dyadic effects model

We use the Murray et al. (1996) data to
illustrate the distinguishable dyadic effects
model. For trust, the observed partial in-
traclass correlation of .284 indicates that
about 28% of the variance in trust was
shared between dyadic partners.’ Similarly,
for conflict, the observed partial intraclass
correlation of .463 represents the propor-

5. Note that for the intraclass, the percentage of vari-
ance explained is given by r not 2.
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tion of variance in conflict that was shared
between the partners. The same informa-
tion is obtained from the standardized path
coefficients of the SEM model after they
are squared. When the two partial intraclass
correlations are tested by the asymptotic Z
tests, both are significant: Z = 3.06,p < .01
for trust,and Z = 5.83, p < .001, for conflict.
The relevant tests from the SEM output are
5.39 and 8.28, again statistically significant.
Recall that the two tests will not coincide
except asymptotically under the null hy-
pothesis.

Turning to the multilevel correlations,
the pairwise analysis yields a dyad-level
correlation between trust and conflict of
—.601. This value is obtained by disattenu-
ating the overall cross-partner correlation
ryy' = —.218 by the amount of dyad-level
variance in each variable, rx = .284 and ryy

-218
V284 363
—.601. Note that exactly the same estimate
is obtained from SEM. Under special cir-
cumstances the estimated latent correlation
can obtain “out of bounds” values greater
than 1.0. Some programs such as EQS auto-
matically restrict the possible values of cor-
relations to fall between —1 and 1, and then
the pairwise and SEM values will diverge.
When tested by the pairwise significance
test, rq is statistically significant, Z = —2.88,
p < .01 (the SEM Z value is —3.49).

Finally, the individual-level correlation is
obtained by correcting the difference be-
tween the combined individual and dyadic
correlation ryy and the pure dyadic correla-
tion rxy for the amount of unique individ-
ual-level variance in each variable, 1-ryy
and 1-ryy. In this case, the individual-level
correlation between trust and conflict is
—.212, yielding a #(96) = 2.12, p < .05 (the
SEM the corresponding estimate of r; is
identical and the Z value is 2.19).

= .463. In this case, rq =

Interpreting these results

How should these results be interpreted?
First, the relations across men and women
between trust and conflict were symmetric.
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That is, the relation between men’s trust
and women’s report of conflict was roughly
equal to the relation between women’s
trust and men’s report of conflict. This is an
important conclusion in itself, but is also a
necessary assumption for the dyadic effects
model to be appropriate. Second, the mem-
bers of heterosexual romantic couples were
moderately similar (at a correlational, but
not necessarily at a mean level, because
mean sex differences were partialled out of
this analysis) on levels of both trust and
conflict. The significant intraclass correla-
tions indicated that men and women within
a couple tended to resemble each other,
although the proportions of variance were
only moderate (28% and 46% dyad-level
variance for trust and conflict, respec-
tively).

Finally, and most important, trust and
conflict were related at both the level of the
dyad and the level of the individual. This
situation is by no means preordained. Sub-
stantial correlations may be observed at
only one level of analysis, and in special
cases, each of the two levels can have oppo-
site signs. Recall that the dyad-level correla-
tion represents dyadic processes because it
indexes the extent to which the similarity
between men and women on X (trust) re-
lates to the similarity between men and
women on Y (conflict). Conceptually, this
suggests that the dyadic processes that give
rise to shared positive trust are related to
those dyadic processes that reduce shared
perceptions of conflict. In this case, an indi-
vidual who was relatively more trusting
tended to report relatively less conflict, so
that both levels moved in the same direc-
tion. But it is easy to imagine situations
(theoretically justified) for an opposite re-
sult. If the individual-level relation primar-
ily reflected neuroticism, for example, one
might find that the more neurotic and en-
meshed partner was both more trusting and
more likely to report conflict.

