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Wearables Database and Analysis Platform (WDAP) to study sleep, circadian rhythms and mood 
 
Platform: We have developed a database and app to collect wearable data globally and anonymously (see Figure 1). 
An individual’s phone or wearable can contain an enormous amount of physiological data. Our first goal was to 
create a way in which users would be motivated to send this data to us securely and receive benefits to them. The 
first version of this is the “Social Rhythms” app available for free for Apple devices. The app also works with a 
variety of wearables, including the Apple Watch, Fitbit, and MiBand. When users download the app, they answer 
several basic demographic questions including age, gender, and race. For this specific app, we also asked them when 
they began social distancing. 
 

 
Figure 1: Wearables Data and Analysis Platform: (A) Computing infrastructure. (B) Pie chart showing geographic distribution of 
participants who submitted wearable data. (C) Comparison of the regularity of circadian rhythms of users before and after they 
began social distancing. Social distancing dramatically increased circadian desynchrony in most users. 
 
Users can then send us back data; our default is the past two years of activity, heart rate, and sleep data, but users 
can choose which and how much data they would like to share with us, and can remove their data from our servers 
at any time. We have developed this platform so that the information is sent anonymously. Once on our servers, data 
is analyzed with the latest tools we have created (see Analysis section below). After this is completed, users receive 
a push notification saying that a report is ready and they can view the information. The data in the report is sent 
anonymously. As noted, users can remove their data from our servers at any time with the app. If they leave their 
data, new reports will be sent to them when available. They can also be contacted through the app to see if they 
would like to participate in more detailed studies at other labs, which are identified. We currently have data from 
over > 1,000,000 days of measurement. 
 
Analysis: Our modeling work has developed tools to extract critical information from heart rate about activity, sleep, 
and circadian timekeeping (see Figure 2) (4). A similar research effort could be applied to breathing rate, 
temperature, and neurocognition as data on those systems become available through wearables (5). Activity, sleep, 
and circadian timekeeping are the largest factors affecting heart rate and most other wearable signals, although their 
prominence may vary in exceptional cases, for example, during disease. Accounting for these three factors first will 
allow better prediction of infection from the residual signals (5). Among the foundations of our work are advances in 
signal processing and mathematical modeling of physiological systems. To highlight one method, published in 
Science Advances (6), we developed a new modeling framework for studying coupled oscillators, and in a paper 
published in the Journal of Biological Rhythms, we used this new method to create a model of the human circadian 
clock (7). 
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Figure 2: Method of extracting circadian phase from ambient heart-rate measurements: (A) Sample heart-rate (hr) measurements 
from a medical intern (black dots) along with minute-by-minute step counts as measured by a Fitbit. Heart-rate measurements 
during sleep are plotted in grey since they are not used in our analysis. HR adjusted for sleep, and activity is shown in red. The 
timing of midsleep and the timing of the trough of the adjusted hr rhythm with estimated error is also shown. (B) Average daily 
hr rhythm while awake using over 100,000 days of hr data from medical interns (blue). The average adjusted HR rhythm (red) is 
shown in (A) and compared with the hr rhythm measured in a carefully controlled laboratory setting (8). 
 
However, societal effects such as changing work schedules can lead to racial disparities, stress, and comorbidities, 
and might even be the triggers for disease (9). They are part of the fundamental basic science of disease. We have 
begun understanding how this sleep and circadian misalignment affects mental health in a population of > 1,000 
patients at Michigan Psychiatry we track. 
 

 
 
 
Figure 3: Dynamics of circadian rhythms in the real world: (A) HR rhythm and actogram for a medical intern. Daily 
steps are plotted for every 48 hours. Each day’s data is double plotted. The subject begins a shift around day 55. Our 
estimate of the phase of the hr circadian rhythm is also shown in red +- 1 SD. Interestingly, this intern’s hr circadian 
clock does not adjust to the new schedule, while the hr circadian clock of other interns does (data not shown). (B) 
Actogram of an individual who submitted data to WDAP and reported being COVID-symptomatic. The red line 
indicates the beginning of their isolation. Isolation is followed by significant circadian disruption, as shown by the 
timing of the start of daily activity. (C) We characterize the circadian pacemaker of users who submit > 50 days’ 
worth of data. Here, we plot a phase response curve showing the resulting phase shift in circadian timekeeping for 
steps taken at different times of day with respect to their hr circadian pacemaker.  
 
