Singularity of Cubic Bézier Curves

Edmond Nadler

Eastern Michigan University

oint work with
Tae-wan Kim
Seoul National University

MAA Michigan Section Meeting
May 7, 2010

Outline

Introduction

Singularity of a Parametric Curve

Bézier Curves

Singularity of Bézier Curves

Parametric Cubic Curve

$$
\mathcal{C}(t)=\mathbf{a}_{0}+\mathbf{a}_{1} t+\mathbf{a}_{2} t^{2}+\mathbf{a}_{3} t^{3}
$$

Example ("twisted cubic"): $\mathcal{C}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$

Singularity of a Parametric Curve

Singularity of a curve $\mathcal{C}(t): t^{*}$ where $\mathcal{C}^{\prime}\left(t^{*}\right)=\overrightarrow{0}$
Geometrically, a cusp, except when also $\mathcal{C}^{\prime \prime}\left(t^{*}\right)=0$, which for cubic can happen only when curve is a line
Example: $\mathcal{C}(t)=\left\langle 4 t^{3}-3 t^{2}+1,4 t^{3}-9 t^{2}+6 t\right\rangle, t \in[0,1]$

$$
\begin{array}{r}
\mathcal{C}^{\prime}(t)=\left\langle 12 t^{2}-6 t, 12 t^{2}-18 t+6\right\rangle \\
t^{*}=\frac{1}{2}, \mathcal{C}\left(t^{*}\right)=\left\langle\frac{3}{4}, \frac{5}{4}\right\rangle
\end{array}
$$

Bézier Curves

- A representation of parametric polynomial curves
- Geometric and intuitive, facilitating creative design process
- Computationally efficient and stable
- At the core of Computer Aided Geometric Design (CAGD)

Bézier Curves of degree 1

$$
\mathcal{C}(t)=(1-t) P_{0}+t P_{1}, t \in[0,1]
$$

Bézier Curves of degree 1

$$
\mathcal{C}(t)=(1-t) P_{0}+t P_{1}, t \in[0,1]
$$

Bézier Curves of degree 1

$$
\mathcal{C}(t)=(1-t) P_{0}+t P_{1}, t \in[0,1]
$$

Bézier Curves of degree 1

$$
\mathcal{C}(t)=(1-t) P_{0}+t P_{1}, t \in[0,1]
$$

Bézier Curves of degree 2

$$
P_{01}=(1-t) P_{0}+t P_{1} ; \quad P_{12}=(1-t) P_{1}+t P_{2}
$$

$$
\mathcal{C}(t)=(1-t) P_{01}+t P_{12}, t \in[0,1]
$$

Bézier Curves of degree 2

$$
P_{01}=(1-t) P_{0}+t P_{1} ; \quad P_{12}=(1-t) P_{1}+t P_{2}
$$

$$
\mathcal{C}(t)=(1-t) P_{01}+t P_{12}, t \in[0,1]
$$

Bézier Curves of degree 2

$$
P_{01}=(1-t) P_{0}+t P_{1} ; \quad P_{12}=(1-t) P_{1}+t P_{2}
$$

$$
\mathcal{C}(t)=(1-t) P_{01}+t P_{12}, t \in[0,1]
$$

Bézier Curves of degree 2

$$
P_{01}=(1-t) P_{0}+t P_{1} ; \quad P_{12}=(1-t) P_{1}+t P_{2}
$$

$$
\mathcal{C}(t)=(1-t) P_{01}+t P_{12}, t \in[0,1]
$$

Bézier Curves of degree 2

$$
P_{01}=(1-t) P_{0}+t P_{1} ; \quad P_{12}=(1-t) P_{1}+t P_{2}
$$

$$
\mathcal{C}(t)=(1-t) P_{01}+t P_{12}, t \in[0,1]
$$

Bézier Curves of degree 2

$$
P_{01}=(1-t) P_{0}+t P_{1} ; \quad P_{12}=(1-t) P_{1}+t P_{2}
$$

$$
\mathcal{C}(t)=(1-t) P_{01}+t P_{12}, t \in[0,1]
$$

Bézier Curves of degree 3

$$
P_{01}=(1-t) P_{0}+t P_{1} ; P_{12}=(1-t) P_{1}+t P_{2} ; P_{23}=(1-t) P_{2}+t P_{3}
$$

$$
P_{012}=(1-t) P_{01}+t P_{12} ; \quad P_{123}=(1-t) P_{12}+t P_{23}
$$

$$
\mathcal{C}(t)=(1-t) P_{012}+t P_{123}, t \in[0,1]
$$

Bézier Curves of degree 3

$$
\begin{gathered}
P_{01}=(1-t) P_{0}+t P_{1} ; P_{12}=(1-t) P_{1}+t P_{2} ; P_{23}=(1-t) P_{2}+t P_{3} \\
P_{012}=(1-t) P_{01}+t P_{12} ; \quad P_{123}=(1-t) P_{12}+t P_{23}
\end{gathered}
$$

Bézier Curves of degree 3

$$
\begin{aligned}
P_{01}= & (1-t) P_{0}+t P_{1} ; P_{12}=(1-t) P_{1}+t P_{2} ; P_{23}=(1-t) P_{2}+t P_{3} \\
& P_{012}=(1-t) P_{01}+t P_{12} ; \quad P_{123}=(1-t) P_{12}+t P_{23} \\
\mathcal{C}(t)= & (1-t) P_{012}+t P_{123}, t \in[0,1]
\end{aligned}
$$

Bézier Curves of degree 3

$$
\begin{gathered}
P_{01}=(1-t) P_{0}+t P_{1} ; P_{12}=(1-t) P_{1}+t P_{2} ; P_{23}=(1-t) P_{2}+t P_{3} \\
P_{012}=(1-t) P_{01}+t P_{12} ; \quad P_{123}=(1-t) P_{12}+t P_{23} \\
\mathcal{C}(t)=(1-t) P_{012}+t P_{123}, t \in[0,1]
\end{gathered}
$$

Bézier Curves of degree 3

$$
\begin{aligned}
& P_{01}=(1-t) P_{0}+t P_{1} ; P_{12}=(1-t) P_{1}+t P_{2} ; P_{23}=(1-t) P_{2}+t P_{3} \\
& P_{012}=(1-t) P_{01}+t P_{12} ; \quad P_{123}=(1-t) P_{12}+t P_{23} \\
& \mathcal{C}(t)=(1-t) P_{012}+t P_{123}, t \in[0,1]
\end{aligned}
$$

Bézier Curves of degree 3

$$
\begin{gathered}
P_{01}=(1-t) P_{0}+t P_{1} ; P_{12}=(1-t) P_{1}+t P_{2} ; P_{23}=(1-t) P_{2}+t P_{3} \\
P_{012}=(1-t) P_{01}+t P_{12} ; \quad P_{123}=(1-t) P_{12}+t P_{23} \\
\mathcal{C}(t)=(1-t) P_{012}+t P_{123}, t \in[0,1]
\end{gathered}
$$

Bézier Curves of degree 3

$$
\begin{gathered}
P_{01}=(1-t) P_{0}+t P_{1} ; P_{12}=(1-t) P_{1}+t P_{2} ; P_{23}=(1-t) P_{2}+t P_{3} \\
P_{012}=(1-t) P_{01}+t P_{12} ; \quad P_{123}=(1-t) P_{12}+t P_{23} \\
\mathcal{C}(t)=(1-t) P_{012}+t P_{123}, t \in[0,1]
\end{gathered}
$$

Bézier Curves of degree 3

$$
\begin{aligned}
P_{01}= & (1-t) P_{0}+t P_{1} ; P_{12}=(1-t) P_{1}+t P_{2} ; P_{23}=(1-t) P_{2}+t P_{3} \\
& P_{012}=(1-t) P_{01}+t P_{12} ; \quad P_{123}=(1-t) P_{12}+t P_{23} \\
\mathcal{C}(t)= & (1-t) P_{012}+t P_{123}, t \in[0,1] \\
= & (1-t)\left[(1-t) P_{01}+t P_{12}\right]+t\left[(1-t) P_{12}+t P_{23}\right]
\end{aligned}
$$

Bézier Curves of degree 3

$$
\begin{aligned}
P_{01}= & (1-t) P_{0}+t P_{1} ; P_{12}=(1-t) P_{1}+t P_{2} ; P_{23}=(1-t) P_{2}+t P_{3} \\
& P_{012}=(1-t) P_{01}+t P_{12} ; \quad P_{123}=(1-t) P_{12}+t P_{23} \\
\mathcal{C}(t)= & (1-t) P_{012}+t P_{123}, t \in[0,1] \\
= & (1-t)\left[(1-t) P_{01}+t P_{12}\right]+t\left[(1-t) P_{12}+t P_{23}\right] \\
= & (1-t)\left[(1-t)\left[(1-t) P_{0}+t P_{1}\right]+t\left[(1-t) P_{1}+t P_{2}\right]\right] \\
& \quad+t\left[(1-t)\left[(1-t) P_{1}+t P_{2}\right]+t\left[(1-t) P_{2}+t P_{3}\right]\right]
\end{aligned}
$$

Bézier Curves of degree 3

$$
\begin{aligned}
P_{01}= & (1-t) P_{0}+t P_{1} ; P_{12}=(1-t) P_{1}+t P_{2} ; P_{23}=(1-t) P_{2}+t P_{3} \\
& P_{012}=(1-t) P_{01}+t P_{12} ; \quad P_{123}=(1-t) P_{12}+t P_{23} \\
\mathcal{C}(t)= & (1-t) P_{012}+t P_{123}, t \in[0,1] \\
= & (1-t)\left[(1-t) P_{01}+t P_{12}\right]+t\left[(1-t) P_{12}+t P_{23}\right] \\
= & (1-t)\left[(1-t)\left[(1-t) P_{0}+t P_{1}\right]+t\left[(1-t) P_{1}+t P_{2}\right]\right] \\
& \quad+t\left[(1-t)\left[(1-t) P_{1}+t P_{2}\right]+t\left[(1-t) P_{2}+t P_{3}\right]\right] \\
= & (1-t)^{3} t^{0} P_{0}+3(1-t)^{2} t^{1} P_{1}+3(1-t)^{1} t^{2} P_{2}+(1-t)^{0} t^{3} P_{3} \\
= & \sum_{i=0}^{3}\binom{3}{i}(1-t)^{3-i} t^{i} P_{i}
\end{aligned}
$$

Bézier Curve - Definition

Degree 3:

$$
\begin{aligned}
\mathcal{C}(t) & =\sum_{i=0}^{3}\binom{3}{i}(1-t)^{3-i} t^{i} P_{i} \\
& =\sum_{i=0}^{3} B_{i}^{3}(t) P_{i}
\end{aligned}
$$

where
$B_{i}^{3}(t)=\binom{3}{i}(1-t)^{3-i} t^{i}$ is
the $i^{\text {th }}$ Bernstein (basis) polynomial of degree 3, and
P_{i} are known as (Bézier) control points.

Bézier Curve - Definition

Degree n :

$$
\begin{aligned}
\mathcal{C}(t) & =\sum_{i=0}^{n}\binom{n}{i}(1-t)^{n-i} t^{i} P_{i} \\
& =\sum_{i=0}^{n} B_{i}^{n}(t) P_{i}
\end{aligned}
$$

where
$B_{i}^{n}(t)=\binom{n}{i}(1-t)^{n-i} t^{i}$ is
the $i^{\text {th }}$ Bernstein (basis) polynomial of degree n, and
P_{i} are known as (Bézier) control points.