Note the limitations provided by an ex-
isting couples design. We do not know
whether the significant dyad-level correla-
tions came about (a) because of dyadic
processes that occurred between the dyad
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members, or (b) because of the selection
principles that led couples to end up to-
gether, or (c) because of some third vari-
able operating on both partners. Only when
dyad members are randomly assigned can
we conclude that the similarities on each
variable, and the dyad-level correlation be-
tween each variable, reflect actual dyadic
processes (or shared environments that
have dyad-level effects).

Once again, we stress that multilevel
conclusions cannot be reached by the com-
mon practice of (a) correlating dyad means
on X and Y or (b) correlating individual
scores on X and Y. As noted earlier, both
the mean-level correlation ry, and the over-
all within-partner correlation are weighted
combinations of the dyad-level and the in-
dividual-level correlation.

Extensions to Larger Groups and More
Variables

Clearly, the two-person, two-variable prob-
lem we have demonstrated here is the sim-
plest possible setup. In the distinguishable
case, because of the multiple equality con-
straints, the pairwise approach becomes
cumbersome when larger groups or multi-
variate analyses are desired. The SEM ap-
proach, however, is well-suited to such ex-
tensions. (Note that the standard SEM
approach is not easy to implement in the
exchangeable case.) For example, imagine
that one collected trust and conflict scores
on members of family units where each
family consisted of a father, mother, daugh-
ter, and son, and where the four categories
were treated as distinguishable. An SEM
model generalized from Figure 2 could ad-
dress such questions as: Are trust and con-
flict related overall, at the family level, and
at the individual level? (See Cook, 1994, for
a similar model of family functioning using
a latent variable approach.) With four dis-
tinguishable family members, a step-down
approach to the equality constraints should
be used: For example, after testing for a
common overall within-individual correla-
tion, the constraints might be relaxed to al-
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low the children to have a different overall
correlation than the adults.

Or, as another example, one might wish
to study whether the multilevel relations
between trust and conflict in couples re-
main when a third variable, such as rela-
tionship satisfaction, is held constant. This
could be accomplished by extending the
model presented in Figure 2 so that the cor-
related latent dyadic variables underlying
trust and satisfaction were used to predict
the latent dyadic variable underlying con-
flict, and the correlated individual-level
variables underlying trust and satisfaction
were used to predict the individual-level
variable underlying conflict. Examples of
this extension (and others) are given in
Gonzalez and Griffin (1997).

Summary and Conclusion

We have presented a technique for analyz-
ing correlational data from distinguishable
dyads. The pairwise correlation model has
the advantage of simplicity, both conceptu-
ally and in the computer software required.
Simulation results presented in the Appen-
dix show that the pairwise approach is at
least as accurate as SEM in protecting
against Type I error when the null hypothe-
sis is true. A benefit of the structural equa-
tions modeling approach is that it allows a
test of whether separate individual-level
correlations are needed for each class. Fur-
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Appendix

This appendix summarizes several statisti-
cal tests that are mentioned in the text.

Testing the Difference Between Two
Dependent Variances

To test the difference between the variance
of each individual in the dyad, select only
those cases coded with a “1” in column one
and compare the variance of X (column
two) with that of X' (column three), and
compare the variance of Y (column four)
with that of Y’ (column five). We illustrate
with an example from Murray et al. (1996).
The variance for the women on trust was
1.35 and the variance for the men on trust
was 1.74. These two samples are not inde-
pendent because the women and men are
paired as a function of their dyad. To test
the null hypothesis that the population vari-
ance for the women equals the population
variance for the men, one can use the r-test

vV, -V )WN=2
Lo A

with N — 2 degrees of freedom where r is
the cross-partner correlation on a given
variable, V, is the sample variance for the
women, and Vp, is the sample variance for
the men. From Table 2, the correlation be-
tween the woman’s trust and the man’s
trust is .287, yielding a nonsignificant test

_ (1351-1743}v96
2J(1351)(1.743)(1 — 287%)
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A computationally simpler method to
test two dependent variances was given by
Kenny (1979). One creates two new vari-
ables: a sum within dyads and a difference
within dyads. That is, a new variable equal
to the sum of the two scores within a dyad
(denoted S) and a new variable equal to the
difference of the two scores within the dyad
(denoted D). The test for the correlation
between S and D (i.e., the usual r-test for
the Pearson correlation with N — 2 degrees
of freedom as in Equation A4 below) is
equivalent to the test for two correlated
variances presented in Equation Al.