Additionally, the markers that are measured by wearables are different from those typically used in clinical studies. 
While they usually are noisier, they can have the advantage of being more relevant. The effects of activity on heart 
rate have previously been well characterized. Other factors that can be studied in relation to the data from wearables 
include the following. 
 

1) Circadian: Wearables also can collect data much more efficiently than laboratory studies. To illustrate this, 
we consider the human circadian clock. Heroic human-subject studies have characterized properties of the 
human circadian clock, for example, its average rhythm in heart rate (10), period, and phase response to 
exercise (11). We were able to reproduce all these studies using existing wearable data in our database with 
our analytical tools (see Figures 2 and 3, which contain figures we recently generated in response to 
reviewers’ comments on the included manuscript (8)). Additionally, we found significant variation in the 
timekeeping in different individuals. Our algorithms were able to personalize these predictions and indicate 
how other individuals would respond to shift work. Additionally, in two companion papers in collaboration 
with the Henry Ford Health System, (12), we found that permanent night shift workers may have a 
fundamentally altered circadian timekeeping system. However, models were able to correctly predict 
circadian phase based on wearable data in individuals with typical daytime schedules (Figure 4). 
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Figure 4: Testing circadian phase prediction in shift workers: Here, we predict the circadian phase based on ordinary differential 
equation models we have built of the human circadian clock. The individual wore an Apple Watch for one week before a 
laboratory measurement of circadian phase using dim-light Melatonin onset (DLMO). Our models used data from the Apple 
Watch to predict DLMO within an error of about 1 hr. Measured vs. predicted DLMO is shown in (A) along with the difference 
in DLMO prediction (B). 

 
 

2) Sleep: We showed how societal effects on sleep could be measured through wearables (see included paper 
(13) and Figure 5). This was based on data we collected from an app (Entrain) that we developed to help 
travelers overcome jetlag. Entrain was installed in > 200,000 devices. We also have developed and 
validated algorithms to score sleep from the Apple Watch. Our algorithms were released open-source; we 
suspect they played a significant role in Apple’s proprietary algorithms that score sleep in the latest Apple 
Watch release. 

 
 

 
 
 

Figure 5: Predicting real-world sleep: (A) Receiver operating characteristic curve showing the accuracy of our ML algorithm to 
predict sleep from Apple Watch data (4). We score 90% of epochs correctly, with 60% of actual wake epochs and 93% of actual 
sleep epochs. This open-access algorithm compares well with the accuracy of proprietary algorithms used in the wearable 
industry. (B) Timing of sleep and wake by age as self-reported by users of our Entrain app (13). We found that women schedule 
more sleep than men, a finding that was subsequently validated by other studies.  
 

3) Mood Dynamics: We showed how the mood dynamics of individuals suffering from bipolar disorder could 
be classified into three categories (14). The equations for our model are:  
 

 
 

and are further described in Figure 6. Testing these categories, we found that one of them had a much 
higher rate of suicide attempt than the others. We are currently looking into the circadian rhythms and sleep 
of these individuals, believing these factors are essential for the etiology of bipolar disorder. Preliminary 
work we published in Nature Communications suggests that it is GSK3b, a target of lithium, that controls 
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the circadian rhythm of the electrical activity of neurons (15). This gives a molecular target to follow up on. 
   
 
 

 
 
Figure 6: Characterization of mood dynamics through mathematical models: Each individual’s weekly mood scores were fitted to 
a mathematical model (equation 1) of mood characterized by depressive (variable Dt) and manic (variable Mt). Fitted parameters 
of the model were used to phenotype individuals with bipolar disorder based on the parameters related to (A) mania and (B) 
depression (16). (C) Using a Markov-chain model for mood dynamics, we were able to classify bipolar subjects into three 
categories. Testing these categories, we found that the depressive category has over twice the rate of a suicide attempt as the 
stable category (16). 
 
We are currently monitoring how medical interns use our circadian predictions (17).  
 
Future applications include correcting circadian phase and sleep for those suffering from addiction, and studying 
racial disparities in sleep and circadian timekeeping, for example, with Michigan’s Poverty Center. The University 
of Michigan Health System is also giving free Apple Watches to thousands of its patients. We have access to this 
dataset and the patient’s medical records. 
 
Large Scale Neuronal Simulation 
 
Background and Results: Machine Learning (ML) is impacting many areas of neuroscience. One fundamental 
limitation of this computational technique is that it is built on elements that only vaguely represent actual neurons. 
To address this, we have created HHANN, a new kind of ML that is based on mathematical models of the ionic 
currents that generate action potentials in neurons as pioneered in the work of Hodgkin and Huxley (HH).  
 