Bernstein Basis Polynomials

Degree 3:

$$
\left\{B_{i}^{3}(t)\right\}_{i=0}^{3}=\left\{(1-t)^{3}, 3(1-t)^{2} t, 3(1-t) t^{2}, t^{3}\right\}
$$

Partition of unity:

Bernstein Basis Polynomials

Degree 3:

$$
\left\{B_{i}^{3}(t)\right\}_{i=0}^{3}=\left\{(1-t)^{3}, 3(1-t)^{2} t, 3(1-t) t^{2}, t^{3}\right\}
$$

Partition of unity:

$$
\begin{aligned}
\sum_{i=0}^{n} B_{i}^{n}(t) & =\sum_{i=0}^{n}\binom{n}{i}(1-t)^{n-i} t^{i} \\
& =(1-t+t)^{n} \\
& =1
\end{aligned}
$$

Historical Notes

- Bernstein polynomials were used by Sergei Bernstein in 1910 in his elegant proof of the Weierstrass Approximation Theorem (1885): a continuous function on a closed interval can be uniformly approximated by polynomials.
- Bézier curves were first developed in the 1950s in the French automobile industry.

Historical Notes

- Bernstein polynomials were used by Sergei Bernstein in 1910 in his elegant proof of the Weierstrass Approximation Theorem (1885): a continuous function on a closed interval can be uniformly approximated by polynomials.
- Bézier curves were first developed in the 1950s in the French automobile industry.
Paul de Casteljau (Citroën) developed in 1959 the geometric algorithm presented bearing his name - for evaluating points on a Bézier curve. It is the most robust and numerically stable method for evaluating polynomials, and one of the most important algorithms in CAGD.

from de Casteljau's writings

Pierre Bézier (Rénault) also worked on Bézier curves and surfaces, which are now used in most computer-aided design and computer graphics systems.

Examples of Cubic Bézier Curves

from Farin \& Hansford 2000

Properties of Bézier Curves

- Endpoint interpolation: $\mathcal{C}(0)=P_{0}$ and $\mathcal{C}(1)=P_{n}$
- Endpoint tangency to control polygon: $\mathcal{C}^{\prime}(0) \|\left(P_{1}-P_{0}\right)$ and $\mathcal{C}^{\prime}(1) \|\left(P_{n}-P_{n-1}\right)$
- Convex Hull Property: $\mathcal{C}[\{P\}] \subset$ ConvexHull $(\{P\})$ implies $(\{P\}$ planar $\Longrightarrow \mathcal{C}[\{P\}]$ planar $)$
- Convexity preservation for planar curves: $\{P\}$ convex $\Longrightarrow \mathcal{C}[\{P\}]$ convex
- Affine invariance: $\mathcal{C}[\Phi\{P\}]=\Phi \mathcal{C}[\{P\}]$

Properties of Bézier Curves

- Endpoint interpolation: $\mathcal{C}(0)=P_{0}$ and $\mathcal{C}(1)=P_{n}$
- Endpoint tangency to control polygon: $\mathcal{C}^{\prime}(0) \|\left(P_{1}-P_{0}\right)$ and $\mathcal{C}^{\prime}(1) \|\left(P_{n}-P_{n-1}\right)$
- Convex Hull Property: $\mathcal{C}[\{P\}] \subset$ ConvexHull $(\{P\})$ implies $(\{P\}$ planar $\Longrightarrow \mathcal{C}[\{P\}]$ planar $)$
- Convexity preservation for planar curves: $\{P\}$ convex $\Longrightarrow \mathcal{C}[\{P\}]$ convex
- Affine invariance: $\mathcal{C}[\Phi\{P\}]=\Phi \mathcal{C}[\{P\}]$

Properties of Bézier Curves

- Endpoint interpolation: $\mathcal{C}(0)=P_{0}$ and $\mathcal{C}(1)=P_{n}$
- Endpoint tangency to control polygon: $\mathcal{C}^{\prime}(0) \|\left(P_{1}-P_{0}\right)$ and $\mathcal{C}^{\prime}(1) \|\left(P_{n}-P_{n-1}\right)$
- Convex Hull Property: $\mathcal{C}[\{P\}] \subset$ ConvexHull $(\{P\})$ implies $(\{P\}$ planar $\Longrightarrow \mathcal{C}[\{P\}]$ planar $)$
- Convexity preservation for planar curves: $\{P\}$ convex $\Longrightarrow \mathcal{C}[\{P\}]$ convex
- Affine invariance: $\mathcal{C}[\Phi\{P\}]=\Phi \mathcal{C}[\{P\}]$

Properties of Bézier Curves

- Endpoint interpolation: $\mathcal{C}(0)=P_{0}$ and $\mathcal{C}(1)=P_{n}$
- Endpoint tangency to control polygon: $\mathcal{C}^{\prime}(0) \|\left(P_{1}-P_{0}\right)$ and $\mathcal{C}^{\prime}(1) \|\left(P_{n}-P_{n-1}\right)$
- Convex Hull Property: $\mathcal{C}[\{P\}] \subset$ ConvexHull $(\{P\})$ implies $(\{P\}$ planar $\Longrightarrow \mathcal{C}[\{P\}]$ planar $)$
- Convexity preservation for planar curves: $\{P\}$ convex $\Longrightarrow \mathcal{C}[\{P\}]$ convex
- Affine invariance: $\mathcal{C}[\Phi\{P\}]=\Phi \mathcal{C}[\{P\}]$

Properties of Bézier Curves

- Endpoint interpolation: $\mathcal{C}(0)=P_{0}$ and $\mathcal{C}(1)=P_{n}$
- Endpoint tangency to control polygon: $\mathcal{C}^{\prime}(0) \|\left(P_{1}-P_{0}\right)$ and $\mathcal{C}^{\prime}(1) \|\left(P_{n}-P_{n-1}\right)$
- Convex Hull Property: $\mathcal{C}[\{P\}] \subset$ ConvexHull $(\{P\})$ implies $(\{P\}$ planar $\Longrightarrow \mathcal{C}[\{P\}]$ planar $)$
- Convexity preservation for planar curves: $\{P\}$ convex $\Longrightarrow \mathcal{C}[\{P\}]$ convex
- Affine invariance: $\mathcal{C}[\Phi\{P\}]=\Phi \mathcal{C}[\{P\}]$
- ..

Derivative of Bézier Curve

$$
\begin{aligned}
\mathcal{C}^{\prime}(t) & =\sum_{i=0}^{n} B_{i}^{n \prime}(t) P_{i} \\
& =\sum_{i=0}^{n}\binom{n}{i}\left((1-t)^{n-i} t^{i}\right)^{\prime} P_{i} \\
& =n \sum_{i=0}^{n-1} B_{i}^{n-1 \prime}(t)\left(P_{i+1}-P_{i}\right)
\end{aligned}
$$

That is, the Bézier control points of C^{\prime} are simply $\left\{n\left(P_{i+1}-P_{i}\right)\right\}_{i=0}^{n-1}$

Differentiate a Bézier Curve by differencing its control points!
The curve \mathcal{C}^{\prime} is known as the hodograph of the curve \mathcal{C}.

Derivative of Bézier Curve

$$
\begin{aligned}
\mathcal{C}^{\prime}(t) & =\sum_{i=0}^{n} B_{i}^{n \prime}(t) P_{i} \\
& =\sum_{i=0}^{n}\binom{n}{i}\left((1-t)^{n-i} t^{i}\right)^{\prime} P_{i} \\
& =n \sum_{i=0}^{n-1} B_{i}^{n-1 \prime}(t)\left(P_{i+1}-P_{i}\right)
\end{aligned}
$$

That is, the Bézier control points of \mathcal{C}^{\prime} are simply

$$
\left\{n\left(P_{i+1}-P_{i}\right)\right\}_{i=0}^{n-1}
$$

Differentiate a Bézier Curve by differencing its control points!
The curve \mathcal{C}^{\prime} is known as the hodograph of the curve \mathcal{C}.

Derivative of Bézier Curve

$$
\begin{aligned}
\mathcal{C}^{\prime}(t) & =\sum_{i=0}^{n} B_{i}^{n \prime}(t) P_{i} \\
& =\sum_{i=0}^{n}\binom{n}{i}\left((1-t)^{n-i} t^{i}\right)^{\prime} P_{i} \\
& =n \sum_{i=0}^{n-1} B_{i}^{n-1 \prime}(t)\left(P_{i+1}-P_{i}\right)
\end{aligned}
$$

That is, the Bézier control points of \mathcal{C}^{\prime} are simply

$$
\left\{n\left(P_{i+1}-P_{i}\right)\right\}_{i=0}^{n-1}
$$

Differentiate a Bézier Curve by differencing its control points!
The curve \mathcal{C}^{\prime} is known as the hodograph of the curve \mathcal{C}.

Derivative of Bézier Curve

$$
\begin{aligned}
\mathcal{C}^{\prime}(t) & =\sum_{i=0}^{n} B_{i}^{n \prime}(t) P_{i} \\
& =\sum_{i=0}^{n}\binom{n}{i}\left((1-t)^{n-i} t^{i}\right)^{\prime} P_{i} \\
& =n \sum_{i=0}^{n-1} B_{i}^{n-1 \prime}(t)\left(P_{i+1}-P_{i}\right)
\end{aligned}
$$

That is, the Bézier control points of \mathcal{C}^{\prime} are simply

$$
\left\{n\left(P_{i+1}-P_{i}\right)\right\}_{i=0}^{n-1}
$$

Differentiate a Bézier Curve by differencing its control points!
The curve \mathcal{C}^{\prime} is known as the hodograph of the curve \mathcal{C}.

Singularity of Bézier Curve of degree 1

Recall definition of singularity of a curve $\mathcal{C}(t)$:
t^{*} where $\mathcal{C}^{\prime}\left(t^{*}\right)=\overrightarrow{0}$

Apply this to Bézier Curve of degree 1:

$$
\begin{aligned}
\mathcal{C}(t) & =(1-t) P_{0}+t P_{1} \\
\mathcal{C}^{\prime}(t) & =P_{1}-P_{0} \\
& =\overrightarrow{0} \quad \forall t \quad \text { iff } P_{0}=P_{1}
\end{aligned}
$$

That is, the only case of singularity of a polynomial curve of degree 1 is the trivial case when its two endpoints agree!

Singularity of Bézier Curve of degree 1

Recall definition of singularity of a curve $\mathcal{C}(t)$:

$$
t^{*} \text { where } \mathcal{C}^{\prime}\left(t^{*}\right)=\overrightarrow{0}
$$

Apply this to Bézier Curve of degree 1:

$$
\begin{aligned}
\mathcal{C}(t) & =(1-t) P_{0}+t P_{1} \\
\mathcal{C}^{\prime}(t) & =P_{1}-P_{0} \\
& =\overrightarrow{0} \quad \forall t \quad \text { iff } P_{0}=P_{1}
\end{aligned}
$$

That is, the only case of singularity of a polynomial curve of degree 1 is the trivial case when its two endpoints agree!

Singularity of Bézier Curve of degree 1

Recall definition of singularity of a curve $\mathcal{C}(t)$:

$$
t^{*} \text { where } \mathcal{C}^{\prime}\left(t^{*}\right)=\overrightarrow{0}
$$

Apply this to Bézier Curve of degree 1:

$$
\begin{aligned}
\mathcal{C}(t) & =(1-t) P_{0}+t P_{1} \\
\mathcal{C}^{\prime}(t) & =P_{1}-P_{0} \\
& =\overrightarrow{0} \quad \forall t \quad \text { iff } P_{0}=P_{1}
\end{aligned}
$$

That is, the only case of singularity of a polynomial curve of degree 1 is the trivial case when its two endpoints agree!