Testing the Difference Between Two
Dependent Covariances

We present a simple asymptotic Z test that
directly compares two dependent covari-
ances (rather than correlations). Using the
asymptotic property that

cov(cia, €34) = (C13C24 + C14c23)/N

(Kendall & Stuart, 1966), a Z test for two
dependent covariances can be constructed.
We illustrate with an example from the
Murray et al. (1996) data. Suppose the re-
searcher wanted to test whether the covari-
ance between a woman’s trust and her con-
flict equaled the covariance between a
man’s trust and his conflict (i.e., the equality
constraint necessary to justify the pooling
in the overall within-partner correlation
ry). Let C denote the sample covariance
and V denote the sample variance. For con-
venience we denote the woman’s trust as 1,




464

the woman’s conflict as 2, the man’s trust as
3, and the man’s conflict as 4. The necessary
variances and covariances are denoted us-
ing subscripts (e.g., C12 denotes the covari-
ance between the woman’s trust and her
conflict; V1 denotes the variance of the
woman’s trust). The test for two dependent
covariances (e.g., C12 and Ciy) is given by

7= (Cy, — Cy)VN
IV, + V3V, +2C5 = 2(C13Cy4 +C14Cri)

where Cp represents the average of the two
sample covariances being tested (i.e. (C12 +
C34)/2). This Z can be compared to the criti-
cal value of 1.96 for a two-tailed test at o =
.0s.

Using the values from Table 2, we can
test whether the covariance between the
woman’s trust and her conflict (—.857) dif-
fers from the covariance between the
male’s trust and his conflict (—.438). The
resulting test statistic is

(—.857 — (—.438))v/98

(1351)(2.421) + (1.743)(2.006)
+ 2(—.64752) — 2[(.440)(1.025)
+ (—443)(~365)]

= —1.64,

which is not statistically significant by con-
ventional standards.

Significance Testing for the Pairwise
Approach

The significance test for the overall within-
partner correlation requires four elements:
the number of dyads and three indices of
the degree of nonindependence within dy-
ads (Griffin & Gonzalez, 1995). In the dis-
tinguishable case, the indices of noninde-
pendence include the partial intraclass
correlation on variable X (ry., indexing
the within-dyad similarity on X), the partial
intraclass correlation on variable Y (ryy .,
indexing the within-dyad similarity on Y),
and the partial overall cross-partner corre-
lation between variables X and Y’ (rxy'.c,
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indexing the dependence of an individual’s
X on his or her partner’s Y).

Given the four elements of the partial
pairwise correlation matrix in the distin-
guishable case (ryye, I'x'c Fyy'e, and ryyrc),
significance testing of the overall within-
partner correlation proceeds in the same
manner as for the exchangeable case (Grif-
fin & Gonzalez, 1995).6 First, we consider
the test for the overall within-partner corre-
lation. Under the null hypothesis that pxyc
= 0, the approximate large-sample variance

of ryyc is 1 , where
N*
1

N = N (A2)
1+ Tex'-cTyy'-c + eyc

Thus, the overall (partial) correlation ryy.
can be tested using the critical ratio Z =

Iey. .
2=, or more simply Z =r, /[Ny .The

VN

observed Z can be compared to the stand-
ard table of the normal distribution. Be-
cause this test is asymptotic we ignore the
loss of one degree of freedom due to par-
tialling the class variable C.

Intuitively, N can be thought of as the
“effective sample size” for ryyc adjusted for
dependent observations, and it typically
ranges between N (the number of dyads)
and 2N (the number of individuals) de-
pending on the degree of nonindependence
within dyads (Griffin & Gonzalez, 1995).7
Thus, under the null hypothesis, when there
is complete dependence within dyads the
overall within-partner correlation and its
significance test reduce to the usual (par-

6. As in our previous article dealing with the ex-
changeable case, we focus on hypothesis testing
rather than interval estimation. The hypothesis-
testing approach has the advantage of simplifying
the standard error under the null hypothesis (see
the Appendix in Griffin & Gonzalez, 1995).