HHANN is based on large-scale models of networks of neurons as used in many areas of computational 
neuroscience. The model that is used for each neuron can vary based on the ionic content of the neurons under 
study. So, for example, we use models of cortical neurons when studying cortex (18), and models of suprachiasmatic 
nucleus (SCN) neurons when researching biological timekeeping (19). Their link to ML is that we use ML 
techniques, such as modified backpropagation, to train the models and determine the connectivity of the neurons. 
Aspects of ML are required since neuroscience is far from resolving the connectivity of thousands of neurons 
rapidly in the laboratory.  
 
The benefit of this new approach is that models can give accurate predictions of the underlying neural networks that 
generate many of the functions of the brain. So while traditional ML approaches could learn a simple task, our 
framework not only already knows this task, but also shows how it is changed when different ionic currents or 
neuronal types are used in the model, when various neurotransmitters or neuropeptides are present, or when a drug is 
administered.  

 
The reason previous researchers have not tried this approach is the much higher computation cost of HH models 
when compared with the elements of ML. We have addressed this with new computational methods that can 
simulate millions of HH model neurons on desktop computers rapidly on GPUs. Additionally, we have built 
strategies to train these models using stochastic search algorithms (see included paper (20)) or a new unpublished 
version of backpropagation (see Figure 7). 
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Figure 7: Hodgkin–Huxley Artificial Neural Networks (HHANN): We develop a new form of artificial neural networks based on 
mathematical models for neurons characterizing their ionic currents as done initially by Hodgkin and Huxley. (A) A sample plot 
of the voltage of several neurons in an HHANN. Spikes are shown as well as lateral inhibition. Different mixtures of ionic 
currents can be used. We trained the model on the MNIST dataset, which consisted of handwritten digits. Basis functions (B) 
show how five hidden neurons respond to different parts of the visual field. Darker colors indicate excitation.  
 
As ANNs have provided excellent models for static visual signals, HHANN naturally extends these models to 
spatiotemporal patterns since HH models naturally include temporal dynamics. We have built such models for 
subconscious vision, which lead to the intriguing hypothesis that the SCN, the center of mammalian circadian 
timekeeping, also is an important center for subconscious vision, particularly gaze control (20). 
 
Future Work: Our goals for this platform include continuing to incorporate neurophysiology, particularly the 
structure of the human brain. Using Hiroki Ueda’s CUBIC database (21), we have included data on the position of 
every neuron in the mammalian brain into an HHANN. We have also added paracrine signaling to HHANN through 
new methods to solve the diffusion equation on GPUs quickly. This gives a “whole brain” HHANN, which can be 
used to study complex phenomena like sleep (See Figure 8). In preliminary work, we have seen that the dynamics of 
paracrine signaling (e.g., through VIP) can significantly affect the waves which travel across the brain. How to 
optimize such a network remains a key challenge because of its computational cost, and so we will continue to 
maximize the performance of our simulation methods. 
 
One way to address the sizeable computational cost is to blur individual neurons into a population density where we 
study the probability that any neuron is in a particular state. We published a symmetric particle method to 
accomplish this (22) and have new, more accurate asymmetric particle methods and level-set methods. Thus, each 
region of the brain is treated as a population density, and these regions can be connected through data from fMRI 
(see Figure 8). But most importantly, these kinds of models can be directly fitted to fMRI data. Very impactful work 
has recently addressed the fitting of a neuronal model to fMRI observations (cite Murray), but this work used 
simplified neuron models that did not account for the ionic currents within neurons. 
 
Another application of HHANNs is in mammalian sleep. We are currently training an HHANN with cortical model 
neurons to reproduce slow-wave sleep. Once this is completed, we will simulate how changes in ionic currents affect 
sleep. This will be compared with data from Hiroki Ueda’s and Steven Brown’s group on how slow-wave sleep is 
changed in animals with mutations affecting key ion channels that play roles in sleep regulation. 
 

 
 

Figure 8: Whole-brain simulation with HHANNs: We incorporated the spatial position of neurons in the mouse brain from the 
Ueda lab, as shown on the left plot. The Allen Brain Atlas gives coarse connectivity between different brain regions. One 
timepoint from a sample simulation is shown in the middle plot. Green dots indicate the peak of an action potential. 
Neuropeptides and neurotransmitters can also be incorporated into this framework. The plot on the right shows a simulation, 
similar to that in the middle, with the neuropeptide concentration shown in blue. Traveling waves, as seen in slow-wave sleep, are 
seen. 
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