Singularity of Bézier Curve of degree 2 - part 1

$$
\begin{aligned}
\mathcal{C}^{\prime}\left(t^{*}\right) & =\overrightarrow{0} \text { for } n=2: \\
\mathcal{C}(t) & =B_{0}^{2} P_{0}+B_{1}^{2} P_{1}+B_{2}^{2} P_{2} \\
\mathcal{C}^{\prime}(t) & =B_{0}^{1}\left(P_{1}-P_{0}\right)+B_{1}^{1}\left(P_{2}-P_{1}\right) \quad \text { by derivative formula } \\
& =(1-t)\left(P_{1}-P_{0}\right)+t\left(P_{2}-P_{1}\right)
\end{aligned}
$$

Hence, the only cases of singularity of a polynomial curve of degree 2 occur when its Bézier control points satisfy
i.e., they are collinear

Hence, by the Convex Hull Property, the curve actually lies on a line.

Singularity of Bézier Curve of degree 2 - part 1

$$
\begin{aligned}
\mathcal{C}^{\prime}\left(t^{*}\right) & =\overrightarrow{0} \text { for } n=2: \\
\mathcal{C}(t) & =B_{0}^{2} P_{0}+B_{1}^{2} P_{1}+B_{2}^{2} P_{2} \\
\mathcal{C}^{\prime}(t) & =B_{0}^{1}\left(P_{1}-P_{0}\right)+B_{1}^{1}\left(P_{2}-P_{1}\right) \quad \text { by derivative formula } \\
& =(1-t)\left(P_{1}-P_{0}\right)+t\left(P_{2}-P_{1}\right)
\end{aligned}
$$

Hence, the only cases of singularity of a polynomial curve of degree 2 occur when its Bézier control points satisfy

$$
\left(P_{1}-P_{0}\right) \|\left(P_{2}-P_{1}\right)
$$

i.e., they are collinear

Hence, by the Convex Hull Property, the curve actually lies on a line.

Singularity of Bézier Curve of degree 2 - part 1

$$
\begin{aligned}
\mathcal{C}^{\prime}\left(t^{*}\right) & =\overrightarrow{0} \text { for } n=2: \\
\mathcal{C}(t) & =B_{0}^{2} P_{0}+B_{1}^{2} P_{1}+B_{2}^{2} P_{2} \\
\mathcal{C}^{\prime}(t) & =B_{0}^{1}\left(P_{1}-P_{0}\right)+B_{1}^{1}\left(P_{2}-P_{1}\right) \quad \text { by derivative formula } \\
& =(1-t)\left(P_{1}-P_{0}\right)+t\left(P_{2}-P_{1}\right)
\end{aligned}
$$

Hence, the only cases of singularity of a polynomial curve of degree 2 occur when its Bézier control points satisfy

$$
\left(P_{1}-P_{0}\right) \|\left(P_{2}-P_{1}\right)
$$

i.e., they are collinear

Hence, by the Convex Hull Property, the curve actually lies on a line.

Singularity of Bézier Curve of degree 2 - part 2

Equation for singularity:

$$
\mathcal{C}^{\prime}\left(t^{*}\right)=\left(1-t^{*}\right)\left(P_{1}-P_{0}\right)+t^{*}\left(P_{2}-P_{1}\right)=\overrightarrow{0}, t^{*} \in[0,1]
$$

```
For singularity, in addition to being collinear, must have }\mp@subsup{P}{0}{},\mp@subsup{P}{1}{},\mp@subsup{P}{2}{}\mathrm{ "out
of order", i.e.,
Po between P}\mp@subsup{P}{1}{}\mathrm{ and }\mp@subsup{P}{2}{}:\mp@subsup{t}{}{*}\in[0,\frac{1}{2}
P}2\mathrm{ between }\mp@subsup{P}{0}{}\mathrm{ and }\mp@subsup{P}{1}{}:\mp@subsup{t}{}{*}\in[\frac{1}{2},1
In all cases, the singularity is at \(P_{1}\); curve reverses direction there.
Special cases of coincident adjacent end control points:
- If \(P_{0}=P_{1}\), singularity there at \(t=0\)
- If \(P_{1}=P_{2}\), singularity there at \(t=1\)
```


Singularity of Bézier Curve of degree 2 - part 2

Equation for singularity:

$$
\mathcal{C}^{\prime}\left(t^{*}\right)=\left(1-t^{*}\right)\left(P_{1}-P_{0}\right)+t^{*}\left(P_{2}-P_{1}\right)=\overrightarrow{0}, t^{*} \in[0,1]
$$

For singularity, in addition to being collinear, must have P_{0}, P_{1}, P_{2} "out of order", i.e.,
P_{0} between P_{1} and $P_{2}: t^{*} \in\left[0, \frac{1}{2}\right]$
OR
P_{2} between P_{0} and $P_{1}: t^{*} \in\left[\frac{1}{2}, 1\right]$
In all cases, the singularity is at P_{1}; curve reverses direction there.
Special cases of coincident adjacent end control points:

- If $P_{0}=P_{1}$, singularity there at $t=0$
- If $P_{1}=P_{2}$, singularity there at $t=1$

Singularity of Bézier Curve of degree 2 - part 2

Equation for singularity:

$$
\mathcal{C}^{\prime}\left(t^{*}\right)=\left(1-t^{*}\right)\left(P_{1}-P_{0}\right)+t^{*}\left(P_{2}-P_{1}\right)=\overrightarrow{0}, t^{*} \in[0,1]
$$

For singularity, in addition to being collinear, must have P_{0}, P_{1}, P_{2} "out of order", i.e.,
P_{0} between P_{1} and $P_{2}: t^{*} \in\left[0, \frac{1}{2}\right]$
OR
P_{2} between P_{0} and $P_{1}: t^{*} \in\left[\frac{1}{2}, 1\right]$
In all cases, the singularity is at P_{1}; curve reverses direction there.
Special cases of coincident adjacent end control points:

- If $P_{0}=P_{1}$, sinqularity there at $t=0$
- If $P_{1}=P_{2}$, singularity there at $t=1$

Singularity of Bézier Curve of degree 2 - part 2

Equation for singularity:

$$
\mathcal{C}^{\prime}\left(t^{*}\right)=\left(1-t^{*}\right)\left(P_{1}-P_{0}\right)+t^{*}\left(P_{2}-P_{1}\right)=\overrightarrow{0}, t^{*} \in[0,1]
$$

For singularity, in addition to being collinear, must have P_{0}, P_{1}, P_{2} "out of order", i.e.,
P_{0} between P_{1} and $P_{2}: t^{*} \in\left[0, \frac{1}{2}\right]$
OR
P_{2} between P_{0} and $P_{1}: t^{*} \in\left[\frac{1}{2}, 1\right]$
In all cases, the singularity is at P_{1}; curve reverses direction there.
Special cases of coincident adjacent end control points:

- If $P_{0}=P_{1}$, singularity there at $t=0$
- If $P_{1}=P_{2}$, singularity there at $t=1$

Singularity of Bézier Curve of degree 3 - part 1 Basics

$$
\begin{aligned}
& \qquad \mathcal{C}^{\prime}\left(t^{*}\right)=\overrightarrow{0} \text { for } n=3 \text { : } \\
& \begin{aligned}
\mathcal{C}(t) & =B_{0}^{3} P_{0}+B_{1}^{3} P_{1}+B_{2}^{3} P_{2}+B_{3}^{3} P_{3} \\
\frac{1}{3} \mathcal{C}^{\prime}(t) & =B_{0}^{2}\left(P_{1}-P_{0}\right)+B_{1}^{2}\left(P_{2}-P_{1}\right)+B_{2}^{2}\left(P_{3}-P_{2}\right) \\
& =(1-t)^{2}\left(P_{1}-P_{0}\right)+2(1-t) t\left(P_{2}-P_{1}\right)+t^{2}\left(P_{3}-P_{2}\right)
\end{aligned} \\
& \text { Hence, the only cases of singularity of a polynomial curve } \\
& \text { of degree } 3 \text { occur when a linear combination of } \\
& \left\{\left(P_{1}-P_{0}\right),\left(P_{2}-P_{1}\right),\left(P_{3}-P_{2}\right)\right\} \text { equals } \overrightarrow{0}
\end{aligned} \text { Hence, for singularity, these three vectors, and hence, }
$$

Singularity of Bézier Curve of degree 3 - part 1

 Basics$$
\begin{aligned}
& \mathcal{C}^{\prime}\left(t^{*}\right)=\overrightarrow{0} \text { for } n=3: \\
& \mathcal{C}(t)=B_{0}^{3} P_{0}+B_{1}^{3} P_{1}+B_{2}^{3} P_{2}+B_{3}^{3} P_{3} \\
& \frac{1}{3} \mathcal{C}^{\prime}(t)=B_{0}^{2}\left(P_{1}-P_{0}\right)+B_{1}^{2}\left(P_{2}-P_{1}\right)+B_{2}^{2}\left(P_{3}-P_{2}\right) \\
&=(1-t)^{2}\left(P_{1}-P_{0}\right)+2(1-t) t\left(P_{2}-P_{1}\right)+t^{2}\left(P_{3}-P_{2}\right)
\end{aligned}
$$

Hence, the only cases of singularity of a polynomial curve of degree 3 occur when a linear combination of $\left\{\left(P_{1}-P_{0}\right),\left(P_{2}-P_{1}\right),\left(P_{3}-P_{2}\right)\right\}$ equals $\overrightarrow{0}$

Hence, for singularity, these three vectors, and hence, $\left\{P_{0}, P_{1}, P_{2}, P_{3}\right\}$ themselves, must be coplanar

Hence, for singularity, by the Convex Hull Pronerty, the curve must be planar

Singularity of Bézier Curve of degree 3 - part 1

Basics

$$
\begin{aligned}
& \mathcal{C}^{\prime}\left(t^{*}\right)=\overrightarrow{0} \text { for } n=3: \\
& \mathcal{C}(t)=B_{0}^{3} P_{0}+B_{1}^{3} P_{1}+B_{2}^{3} P_{2}+B_{3}^{3} P_{3} \\
& \frac{1}{3} \mathcal{C}^{\prime}(t)=B_{0}^{2}\left(P_{1}-P_{0}\right)+B_{1}^{2}\left(P_{2}-P_{1}\right)+B_{2}^{2}\left(P_{3}-P_{2}\right) \\
&=(1-t)^{2}\left(P_{1}-P_{0}\right)+2(1-t) t\left(P_{2}-P_{1}\right)+t^{2}\left(P_{3}-P_{2}\right)
\end{aligned}
$$

Hence, the only cases of singularity of a polynomial curve of degree 3 occur when a linear combination of $\left\{\left(P_{1}-P_{0}\right),\left(P_{2}-P_{1}\right),\left(P_{3}-P_{2}\right)\right\}$ equals $\overrightarrow{0}$

Hence, for singularity, these three vectors, and hence, $\left\{P_{0}, P_{1}, P_{2}, P_{3}\right\}$ themselves, must be coplanar

Hence, for singularity, by the Convex Hull Property, the curve must be planar

Singularity of Bézier Curve of degree 3 - part 1

Basics

$$
\begin{aligned}
& \mathcal{C}^{\prime}\left(t^{*}\right)=\overrightarrow{0} \text { for } n=3: \\
& \mathcal{C}(t)=B_{0}^{3} P_{0}+B_{1}^{3} P_{1}+B_{2}^{3} P_{2}+B_{3}^{3} P_{3} \\
& \frac{1}{3} \mathcal{C}^{\prime}(t)=B_{0}^{2}\left(P_{1}-P_{0}\right)+B_{1}^{2}\left(P_{2}-P_{1}\right)+B_{2}^{2}\left(P_{3}-P_{2}\right) \\
&=(1-t)^{2}\left(P_{1}-P_{0}\right)+2(1-t) t\left(P_{2}-P_{1}\right)+t^{2}\left(P_{3}-P_{2}\right)
\end{aligned}
$$