7. As discussed in our earlier report (Griffin & Gon-
zalez, 1995), when the two intraclass correlations
differ in sign it is possible for the effective sample
size to exceed 2N.
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tial) Pearson correlation using one individ-
ual from each dyad because the two indi-
viduals are essentially identical. When there
is complete independence within dyads on
both variables, the correlation and its sig-
nificance test essentially reduce to the (par-
tial) Pearson estimates obtained using both
members of each dyad.

Similarly, the asymptotic variance of the
overall cross-partner correlation ryy c under

the null hypothesis is ]\1* where N; =
2

ZN —. N; can be thought of
1+ exclyye T Tay'e

as the “effective sample size” for the overall
cross-partner correlation ryyc adjusted for
dependent observations, and under the null
hypothesis can range between N, the
number of dyads, and 2N, the number of

ro.
individuals. The critical ratio ——= =

1
N;

Iyy'c \/N; is tested as a Z statistic. Note

that these tests (and those following), de-
spite being simplified, are asymptotically
equivalent to the Z tests provided in an
SEM program under maximum likelihood
estimation.
The partial intraclass correlation (e.g.,
ro-c) can be tested against its standard
1- rxzx'-c
as a Z test of the null hy-

error Nii
pothesis, where N is the number of dyads.
The observed Z ratio of (\/ﬁ - )1 —
rxx'- 2) is compared to 1.96 for a two-tailed
test at a = .05.

The significance test for 4 is related to
the test for ryy.c presented earlier. Under

the null hypothesis that ps = 0, the asymp-

. . !
totic variance of rq is -'D'—; where

D= 2N (ro.ro) (A3)

2 xx"-c'yy’-c
1+ rxx’-cryy'c Xy

Thus, Z = rqvD" . Intuitively, D* can be
thought of as the “effective sample size”
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adjusted for dependent observations and
disattenuation. When rxx ¢ and/or ryy c are
small, rg will tend to be large and may even
exceed 1.0. Under these circumstances, D*
will be small and so the “inflated” value of
rq will generally not be significant. Note
that the p values for testing rxyc and rg
against their respective null hypotheses will
always be identical in the pairwise ap-
proach.

The individual-level correlation r; can be
computed directly from the pairwise setup
as per Equation 5, or equivalently by corre-
lating the difference scores within a dyad
(e.g., female minus male scores on trust cor-
related with female minus male scores on
conflict). The significance of r; can be tested
using the usual Pearson correlation table
(or the associated ¢ test for a Pearson corre-
lation

rJdN —2

J1-r?

with N — 2 degrees of freedom).

(A4)

Simulation Study on the Dyad-Level
Correlation and the Overall
Within-Partner Correlation

We conducted a small simulation study on
the dyad-level correlation to compare the
pairwise approach to the SEM approach.
The simulation was based on the algorithm
described by Eliasziw and Donner (1991)
and was written in the S statistical language,
making use of its built-in random number
generator (Becker, Chambers, & Wilks,
1988). For each set of population values
listed in Table 4, 500 samples of either N =
30 or N = 200 were drawn from a multivari-
ate normal distribution with unit variances
and a mean difference of 5 between the
population ps for the two classes. Popula-
tion correlation parameters were chosen to
ensure a correlation matrix with full rank.
All other details parallel the previous simu-
lation performed on the exchangeable case
(Griffin & Gonzalez, 1995).
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Table 4. Bias and effective Type I error rates for the latent variable model for the pairwise

and SEM approaches
Null hypothesis that py = 0 No.
of Samples
Average Pairwise SEM Consistent
Pxx' = Pyy' ol Estimate r4 Type I Error Type I Error with Model
N=30
.50 =5 .078 .039 .047 487
.50 0 —.010 040 058 497
50 5 -.055 .043 .070 486
75 -5 .016 052 .080 500
75 0 .006 .040 .080 500
.75 5 .002 .050 072 500
N =200
.50 -5 .001 060 050 500
.50 0 —.002 030 .036 500
.50 S —.004 048 .060 500
75 -5 .001 058 .064 500
75 0 .001 .054 .060 500
75 S -.001 .068 074 500

Note: Number of dyads (V) was either 30 or 200. Details of the simulation are provided in the text.