Hence, the only cases of singularity of a polynomial curve of degree 3 occur when a linear combination of $\left\{\left(P_{1}-P_{0}\right),\left(P_{2}-P_{1}\right),\left(P_{3}-P_{2}\right)\right\}$ equals $\overrightarrow{0}$

Hence, for singularity, these three vectors, and hence, $\left\{P_{0}, P_{1}, P_{2}, P_{3}\right\}$ themselves, must be coplanar

Hence, for singularity, by the Convex Hull Property, the curve must be planar

Singularity of Bézier Curve of degree 3 - part 2

Construct singular curve, given some translate of its hodograph

$$
\Delta P_{i}=P_{i+1}-P_{i}
$$

Hodograph
$\mathcal{C}[\{P\}]^{\prime}=\mathcal{C}[\{3 \Delta P\}] \Longrightarrow$
singularity : $\mathcal{C}[\{\Delta P\}]\left(t^{*}\right)=\overrightarrow{0}$
$\mathcal{C}[\{\widetilde{\Delta P}\}](t), \widetilde{\Delta P_{i}}=\Delta P_{i}+\vec{C}$

Singularity of Bézier Curve of degree 3 - part 2

Construct singular curve, given some translate of its hodograph

$$
\Delta P_{i}=P_{i+1}-P_{i}
$$

Hodograph
$\mathcal{C}[\{P\}]^{\prime}=\mathcal{C}[\{3 \Delta P\}] \Longrightarrow$
singularity : $\mathcal{C}[\{\Delta P\}]\left(t^{*}\right)=\overrightarrow{0}$
$\mathcal{C}[\{\widetilde{\Delta P}\}](t), \widetilde{\Delta P_{i}}=\Delta P_{i}+\vec{C}$

Singularity of Bézier Curve of degree 3 - part 2

Construct singular curve, given some translate of its hodograph

$$
\Delta P_{i}=P_{i+1}-P_{i}
$$

Hodograph
$\mathcal{C}[\{P\}]^{\prime}=\mathcal{C}[\{3 \Delta P\}] \Longrightarrow$
singularity : $\mathcal{C}[\{\Delta P\}]\left(t^{*}\right)=\overrightarrow{0}$
$\mathcal{C}[\{\widetilde{\Delta P}\}](t), \widetilde{\Delta P_{i}}=\Delta P_{i}+\vec{C}$

Singularity of Bézier Curve of degree 3 - part 2

Construct singular curve, given some translate of its hodograph

$$
\Delta P_{i}=P_{i+1}-P_{i}
$$

Hodograph

$$
\begin{aligned}
& \mathcal{C}[\{P\}]^{\prime}=\mathcal{C}[\{3 \Delta P\}] \Longrightarrow \\
& \text { singularity : } \mathcal{C}[\{\Delta P\}]\left(t^{*}\right)=\overrightarrow{0} \\
& \hline
\end{aligned}
$$

$$
\mathcal{C}[\{\widetilde{\Delta P}\}](t), \widetilde{\Delta P_{i}}=\Delta P_{i}+\vec{C}
$$

$$
\{\widetilde{\Delta P}\} \rightarrow\{\Delta P\} \ni
$$

$$
\mathcal{C}[\{\Delta P\}]\left(t^{*}\right)=\overrightarrow{0}
$$

Singularity of Bézier Curve of degree 3 - part 2

Construct singular curve, given some translate of its hodograph

$$
\Delta P_{i}=P_{i+1}-P_{i}
$$

Hodograph
$\mathcal{C}[\{P\}]^{\prime}=\mathcal{C}[\{3 \Delta P\}] \Longrightarrow$
singularity : $\mathcal{C}[\{\Delta P\}]\left(t^{*}\right)=\overrightarrow{0}$
$\mathcal{C}[\{\widetilde{\Delta P}\}](t), \widetilde{\Delta P_{i}}=\Delta P_{i}+\vec{C}$
$\{\widetilde{\Delta P}\} \rightarrow\{\Delta P\} \ni$ $\mathcal{C}[\{\Delta P\}]\left(t^{*}\right)=\overrightarrow{0}$
$P_{0}=\overrightarrow{0}$ (arbitrary)
$P_{1}=P_{0}+\Delta P_{0}$

Singularity of Bézier Curve of degree 3 - part 2

Construct singular curve, given some translate of its hodograph

$$
\Delta P_{i}=P_{i+1}-P_{i}
$$

Hodograph
$\mathcal{C}[\{P\}]^{\prime}=\mathcal{C}[\{3 \Delta P\}] \Longrightarrow$
singularity : $\mathcal{C}[\{\Delta P\}]\left(t^{*}\right)=\overrightarrow{0}$
$\mathcal{C}[\{\widetilde{\Delta P}\}](t), \widetilde{\Delta P_{i}}=\Delta P_{i}+\vec{C}$
$\{\widetilde{\Delta P}\} \rightarrow\{\Delta P\} \ni$ $\mathcal{C}[\{\Delta P\}]\left(t^{*}\right)=\overrightarrow{0}$
$P_{0}=\overrightarrow{0}$ (arbitrary)
$P_{1}=P_{0}+\Delta P_{0}$
$P_{2}=P_{1}+\Delta P_{1}$

Singularity of Bézier Curve of degree 3 - part 2

Construct singular curve, given some translate of its hodograph
$\Delta P_{i}=P_{i+1}-P_{i}$
Hodograph
$\mathcal{C}[\{P\}]^{\prime}=\mathcal{C}[\{3 \Delta P\}] \Longrightarrow$
singularity : $\mathcal{C}[\{\Delta P\}]\left(t^{*}\right)=\overrightarrow{0}$
$\mathcal{C}[\{\widetilde{\Delta P}\}](t), \widetilde{\Delta P_{i}}=\Delta P_{i}+\vec{C}$
$\{\widetilde{\Delta P}\} \rightarrow\{\Delta P\} \ni$ $\mathcal{C}[\{\Delta P\}]\left(t^{*}\right)=\overrightarrow{0}$
$P_{0}=\overrightarrow{0}$ (arbitrary)
$P_{1}=P_{0}+\Delta P_{0}$

$P_{2}=P_{1}+\Delta P_{1}$
$P_{3}=P_{2}+\Delta P_{2}$

Singularity of Bézier Curve of degree 3 - part 2

Construct singular curve, given some translate of its hodograph
$\Delta P_{i}=P_{i+1}-P_{i}$
Hodograph
$\mathcal{C}[\{P\}]^{\prime}=\mathcal{C}[\{3 \Delta P\}] \Longrightarrow$
singularity : $\mathcal{C}[\{\Delta P\}]\left(t^{*}\right)=\overrightarrow{0}$
$\mathcal{C}[\{\widetilde{\Delta P}\}](t), \widetilde{\Delta P_{i}}=\Delta P_{i}+\vec{C}$
$\{\widetilde{\Delta P}\} \rightarrow\{\Delta P\} \ni$ $\mathcal{C}[\{\Delta P\}]\left(t^{*}\right)=\overrightarrow{0}$
$P_{0}=\overrightarrow{0}$ (arbitrary)
$P_{1}=P_{0}+\Delta P_{0}$

$P_{2}=P_{1}+\Delta P_{1}$
$P_{3}=P_{2}+\Delta P_{2}$
$\mathcal{C}[\{P\}]$ singular, with

$$
\underset{\text { asser muniand }}{\text { and }}\left[\left]^{\prime}\left(t^{*}\right)=\overrightarrow{0}\right.\right.
$$

Singularity of Bézier Curve of degree 3 - part 3

 Examples of singular cubics with various values of t^{*}, using the construction:
$t _\sin g=0.5$

Singularity of Bézier Curve of degree 3 - part 3

Examples of singular cubics with various values of t^{*}, using the construction:

$$
\text { t_sing }=0.6
$$

Singularity of Bézier Curve of degree 3 - part 3

Examples of singular cubics with various values of t^{*}, using the construction:

t_sing $=0.7$

Singularity of Bézier Curve of degree 3 - part 3

Examples of singular cubics with various values of t^{*}, using the construction:

t_sing $=0.8$

Singularity of Bézier Curve of degree 3 - part 3

 Examples of singular cubics with various values of t^{*}, using the construction:
t_sing $=0.9$

Singularity of Bézier Curve of degree 3 - part 3

Examples of singular cubics with various values of t^{*}, using the construction:

t _sing $=1$.

Singularity of Bézier Curve of degree 3 - part 3

Examples of singular cubics with various values of t^{*}, using the construction:

Singularity of Bézier Curve of degree 3 - part 3

Examples of singular cubics with various values of t^{*}, using the construction:

t_sing $=0.1$

Singularity of Bézier Curve of degree 3 - part 3

Examples of singular cubics with various values of t^{*}, using the construction:

t _sing $=0.2$

Singularity of Bézier Curve of degree 3 - part 3

 Examples of singular cubics with various values of t^{*}, using the construction:
t_sing $=0.3$

Singularity of Bézier Curve of degree 3 - part 3

Examples of singular cubics with various values of t^{*}, using the construction:

$$
\mathrm{t} _ \text {sing }=0.4
$$

Singularity of Bézier Curve of degree 3 - part 3

 Examples of singular cubics with various values of t^{*}, using the construction:
t_sing $=0.5$

Singularity of Bézier Curve of degree 3 - part 4a

Solution for singularity using Bézier singularity condition
Define points
$O=\ell\left(P_{0}, P_{3}-P_{2}\right) \cap \ell\left(P_{3}, P_{1}-P_{0}\right)$
$R=\ell\left(P_{1}, P_{3}-P_{2}\right) \cap \ell\left(P_{2}, P_{1}-P_{0}\right)$ where $\ell(P, V)$ is the line defined by point P and vector V.

From the geometry above, $R-O=\Delta P_{0}-\Delta P_{2}$,

with (x, y) capturing the essential shape of the control polygon. Under the Bézier singularity condition $\mathcal{C}[\{\Delta P\}]\left(t^{*}\right)=\overrightarrow{0}$, (1), (2)

which satisfies \square

Singularity of Bézier Curve of degree 3 - part 4a

Solution for singularity using Bézier singularity condition
Define points
$O=\ell\left(P_{0}, P_{3}-P_{2}\right) \cap \ell\left(P_{3}, P_{1}-P_{0}\right)$
$R=\ell\left(P_{1}, P_{3}-P_{2}\right) \cap \ell\left(P_{2}, P_{1}-P_{0}\right)$ where $\ell(P, V)$ is the line defined by point P and vector V.

From the geometry above, $R-O=\Delta P_{0}-\Delta P_{2}$,

$$
\Delta P_{0} \|\left(P_{3}-O\right) \text { and } \Delta P_{2} \|\left(P_{0}-O\right)
$$

with (x, y) capturing the essential shape of the control polygon. Under the Bézier singularity condition $\mathcal{C}[\{\Delta P\}]\left(t^{*}\right)=\overrightarrow{0}$, (1), (2)
\square which satisfies \square

Singularity of Bézier Curve of degree 3 - part 4a

Solution for singularity using Bézier singularity condition
Define points
$O=\ell\left(P_{0}, P_{3}-P_{2}\right) \cap \ell\left(P_{3}, P_{1}-P_{0}\right)$
$R=\ell\left(P_{1}, P_{3}-P_{2}\right) \cap \ell\left(P_{2}, P_{1}-P_{0}\right)$ where $\ell(P, V)$ is the line defined by point P and vector V.

From the geometry above, $R-O=\Delta P_{0}-\Delta P_{2}$,

$$
\begin{array}{r}
\Delta P_{0} \|\left(P_{3}-O\right) \text { and } \Delta P_{2} \|\left(P_{0}-O\right) \\
\Delta P_{0}=x\left(P_{3}-O\right), x=\frac{\operatorname{det}\left(\Delta P_{2}, \Delta P_{0}\right)}{\operatorname{det}\left(\Delta P_{2}, P_{3}-P_{0}\right)} \\
\Delta P_{2}=-y\left(P_{0}-O\right), y=\frac{\operatorname{det}\left(\Delta P_{0}, \Delta P_{2}\right)}{\operatorname{det}\left(\Delta P_{0}, P_{3}-P_{0}\right)} \tag{2}
\end{array}
$$

with (x, y) capturing the essential shape of the control polygon.

Singularity of Bézier Curve of degree 3 - part 4a

Solution for singularity using Bézier singularity condition
Define points
$O=\ell\left(P_{0}, P_{3}-P_{2}\right) \cap \ell\left(P_{3}, P_{1}-P_{0}\right)$
$R=\ell\left(P_{1}, P_{3}-P_{2}\right) \cap \ell\left(P_{2}, P_{1}-P_{0}\right)$ where $\ell(P, V)$ is the line defined by point P and vector V.

From the geometry above, $R-O=\Delta P_{0}-\Delta P_{2}$,

$$
\begin{array}{r}
\Delta P_{0} \|\left(P_{3}-O\right) \text { and } \Delta P_{2} \|\left(P_{0}-O\right) \\
\Delta P_{0}=x\left(P_{3}-O\right), x=\frac{\operatorname{det}\left(\Delta P_{2}, \Delta P_{0}\right)}{\operatorname{det}\left(\Delta P_{2}, P_{3}-P_{0}\right)} \\
\Delta P_{2}=-y\left(P_{0}-O\right), y=\frac{\operatorname{det}\left(\Delta P_{0}, \Delta P_{2}\right)}{\operatorname{det}\left(\Delta P_{0}, P_{3}-P_{0}\right)} \tag{2}
\end{array}
$$

with (x, y) capturing the essential shape of the control polygon. Under the Bézier singularity condition $\mathcal{C}[\{\Delta P\}]\left(t^{*}\right)=\overrightarrow{0}$, (1), (2) \qquad

$$
(x, y)=\left(\frac{2 t^{*}}{3 t^{*}-1}, \frac{2\left(1-t^{*}\right)}{2-3 t^{*}}\right), \quad \text { which satisfies } \quad\left(x-\frac{4}{3}\right)\left(y-\frac{4}{3}\right)=\frac{4}{9} \quad(*)
$$

Singularity of Bézier Curve of degree 3 - part 4a

Solution for singularity using Bézier singularity condition
Define points
$O=\ell\left(P_{0}, P_{3}-P_{2}\right) \cap \ell\left(P_{3}, P_{1}-P_{0}\right)$
$R=\ell\left(P_{1}, P_{3}-P_{2}\right) \cap \ell\left(P_{2}, P_{1}-P_{0}\right)$ where $\ell(P, V)$ is the line defined by point P and vector V.

From the geometry above, $R-O=\Delta P_{0}-\Delta P_{2}$,

$$
\begin{array}{r}
\Delta P_{0} \|\left(P_{3}-O\right) \text { and } \Delta P_{2} \|\left(P_{0}-O\right) \\
\Delta P_{0}=x\left(P_{3}-O\right), x=\frac{\operatorname{det}\left(\Delta P_{2}, \Delta P_{0}\right)}{\operatorname{det}\left(\Delta P_{2}, P_{3}-P_{0}\right)} \\
\Delta P_{2}=-y\left(P_{0}-O\right), y=\frac{\operatorname{det}\left(\Delta P_{0}, \Delta P_{2}\right)}{\operatorname{det}\left(\Delta P_{0}, P_{3}-P_{0}\right)} \tag{2}
\end{array}
$$

with (x, y) capturing the essential shape of the control polygon. Under the Bézier singularity condition $\mathcal{C}[\{\Delta P\}]\left(t^{*}\right)=\overrightarrow{0}$, (1), (2)

$$
(x, y)=\left(\frac{2 t^{*}}{3 t^{*}-1}, \frac{2\left(1-t^{*}\right)}{2-3 t^{*}}\right), \quad \text { which satisfies } \quad\left(x-\frac{4}{3}\right)\left(y-\frac{4}{3}\right)=\frac{4}{9} \quad(*)
$$

Condition (*) for singularity was found by [Su \& Liu 1990] using other methods that did not make essential use of the Bézier form.

Singularity of Bézier Curve of degree 3 - part 4a

Solution for singularity using Bézier singularity condition
Define points
$O=\ell\left(P_{0}, P_{3}-P_{2}\right) \cap \ell\left(P_{3}, P_{1}-P_{0}\right)$
$R=\ell\left(P_{1}, P_{3}-P_{2}\right) \cap \ell\left(P_{2}, P_{1}-P_{0}\right)$ where $\ell(P, V)$ is the line defined by point P and vector V.

From the geometry above, $R-O=\Delta P_{0}-\Delta P_{2}$,

$$
\begin{array}{r}
\Delta P_{0} \|\left(P_{3}-O\right) \text { and } \Delta P_{2} \|\left(P_{0}-O\right) \\
\Delta P_{0}=x\left(P_{3}-O\right), x=\frac{\operatorname{det}\left(\Delta P_{2}, \Delta P_{0}\right)}{\operatorname{det}\left(\Delta P_{2}, P_{3}-P_{0}\right)} \\
\Delta P_{2}=-y\left(P_{0}-O\right), y=\frac{\operatorname{det}\left(\Delta P_{0}, \Delta P_{2}\right)}{\operatorname{det}\left(\Delta P_{0}, P_{3}-P_{0}\right)} \tag{2}
\end{array}
$$

with (x, y) capturing the essential shape of the control polygon. Under the Bézier singularity condition $\mathcal{C}[\{\Delta P\}]\left(t^{*}\right)=\overrightarrow{0}$, (1), (2)

$$
(x, y)=\left(\frac{2 t^{*}}{3 t^{*}-1}, \frac{2\left(1-t^{*}\right)}{2-3 t^{*}}\right), \quad \text { which satisfies } \quad\left(x-\frac{4}{3}\right)\left(y-\frac{4}{3}\right)=\frac{4}{9} \quad(*)
$$

Condition (*) for singularity was found by [Su \& Liu 1990] using other methods that did not make essential use of the Bézier form.

Singularity of Bézier Curve of degree 3 - part 4a

Solution for singularity using Bézier singularity condition
Define points
$O=\ell\left(P_{0}, P_{3}-P_{2}\right) \cap \ell\left(P_{3}, P_{1}-P_{0}\right)$
$R=\ell\left(P_{1}, P_{3}-P_{2}\right) \cap \ell\left(P_{2}, P_{1}-P_{0}\right)$ where $\ell(P, V)$ is the line defined by point P and vector V.

From the geometry above, $R-O=\Delta P_{0}-\Delta P_{2}$,

$$
\begin{array}{r}
\Delta P_{0} \|\left(P_{3}-O\right) \text { and } \Delta P_{2} \|\left(P_{0}-O\right) \\
\Delta P_{0}=x\left(P_{3}-O\right), x=\frac{\operatorname{det}\left(\Delta P_{2}, \Delta P_{0}\right)}{\operatorname{det}\left(\Delta P_{2}, P_{3}-P_{0}\right)} \\
\Delta P_{2}=-y\left(P_{0}-O\right), y=\frac{\operatorname{det}\left(\Delta P_{0}, \Delta P_{2}\right)}{\operatorname{det}\left(\Delta P_{0}, P_{3}-P_{0}\right)} \tag{2}
\end{array}
$$

with (x, y) capturing the essential shape of the control polygon. Under the Bézier singularity condition $\mathcal{C}[\{\Delta P\}]\left(t^{*}\right)=\overrightarrow{0}$, (1), (2)

$$
(x, y)=\left(\frac{2 t^{*}}{3 t^{*}-1}, \frac{2\left(1-t^{*}\right)}{2-3 t^{*}}\right), \quad \text { which satisfies } \quad\left(x-\frac{4}{3}\right)\left(y-\frac{4}{3}\right)=\frac{4}{9} \quad(*)
$$

Condition (*) for singularity was found by [Su \& Liu 1990] using other methods that did not make essential use of the Bézier form.

Singularity of Bézier Curve of degree 3 - part 4a

Solution for singularity using Bézier singularity condition
Define points
$O=\ell\left(P_{0}, P_{3}-P_{2}\right) \cap \ell\left(P_{3}, P_{1}-P_{0}\right)$
$R=\ell\left(P_{1}, P_{3}-P_{2}\right) \cap \ell\left(P_{2}, P_{1}-P_{0}\right)$
where $\ell(P, V)$ is the line defined by point P and vector V.

From the geometry above, $R-O=\Delta P_{0}-\Delta P_{2}$,

$$
\begin{array}{r}
\Delta P_{0} \|\left(P_{3}-O\right) \text { and } \Delta P_{2} \|\left(P_{0}-O\right) \\
\Delta P_{0}=x\left(P_{3}-O\right), x=\frac{\operatorname{det}\left(\Delta P_{2}, \Delta P_{0}\right)}{\operatorname{det}\left(\Delta P_{2}, P_{3}-P_{0}\right)} \\
\Delta P_{2}=-y\left(P_{0}-O\right), y=\frac{\operatorname{det}\left(\Delta P_{0}, \Delta P_{2}\right)}{\operatorname{det}\left(\Delta P_{0}, P_{3}-P_{0}\right)} \tag{2}
\end{array}
$$

with (x, y) capturing the essential shape of the control polygon. Under the Bézier singularity condition $\mathcal{C}[\{\Delta P\}]\left(t^{*}\right)=\overrightarrow{0}$, (1), (2)

$$
(x, y)=\left(\frac{2 t^{*}}{3 t^{*}-1}, \frac{2\left(1-t^{*}\right)}{2-3 t^{*}}\right), \quad \text { which satisfies } \quad\left(x-\frac{4}{3}\right)\left(y-\frac{4}{3}\right)=\frac{4}{9} \quad(*)
$$

Condition (*) for singularity was found by [Su \& Liu 1990] using other methods that did not make essential use of the Bézier form.

Singularity of Bézier Curve of degree 3 - part 4a

Solution for singularity using Bézier singularity condition
Define points
$O=\ell\left(P_{0}, P_{3}-P_{2}\right) \cap \ell\left(P_{3}, P_{1}-P_{0}\right)$
$R=\ell\left(P_{1}, P_{3}-P_{2}\right) \cap \ell\left(P_{2}, P_{1}-P_{0}\right)$
where $\ell(P, V)$ is the line defined by point P and vector V.