Examination of Table 4 suggests that, for
the population values examined in this
simulation, the pairwise approach per-
formed at least as well as the SEM ap-
proach (as implemented in EQS) with re-
spect to Type I error rates, even with a small
number of dyads (N = 30).8 In all but one
case the SEM approach had a greater effec-
tive Type I error than did the pairwise ap-
proach; in 8 out of the 12 combinations of
population values, the pairwise approach
had an effective Type I error rate that was
closer (in an absolute difference sense) to
0.05 than was the SEM approach. We note
that a different parameterization of the
equivalent SEM model (i.e., variances of
the latent variables as free parameters and
indicator paths fixed to 1) leads to effective
Type I errors that are quite close to rate

8. With N = 200 there were no model-inconsistent
estimates in the sense of out-of-bounds rq. How-
ever, with N = 30 and the population intraclasses
both set to .50, a few sample values of rq > 1 oc-
curred, and they were excluded from the summary
table. The last column of Table 4 shows the number
of model-consistent samples (i.e., 500 — the
number of discarded samples). Note that when the
population intraclass correlations are high (in this
simulation, .75) all samples were model-consistent
even when N = 30.

from the pairwise approach (see Gonzalez
& Griffin, 1998, for a discussion of the ef-
fects of parameterization on tests of signifi-
cance).

We also performed an analogous simula-
tion on the overall within-partner correla-
tion ryy to examine the Type I error rate of
the asymptotic test presented here for the
pairwise distinguishable case. Again, a
population mean difference of 5, with unit
variance, was introduced between the two
classes. Table 5, based on N = 30 dyads,
presents the average estimate over the 500
runs and the effective Type I error rate. As
shown in Table 5, the asymptotic test for the
pairwise approach performed well even
with samples of 30 dyads. Again, the SEM
approach produced effective Type 1 error
rates that tended to be liberal.

Instructions to Estimate the SEM Model
in Figure 2

We present EQS syntax and guidelines for
the package AMOS to estimate the two
models described in the text. We first give
instructions for estimating ryy and ryy, and
then give instructions for estimating r; and
rd. All relevant correlations will appear in

~

~

~
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Table 5. Bias and effective Type I error rates for the overall within-partner correlation ryy

Pairwise SEM

Pxx' = Pyy Py Average Estimate Type I Error Type 1 Error
-5 -5 —.006 .046 .068
-5 0 .006. .060 .088
-.5 5 -.003 .046 064
0 -5 —.006 .040 064
0 0 .000 .050 .064
0 5 000 .040 046
5 -5 -.002 .058 .082
S 0 007 .054 072
5 S —.001 .042 .058

Note: Number of dyads in the simulation was 30. Details of the simulation are provided in the text.

the section of the program output giving
“standardized” estimates. Note that the two
models test identical constraints (e.g., yield
identical y2 values), and the parameters in
one model can be transformed into the pa-
rameters in the other model using the equa-
tions presented in the text.

The first EQS syntax provides estimates
of rxy and ryy'. As displayed in Figure 1, this
model does not contain latent variables, so
we need to create latent variables that are
identical to the observed variables. This al-
lows us to place the necessary equality re-
strictions required by the model. For exam-
ple, by equating a latent variable to the
wife’s trust score and a different latent vari-
able to the husband’s trust score, one can
set the variance of those two latent vari-
ables equal to each other, thus providing a
way to test whether the observed variance
for the wife’s trust is equal to the observed
variance of the husband’s trust.