From the geometry above, $R-O=\Delta P_{0}-\Delta P_{2}$,

$$
\begin{array}{r}
\Delta P_{0} \|\left(P_{3}-O\right) \text { and } \Delta P_{2} \|\left(P_{0}-O\right) \\
\Delta P_{0}=x\left(P_{3}-O\right), x=\frac{\operatorname{det}\left(\Delta P_{2}, \Delta P_{0}\right)}{\operatorname{det}\left(\Delta P_{2}, P_{3}-P_{0}\right)} \\
\Delta P_{2}=-y\left(P_{0}-O\right), y=\frac{\operatorname{det}\left(\Delta P_{0}, \Delta P_{2}\right)}{\operatorname{det}\left(\Delta P_{0}, P_{3}-P_{0}\right)} \tag{2}
\end{array}
$$

with (x, y) capturing the essential shape of the control polygon. Under the Bézier singularity condition $\mathcal{C}[\{\Delta P\}]\left(t^{*}\right)=\overrightarrow{0}$, (1), (2)

$$
(x, y)=\left(\frac{2 t^{*}}{3 t^{*}-1}, \frac{2\left(1-t^{*}\right)}{2-3 t^{*}}\right), \quad \text { which satisfies } \quad\left(x-\frac{4}{3}\right)\left(y-\frac{4}{3}\right)=\frac{4}{9} \quad(*)
$$

Condition (*) for singularity was found by [Su \& Liu 1990] using other methods that did not make essential use of the Bézier form.

Singularity of Bézier Curve of degree 3 - part 4a

Solution for singularity using Bézier singularity condition
Define points
$O=\ell\left(P_{0}, P_{3}-P_{2}\right) \cap \ell\left(P_{3}, P_{1}-P_{0}\right)$
$R=\ell\left(P_{1}, P_{3}-P_{2}\right) \cap \ell\left(P_{2}, P_{1}-P_{0}\right)$
where $\ell(P, V)$ is the line defined by point P and vector V.

From the geometry above, $R-O=\Delta P_{0}-\Delta P_{2}$,

$$
\begin{array}{r}
\Delta P_{0} \|\left(P_{3}-O\right) \text { and } \Delta P_{2} \|\left(P_{0}-O\right) \\
\Delta P_{0}=x\left(P_{3}-O\right), x=\frac{\operatorname{det}\left(\Delta P_{2}, \Delta P_{0}\right)}{\operatorname{det}\left(\Delta P_{2}, P_{3}-P_{0}\right)} \\
\Delta P_{2}=-y\left(P_{0}-O\right), y=\frac{\operatorname{det}\left(\Delta P_{0}, \Delta P_{2}\right)}{\operatorname{det}\left(\Delta P_{0}, P_{3}-P_{0}\right)} \tag{2}
\end{array}
$$

with (x, y) capturing the essential shape of the control polygon. Under the Bézier singularity condition $\mathcal{C}[\{\Delta P\}]\left(t^{*}\right)=\overrightarrow{0}$, (1), (2)

$$
(x, y)=\left(\frac{2 t^{*}}{3 t^{*}-1}, \frac{2\left(1-t^{*}\right)}{2-3 t^{*}}\right), \quad \text { which satisfies } \quad\left(x-\frac{4}{3}\right)\left(y-\frac{4}{3}\right)=\frac{4}{9} \quad(*)
$$

Condition (*) for singularity was found by [Su \& Liu 1990] using other methods that did not make essential use of the Bézier form.

Singularity of Bézier Curve of degree 3 - part 4a

Solution for singularity using Bézier singularity condition
Define points
$O=\ell\left(P_{0}, P_{3}-P_{2}\right) \cap \ell\left(P_{3}, P_{1}-P_{0}\right)$
$R=\ell\left(P_{1}, P_{3}-P_{2}\right) \cap \ell\left(P_{2}, P_{1}-P_{0}\right)$ where $\ell(P, V)$ is the line defined by point P and vector V.

From the geometry above, $R-O=\Delta P_{0}-\Delta P_{2}$,

$$
\begin{array}{r}
\Delta P_{0} \|\left(P_{3}-O\right) \text { and } \Delta P_{2} \|\left(P_{0}-O\right) \\
\Delta P_{0}=x\left(P_{3}-O\right), x=\frac{\operatorname{det}\left(\Delta P_{2}, \Delta P_{0}\right)}{\operatorname{det}\left(\Delta P_{2}, P_{3}-P_{0}\right)} \\
\Delta P_{2}=-y\left(P_{0}-O\right), y=\frac{\operatorname{det}\left(\Delta P_{0}, \Delta P_{2}\right)}{\operatorname{det}\left(\Delta P_{0}, P_{3}-P_{0}\right)} \tag{2}
\end{array}
$$

with (x, y) capturing the essential shape of the control polygon. Under the Bézier singularity condition $\mathcal{C}[\{\Delta P\}]\left(t^{*}\right)=\overrightarrow{0}$, (1), (2)

$$
(x, y)=\left(\frac{2 t^{*}}{3 t^{*}-1}, \frac{2\left(1-t^{*}\right)}{2-3 t^{*}}\right), \quad \text { which satisfies } \quad\left(x-\frac{4}{3}\right)\left(y-\frac{4}{3}\right)=\frac{4}{9} \quad(*)
$$

Additional case: special doubly degenerate case of $(x, y)=(0,0) \Longrightarrow$
$P_{1}=P_{0} \& P_{2}=P_{3} \Longrightarrow$ singular at $t=0 \& t=1$

Singularity of Bézier Curve of degree 3 - part 4a

Solution for singularity using Bézier singularity condition
Define points
$O=\ell\left(P_{0}, P_{3}-P_{2}\right) \cap \ell\left(P_{3}, P_{1}-P_{0}\right)$
$R=\ell\left(P_{1}, P_{3}-P_{2}\right) \cap \ell\left(P_{2}, P_{1}-P_{0}\right)$ where $\ell(P, V)$ is the line defined by point P and vector V.

From the geometry above, $R-O=\Delta P_{0}-\Delta P_{2}$,

$$
\begin{array}{r}
\Delta P_{0} \|\left(P_{3}-O\right) \text { and } \Delta P_{2} \|\left(P_{0}-O\right) \\
\Delta P_{0}=x\left(P_{3}-O\right), x=\frac{\operatorname{det}\left(\Delta P_{2}, \Delta P_{0}\right)}{\operatorname{det}\left(\Delta P_{2}, P_{3}-P_{0}\right)} \\
\Delta P_{2}=-y\left(P_{0}-O\right), y=\frac{\operatorname{det}\left(\Delta P_{0}, \Delta P_{2}\right)}{\operatorname{det}\left(\Delta P_{0}, P_{3}-P_{0}\right)} \tag{2}
\end{array}
$$

with (x, y) capturing the essential shape of the control polygon. Under the Bézier singularity condition $\mathcal{C}[\{\Delta P\}]\left(t^{*}\right)=\overrightarrow{0}$, (1), (2)

$$
(x, y)=\left(\frac{2 t^{*}}{3 t^{*}-1}, \frac{2\left(1-t^{*}\right)}{2-3 t^{*}}\right), \quad \text { which satisfies } \quad\left(x-\frac{4}{3}\right)\left(y-\frac{4}{3}\right)=\frac{4}{9} \quad(*)
$$

Additional case: special doubly degenerate case of $(x, y)=(0,0) \Longrightarrow$
$P_{1}=P_{0} \& P_{2}=P_{3} \Longrightarrow$ singular at $t=0 \& t=1$

Singularity of Bézier Curve of degree 3 - part 4b

 Summary of main resultDefine affine coordinates (x, y) of the control polygon of a cubic Bézier curve by $R-O=\left(P_{3}-O\right) x+\left(P_{0}-O\right) y$; see graph at bottom left.

The curve has a singularity at $t=t^{*}$ iff

or two singularities at $t^{*} \in\{0,1\}$, for the case $(x, y)=(0,0)$.

Singularity of Bézier Curve of degree 3 - part 4b

Summary of main result
Define affine coordinates (x, y) of the control polygon of a cubic Bézier curve by $R-O=\left(P_{3}-O\right) x+\left(P_{0}-O\right) y$; see graph at bottom left.

The curve has a singularity at $t=t^{*}$ iff

$$
(x, y)=\left(\frac{2 t^{*}}{3 t^{*}-1}, \frac{2\left(1-t^{*}\right)}{2-3 t^{*}}\right) \text {, which satisfies }\left(x-\frac{4}{3}\right)\left(y-\frac{4}{3}\right)=\frac{4}{9}
$$

or two singularities at $t^{*} \in\{0,1\}$, for the case $(x, y)=(0,0)$.

Singularity of Bézier Curve of degree 3 - part 4b

Summary of main result

Define affine coordinates (x, y) of the control polygon of a cubic Bézier curve by $R-O=\left(P_{3}-O\right) x+\left(P_{0}-O\right) y$; see graph at bottom left.

The curve has a singularity at $t=t^{*}$ iff

$$
(x, y)=\left(\frac{2 *^{*}}{3 t^{*}-1}, \frac{2\left(1-t^{*}\right)}{2-3 t^{*}}\right), \text { which satisfies }\left(x-\frac{4}{3}\right)\left(y-\frac{4}{3}\right)=\frac{4}{9}
$$

or two singularities at $t^{*} \in\{0,1\}$, for the case $(x, y)=(0,0)$.
The $x-y$ hyperbola, with some values of t^{*} :

Singularity of Bézier Curve of degree 3 - part 5a

Examples of singular solution

Singular cubic curves with various values of $t^{*} \in[0,1]$, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.

$$
\mathrm{t} _ \text {sing }=0.5
$$

Singularity of Bézier Curve of degree 3 - part 5a

Examples of singular solution

Singular cubic curves with various values of $t^{*} \in[0,1]$, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.

$$
\mathrm{t} _ \text {sing }=0.55
$$

Singularity of Bézier Curve of degree 3 - part 5a

Examples of singular solution

Singular cubic curves with various values of $t^{*} \in[0,1]$, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.

Singularity of Bézier Curve of degree 3 - part 5a

Examples of singular solution

Singular cubic curves with various values of $t^{*} \in[0,1]$, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.

Singularity of Bézier Curve of degree 3 - part 5a

Examples of singular solution

Singular cubic curves with various values of $t^{*} \in[0,1]$, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.

$$
\mathrm{t} _ \text {sing }=0.7
$$

Singularity of Bézier Curve of degree 3 - part 5a

Examples of singular solution

Singular cubic curves with various values of $t^{*} \in[0,1]$, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.

$$
\mathrm{t} \text { _sing }=0.75
$$

Singularity of Bézier Curve of degree 3 - part 5a

Examples of singular solution

Singular cubic curves with various values of $t^{*} \in[0,1]$, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.

$$
\mathrm{t} \text { _sing }=0.8
$$

Singularity of Bézier Curve of degree 3 - part 5a

Examples of singular solution

Singular cubic curves with various values of $t^{*} \in[0,1]$, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.

$$
\mathrm{t} \text { _sing }=0.85
$$

Singularity of Bézier Curve of degree 3 - part 5a

Examples of singular solution

Singular cubic curves with various values of $t^{*} \in[0,1]$, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.

$$
\mathrm{t} \text { _sing }=0.9
$$

Singularity of Bézier Curve of degree 3 - part 5a

Examples of singular solution

Singular cubic curves with various values of $t^{*} \in[0,1]$, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.

$$
\mathrm{t} \text { _sing }=0.95
$$

Singularity of Bézier Curve of degree 3 - part 5a

Examples of singular solution

Singular cubic curves with various values of $t^{*} \in[0,1]$, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.

Singularity of Bézier Curve of degree 3 - part 5a

Examples of singular solution

Singular cubic curves with various values of $t^{*} \in[0,1]$, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.
t _sing $=0$

Singularity of Bézier Curve of degree 3 - part 5a

Examples of singular solution

Singular cubic curves with various values of $t^{*} \in[0,1]$, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.
t _sing $=0.05$

Singularity of Bézier Curve of degree 3 - part 5a

Examples of singular solution

Singular cubic curves with various values of $t^{*} \in[0,1]$, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.

$$
\mathrm{t} _ \text {sing }=0.1
$$

Singularity of Bézier Curve of degree 3 - part 5a

Examples of singular solution

Singular cubic curves with various values of $t^{*} \in[0,1]$, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.

$$
\mathrm{t} \text { _sing }=0.15
$$

Singularity of Bézier Curve of degree 3 - part 5a

Examples of singular solution

Singular cubic curves with various values of $t^{*} \in[0,1]$, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.

$$
\mathrm{t} _ \text {sing }=0.2
$$

Singularity of Bézier Curve of degree 3 - part 5a

Examples of singular solution

Singular cubic curves with various values of $t^{*} \in[0,1]$, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.

Singularity of Bézier Curve of degree 3 - part 5a

Examples of singular solution

Singular cubic curves with various values of $t^{*} \in[0,1]$, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.

Singularity of Bézier Curve of degree 3 - part 5a

Examples of singular solution

Singular cubic curves with various values of $t^{*} \in[0,1]$, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.

$$
\mathrm{t} \text { _sing }=0.35
$$

Singularity of Bézier Curve of degree 3 - part 5a

Examples of singular solution

Singular cubic curves with various values of $t^{*} \in[0,1]$, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.

$$
\text { t_sing }=0.4
$$

Singularity of Bézier Curve of degree 3 - part 5a

Examples of singular solution

Singular cubic curves with various values of $t^{*} \in[0,1]$, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.

$$
\mathrm{t} \text { _sing }=0.45
$$

Singularity of Bézier Curve of degree 3 - part 5a

Examples of singular solution

Singular cubic curves with various values of $t^{*} \in[0,1]$, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.

$$
\mathrm{t} _ \text {sing }=0.5
$$

Singularity of Bézier Curve of degree 3 - part 5b

 Examples of cubic curves in $x-y$ spaceA "tour" of cubic curves in other regions of $x-y$ space, again, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.

$$
\mathrm{t} _ \text {sing }=0.5
$$

Singularity of Bézier Curve of degree 3 - part 5b

 Examples of cubic curves in $x-y$ spaceA "tour" of cubic curves in other regions of $x-y$ space, again, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.

Singularity of Bézier Curve of degree 3 - part 5b

 Examples of cubic curves in $x-y$ spaceA "tour" of cubic curves in other regions of $x-y$ space, again, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.

Singularity of Bézier Curve of degree 3 - part 5b

 Examples of cubic curves in $x-y$ spaceA "tour" of cubic curves in other regions of $x-y$ space, again, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.

Singularity of Bézier Curve of degree 3 - part 5b

 Examples of cubic curves in $x-y$ spaceA "tour" of cubic curves in other regions of $x-y$ space, again, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.

Singularity of Bézier Curve of degree 3 - part 5b

 Examples of cubic curves in $x-y$ spaceA "tour" of cubic curves in other regions of $x-y$ space, again, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.

Singularity of Bézier Curve of degree 3 - part 5b

 Examples of cubic curves in $x-y$ spaceA "tour" of cubic curves in other regions of $x-y$ space, again, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.

Singularity of Bézier Curve of degree 3 - part 5b

 Examples of cubic curves in $x-y$ spaceA "tour" of cubic curves in other regions of $x-y$ space, again, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.

Singularity of Bézier Curve of degree 3 - part 5b

 Examples of cubic curves in $x-y$ spaceA "tour" of cubic curves in other regions of $x-y$ space, again, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.

Singularity of Bézier Curve of degree 3 - part 5b

 Examples of cubic curves in $x-y$ spaceA "tour" of cubic curves in other regions of $x-y$ space, again, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.

Singularity of Bézier Curve of degree 3 - part 5b

 Examples of cubic curves in $x-y$ spaceA "tour" of cubic curves in other regions of $x-y$ space, again, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.

Singularity of Bézier Curve of degree 3 - part 5b

 Examples of cubic curves in $x-y$ spaceA "tour" of cubic curves in other regions of $x-y$ space, again, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.

Singularity of Bézier Curve of degree 3 - part 5b

 Examples of cubic curves in $x-y$ spaceA "tour" of cubic curves in other regions of $x-y$ space, again, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.

Singularity of Bézier Curve of degree 3 - part 5b

 Examples of cubic curves in $x-y$ spaceA "tour" of cubic curves in other regions of $x-y$ space, again, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.

Singularity of Bézier Curve of degree 3 - part 5b

Examples of cubic curves in $x-y$ space
A "tour" of cubic curves in other regions of $x-y$ space, again, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.

Singularity of Bézier Curve of degree 3 - part 5b

 Examples of cubic curves in $x-y$ spaceA "tour" of cubic curves in other regions of $x-y$ space, again, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.

Singularity of Bézier Curve of degree 3 - part 5b

Examples of cubic curves in $x-y$ space

A "tour" of cubic curves in other regions of $x-y$ space, again, with P_{0}, P_{3}, and the directions of $P_{1}-P_{0}$ and $P_{3}-P_{2}$ fixed.

$$
\mathrm{t} _ \text {sing }=0.5
$$

Singularity of Bézier Curve of degree 3 - part 6a

 Interval interior like endpoints - coincident end-control points$$
\begin{aligned}
& \text { Seen } t^{*}=0 \Longrightarrow P_{0}=P_{1} ; t^{*}=1 \Longrightarrow P_{2}=P_{3} . \\
& \text { For } t^{*} \in(0,1) \text {, can also regard singularity as coincident } \\
& \text { end-control points (from e.g., Farin \& Hansford 2000). . }
\end{aligned}
$$

de Casteljau algorithm, revisited:

Singularity of Bézier Curve of degree 3 - part 6a

Interval interior like endpoints - coincident end-control points

$$
\begin{aligned}
& \text { Seen } t^{*}=0 \Longrightarrow P_{0}=P_{1} ; t^{*}=1 \Longrightarrow P_{2}=P_{3} \text {. } \\
& \text { For } t^{*} \in(0,1) \text {, can also regard singularity as coincident } \\
& \text { end-control points (from e.g., Farin \& Hansford 2000)... } \\
& \mathcal{C}=\mathcal{C}^{-} \cup \mathcal{C}^{+} \text {, with domains }[0, \hat{t}] \&[\hat{t}, 1] \text {, } \\
& \text { control points }\left\{P_{i}^{-}\right\} \&\left\{P_{i}^{+}\right\}, i=0,1,2,3 \text {, respectively, } \\
& \text { with } P_{3}^{-}=P_{0}^{+}=\mathcal{C}(\hat{t})
\end{aligned}
$$

de Casteljau algorithm, revisited:

Singularity of Bézier Curve of degree 3 - part 6a

Interval interior like endpoints - coincident end-control points
Seen $t^{*}=0 \Longrightarrow P_{0}=P_{1} ; t^{*}=1 \Longrightarrow P_{2}=P_{3}$. For $t^{*} \in(0,1)$, can also regard singularity as coincident end-control points (from e.g., Farin \& Hansford 2000). . .
$\mathcal{C}=\mathcal{C}^{-} \cup \mathcal{C}^{+}$, with domains $[0, \hat{t}] \&[\hat{t}, 1]$, control points $\left\{P_{i}^{-}\right\} \&\left\{P_{i}^{+}\right\}, i=0,1,2,3$, respectively, with $P_{3}^{-}=P_{0}^{+}=\mathcal{C}(\hat{t})$
If $\hat{t}=t^{*}$, then, also, $P_{2}^{-}=P_{3}^{-} \& P_{1}^{+}=P_{0}^{+} \Longrightarrow P_{2}^{-}=P_{1}^{+}$
de Casteljau algorithm, revisited:

Singularity of Bézier Curve of degree 3 - part 6a

Interval interior like endpoints - coincident end-control points

$$
\begin{aligned}
& \text { Seen } t^{*}=0 \Longrightarrow P_{0}=P_{1} ; t^{*}=1 \Longrightarrow P_{2}=P_{3} \text {. } \\
& \text { For } t^{*} \in(0,1) \text {, can also regard singularity as coincident } \\
& \text { end-control points (from e.g., Farin \& Hansford 2000).. } \\
& \mathcal{C}=\mathcal{C}^{-} \cup \mathcal{C}^{+} \text {, with domains }[0, \hat{t}] \&[\hat{t}, 1] \text {, } \\
& \text { control points }\left\{P_{i}^{-}\right\} \&\left\{P_{i}^{+}\right\}, i=0,1,2,3 \text {, respectively, } \\
& \text { with } P_{3}^{-}=P_{0}^{+}=\mathcal{C}(\hat{t}) \\
& \text { If } \hat{t}=t^{*} \text {, then, also, } P_{2}^{-}=P_{3}^{-} \& P_{1}^{+}=P_{0}^{+} \Longrightarrow P_{2}^{-}=P_{1}^{+}
\end{aligned}
$$

de Casteljau algorithm, revisited:
Subdivision:

$$
\begin{aligned}
& \left\{P_{i}^{-}\right\}=\left\{P_{0}, P_{01}, P_{012}, P_{0123}\right\} \\
& \left\{P_{i}^{+}\right\}=\left\{P_{0123}, P_{123}, P_{23}, P_{3}\right\} \\
& P_{0123}=\mathcal{C}\left(t^{*}\right)
\end{aligned}
$$

Singularity of Bézier Curve of degree 3 - part 6a

Interval interior like endpoints - coincident end-control points

$$
\begin{aligned}
& \text { Seen } t^{*}=0 \Longrightarrow P_{0}=P_{1} ; t^{*}=1 \Longrightarrow P_{2}=P_{3} \text {. } \\
& \text { For } t^{*} \in(0,1) \text {, can also regard singularity as coincident } \\
& \text { end-control points (from e.g., Farin \& Hansford 2000).. } \\
& \mathcal{C}=\mathcal{C}^{-} \cup \mathcal{C}^{+} \text {, with domains }[0, \hat{t}] \&[\hat{t}, 1] \text {, } \\
& \text { control points }\left\{P_{i}^{-}\right\} \&\left\{P_{i}^{+}\right\}, i=0,1,2,3 \text {, respectively, } \\
& \text { with } P_{3}^{-}=P_{0}^{+}=\mathcal{C}(\hat{t}) \\
& \text { If } \hat{t}=t^{*} \text {, then, also, } P_{2}^{-}=P_{3}^{-} \& P_{1}^{+}=P_{0}^{+} \Longrightarrow P_{2}^{-}=P_{1}^{+}
\end{aligned}
$$

de Casteljau algorithm, revisited:
Subdivision:

$$
\begin{aligned}
& \left\{P_{i}^{-}\right\}=\left\{P_{0}, P_{01}, P_{012}, P_{0123}\right\} \\
& \left\{P_{i}^{+}\right\}=\left\{P_{0123}, P_{123}, P_{23}, P_{3}\right\} \\
& P_{0123}=\mathcal{C}\left(t^{*}\right)
\end{aligned}
$$