In the SEM package AMOS, the model
in Figure 1 is a little more straightforward
to implement. One simply draws Figure 1

/TITLE

MODEL IN FIGURE 1:
Lines beginning with !
/SPECIFICATIONS
VARIABLES = 4; CASES =
METHODS = ML;

MATRIX = COV;
/LABELS

V1 = Wife Trust; V2 =
V3 = Wife Conflict; V4 =

98;

directly into AMOS, assigns names to each
of the six paths (making sure that paths that
are assumed equal receive identical names),
and gives names to the variances of each of
the four observed variables so that they can
be estimated (again, making sure to assign
the same name for variances that are as-
sumed to be equal).

The second EQS syntax provides esti-
mates of r; and rq with the restriction that the
two ri’s are equal to each other. This pro-
vides parameter estimates that are identical
to those from the pairwise model. As men-
tioned in the text, the SEM framework has
the advantage that it can estimate a model
that permits different r;’s for each individual.
To perform this more relaxed test, simply
delete the line “(E3,E1) = (E4,E2);”. The
model in Figure 2 can also be implemented
in AMOS. One simply draws the model, as-
signs names to each path, making sure that
paths that are assumed to be equal are as-
signed identical names, and fixes the vari-
ances of the latent variables to 1.

ESTIMATING rxy and rxy’
are comments

Husband Trust;
Husband Conflict;
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/EQUATIONS
V1 = 1 F1 ; !latent variables without
V2 = 1 F2 ; l!error are defined,
V3 = 1 F3 ; lindicators are fixed to 1
V4 = 1 F4 ;
/VARIANCES
F1 = 1*; !latent variances are free
F2 = 1%;
F3 = 1%;
F4 = 1%;
/COVARTANCES
F2, F1 = .5*; lall six possible covariances
F3, F1 = .5*; lare free
F4, F1 = .5%*;
F3, F2 = .5%;
F4, F2 = .5%;
F4, F3 = .5%;
/CONSTRAINTS
(F1, F1) = (F2, F2); !latent X variances equal
(F3, F3) = (F4, F4); !latent Y variances equal

(F3, F1) = (F4, F2); !pooled cov(X,Y)
(F4, F1) = (F3, F2); !pooled cov(X,Yprime)
/MATRIX
1.351
0.440 1.743
-0.857 — 0.365 2.421
—0.443 — 0.438 1.025 2.006
/PRINT
COVARIANCE = YES;
/END

/TITLE
MODEL IN FIGURE 2 WITH INDIVIDUAL COVARIANCES SET EQUAL
Lines beginning with ! are comments
/SPECIFICATIONS
VARIABLES = 4; CASES = 98;
METHODS = ML;
MATRIX = COV;
/LABELS
V1 = Wife Trust; V2 = Husband Trust;

V3 = Wife Conflict: V4 = Husband Conflict;

F1 = Latent Dyad Trust; F2 = Latent Dyad Conflict;
El = Err Wife Trust; E2 = Err Hus Trust;

E3 = Err Wife Con; E4 = Err Hus Con;
/EQUATIONS

Vi = 1* F1 + 1* E1 ;

v2Z = 1* F1 + 1* E2 ;

V3 = 1* F2 + 1* E3 ;

V4 = 1* F2 + 1* E4 ;
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/VARTANCES

F1
F2
El
E2
E3
E4 =
/COVARI
Fz2, F1
E3, El
E4, E2

1;

It

’
»

o n

el e el

(E3,E1)
(V1,E1)
(V3,E3)
(V1,F1)
(V3,F2)
/MATRIX
1.351

1Tatent and error variances all fixed to 1

o

NCES

.5%; lestimate dyad level cov(X,Y)

.5*: lestimate individual level cov
.5*: lestimate individual level cov
/CONSTRAINTS

(E4,E2);
(V2,E2);
(V4,E4);

= (V2,F1);

(V4,F2);

.440 1.743
.365 2.421
.438 1.025 2.006

-.857 —
—.443 -
/PRINT

COVARIANCE

/END

= YES;

Iset two cov(X,Y)’s equal
lconstrain error variances within
| variable to be equal

lconstrain indicators within

! variable to be equal