Singularity of Bézier Curve of degree 3 - part 6a

Interval interior like endpoints - coincident end-control points

$$
\begin{aligned}
& \text { Seen } t^{*}=0 \Longrightarrow P_{0}=P_{1} ; t^{*}=1 \Longrightarrow P_{2}=P_{3} . \\
& \text { For } t^{*} \in(0,1) \text {, can also regard singularity as coincident } \\
& \text { end-control points (from e.g., Farin \& Hansford 2000)... }
\end{aligned}
$$

$$
\mathcal{C}=\mathcal{C}^{-} \cup \mathcal{C}^{+}, \text {with domains }[0, \hat{t}] \&[\hat{t}, 1],
$$

$$
\text { control points }\left\{P_{i}^{-}\right\} \&\left\{P_{i}^{+}\right\}, i=0,1,2,3 \text {, respectively, }
$$

$$
\text { with } P_{3}^{-}=P_{0}^{+}=\mathcal{C}(\hat{t})
$$

$$
\text { If } \hat{t}=t^{*} \text {, then, also, } P_{2}^{-}=P_{3}^{-} \& P_{1}^{+}=P_{0}^{+} \Longrightarrow P_{2}^{-}=P_{1}^{+}
$$

de Casteljau algorithm, revisited:
Subdivision:

$$
\begin{aligned}
& \left\{P_{i}^{-}\right\}=\left\{P_{0}, P_{01}, P_{012}, P_{0123}\right\} \\
& \left\{P_{i}^{+}\right\}=\left\{P_{0123}, P_{123}, P_{23}, P_{3}\right\} \\
& P_{0123}=\mathcal{C}\left(t^{*}\right)
\end{aligned}
$$

$$
\begin{aligned}
& P_{2}^{-}=P_{1}^{+} \Longrightarrow P_{012}=P_{123}: \\
& {\left[\left(1-t^{*}\right) P_{01}+t^{*} P_{12}\right]=\left[\left(1-t^{*}\right) P_{12}+t^{*} P_{23}\right]}
\end{aligned}
$$

Singularity of Bézier Curve of degree 3 - part 6a

Interval interior like endpoints - coincident end-control points

$$
\text { Seen } t^{*}=0 \Longrightarrow P_{0}=P_{1} ; t^{*}=1 \Longrightarrow P_{2}=P_{3}
$$

For $t^{*} \in(0,1)$, can also regard singularity as coincident end-control points (from e.g., Farin \& Hansford 2000). . .
$\mathcal{C}=\mathcal{C}^{-} \cup \mathcal{C}^{+}$, with domains $[0, \hat{t}] \&[\hat{t}, 1]$, control points $\left\{P_{i}^{-}\right\} \&\left\{P_{i}^{+}\right\}, i=0,1,2,3$, respectively, with $P_{3}^{-}=P_{0}^{+}=\mathcal{C}(\hat{t})$
If $\hat{t}=t^{*}$, then, also, $P_{2}^{-}=P_{3}^{-} \& P_{1}^{+}=P_{0}^{+} \Longrightarrow P_{2}^{-}=P_{1}^{+}$
de Casteljau algorithm, revisited:
Subdivision:

$$
\begin{aligned}
& \left\{P_{i}^{-}\right\}=\left\{P_{0}, P_{01}, P_{012}, P_{0123}\right\} \\
& \left\{P_{i}^{+}\right\}=\left\{P_{0123}, P_{123}, P_{23}, P_{3}\right\} \\
& P_{0123}=\mathcal{C}\left(t^{*}\right)
\end{aligned}
$$

$$
\begin{aligned}
& P_{2}^{-}=P_{1}^{+} \Longrightarrow P_{012}=P_{123}: \\
& {\left[\left(1-t^{*}\right) P_{01}+t^{*} P_{12}\right]=\left[\left(1-t^{*}\right) P_{12}+t^{*} P_{23}\right]} \\
& \ldots \mathcal{C}[\{P\}]^{\prime}\left(t^{*}\right)=\overrightarrow{0}
\end{aligned}
$$

Singularity of Bézier Curve of degree 3 - part 6b

Example: Interval interior like endpoints
Convergence of de Casteljau points P_{012} and P_{123} as $t \rightarrow t^{*}$:

$$
\text { t_sing }=0.55
$$

Singularity of Bézier Curve of degree 3 - part 6b

Example: Interval interior like endpoints
Convergence of de Casteljau points P_{012} and P_{123} as $t \rightarrow t^{*}$: $\mathrm{t}=0.35$

Singularity of Bézier Curve of degree 3 - part 6b

Example: Interval interior like endpoints
Convergence of de Casteljau points P_{012} and P_{123} as $t \rightarrow t^{*}$:

$$
\mathrm{t}=0.45
$$

Singularity of Bézier Curve of degree 3 - part 6b

Example: Interval interior like endpoints
Convergence of de Casteljau points P_{012} and P_{123} as $t \rightarrow t^{*}$:

$$
\mathrm{t}=0.5
$$

Singularity of Bézier Curve of degree 3 - part 6b

Example: Interval interior like endpoints
Convergence of de Casteljau points P_{012} and P_{123} as $t \rightarrow t^{*}$:

$$
\mathrm{t}=0.525
$$

Singularity of Bézier Curve of degree 3 - part 6b

Example: Interval interior like endpoints
Convergence of de Casteljau points P_{012} and P_{123} as $t \rightarrow t^{*}$:

$$
\mathrm{t}=0.55
$$

Singularity of Bézier Curve of degree 3 - part 6c

 Interval endpoints like interior - cuspSeen how singularity in the interior of the parameter interval $[0,1]$ is like one on the ends: characterized by coincident end control points (of the two control polygons of de Casteljau subdivision)
Also, singularity at ends is like one in the interior: exhibits a cusp
if parameter interval is extended beyond $[0,1]$

Singularity of Bézier Curve of degree 3 - part 6c

 Interval endpoints like interior - cuspSeen how singularity in the interior of the parameter interval $[0,1]$ is like one on the ends: characterized by coincident end control points (of the two control polygons of de Casteljau subdivision) Also, singularity at ends is like one in the interior: exhibits a cusp
\ldots if parameter interval is extended beyond [0, 1]
$t _$sing $=0.05$

Singularity of Bézier Curve of degree 3 - part 6c

 Interval endpoints like interior - cuspSeen how singularity in the interior of the parameter interval $[0,1]$ is like one on the ends: characterized by coincident end control points (of the two control polygons of de Casteljau subdivision)
Also, singularity at ends is like one in the interior: exhibits a cusp
\ldots if parameter interval is extended beyond $[0,1]$
t _sing $=0$

Singularity of Bézier Curve of degree 3 - part 6c

 Interval endpoints like interior - cuspSeen how singularity in the interior of the parameter interval $[0,1]$ is like one on the ends: characterized by coincident end control points (of the two control polygons of de Casteljau subdivision)
Also, singularity at ends is like one in the interior: exhibits a cusp
\ldots if parameter interval is extended beyond $[0,1]$:

$$
\mathrm{t} \text { _sing }=0
$$

Singularity of Bézier Curve of degree 3 - part 6c

 Interval endpoints like interior - cuspSeen how singularity in the interior of the parameter interval $[0,1]$ is like one on the ends: characterized by coincident end control points (of the two control polygons of de Casteljau subdivision) Also, singularity at ends is like one in the interior: exhibits a cusp \ldots if parameter interval is extended beyond $[0,1]$:

Singularity of Bézier Curve of degree 3 - part 6c

 Interval endpoints like interior - cuspSeen how singularity in the interior of the parameter interval $[0,1]$ is like one on the ends: characterized by coincident end control points (of the two control polygons of de Casteljau subdivision) Also, singularity at ends is like one in the interior: exhibits a cusp \ldots if parameter interval is extended beyond $[0,1]$:
t_sing $=0.1$

Singularity of Bézier Curve of degree 3 - part 6c

 Interval endpoints like interior - cuspSeen how singularity in the interior of the parameter interval $[0,1]$ is like one on the ends: characterized by coincident end control points (of the two control polygons of de Casteljau subdivision)
Also, singularity at ends is like one in the interior: exhibits a cusp
\ldots if parameter interval is extended beyond $[0,1]$:

Singularity of Bézier Curve of degree 3 - part 6c

 Interval endpoints like interior - cuspSeen how singularity in the interior of the parameter interval $[0,1]$ is like one on the ends: characterized by coincident end control points (of the two control polygons of de Casteljau subdivision) Also, singularity at ends is like one in the interior: exhibits a cusp \ldots if parameter interval is extended beyond $[0,1]$:

$$
\mathrm{t} _ \text {sing }=0.3
$$

Singularity of Bézier Curve of degree 3 - part 6c

 Interval endpoints like interior - cuspSeen how singularity in the interior of the parameter interval $[0,1]$ is like one on the ends: characterized by coincident end control points (of the two control polygons of de Casteljau subdivision) Also, singularity at ends is like one in the interior: exhibits a cusp \ldots if parameter interval is extended beyond $[0,1]$:

Singularity of Bézier Curve of degree 3 - part 6c

 Interval endpoints like interior - cuspSeen how singularity in the interior of the parameter interval $[0,1]$ is like one on the ends: characterized by coincident end control points (of the two control polygons of de Casteljau subdivision) Also, singularity at ends is like one in the interior: exhibits a cusp \ldots if parameter interval is extended beyond $[0,1]$:

Singularity of Bézier Curve of degree 3 - part 6c

 Interval endpoints like interior - cuspSeen how singularity in the interior of the parameter interval $[0,1]$ is like one on the ends: characterized by coincident end control points (of the two control polygons of de Casteljau subdivision) Also, singularity at ends is like one in the interior: exhibits a cusp \ldots if parameter interval is extended beyond $[0,1]$:

Singularity of Bézier Curve of degree 3 - part 6c

 Interval endpoints like interior - cuspSeen how singularity in the interior of the parameter interval $[0,1]$ is like one on the ends: characterized by coincident end control points (of the two control polygons of de Casteljau subdivision) Also, singularity at ends is like one in the interior: exhibits a cusp \ldots if parameter interval is extended beyond $[0,1]$:

Singularity of Bézier Curve of degree 3 - part 6c

 Interval endpoints like interior - cuspSeen how singularity in the interior of the parameter interval $[0,1]$ is like one on the ends: characterized by coincident end control points (of the two control polygons of de Casteljau subdivision) Also, singularity at ends is like one in the interior: exhibits a cusp \ldots if parameter interval is extended beyond $[0,1]$:

Singularity of Bézier Curve of degree 3 - part 6c

 Interval endpoints like interior - cuspSeen how singularity in the interior of the parameter interval $[0,1]$ is like one on the ends: characterized by coincident end control points (of the two control polygons of de Casteljau subdivision) Also, singularity at ends is like one in the interior: exhibits a cusp \ldots if parameter interval is extended beyond $[0,1]$:

Singularity of Bézier Curve of degree 3 - part 6c

 Interval endpoints like interior - cuspSeen how singularity in the interior of the parameter interval $[0,1]$ is like one on the ends: characterized by coincident end control points (of the two control polygons of de Casteljau subdivision) Also, singularity at ends is like one in the interior: exhibits a cusp \ldots if parameter interval is extended beyond $[0,1]$:

Singularity of Bézier Curve of degree 3 - part 6c

 Interval endpoints like interior - cuspSeen how singularity in the interior of the parameter interval $[0,1]$ is like one on the ends: characterized by coincident end control points (of the two control polygons of de Casteljau subdivision) Also, singularity at ends is like one in the interior: exhibits a cusp \ldots if parameter interval is extended beyond $[0,1]$:

Summary

- Parametric polynomial curves of degree 3 are useful.
- Need to understand their singularities
- Bézier form is the best way to represent a parametric polynomial curve.
- Use Bézier form to describe singularities of parametric polynomial curves of degrees $1,2,3$.
- Current and future related work
- Curvature of curves
- Singularity of surfaces
- G^{1} surface fitting in the presence of T-junction

For Further Reading I

\& P.J. Davis
Interpolation \& Approximation
Dover, 1975
Q G. Farin, D. Hansford
The Essentials of CAGD
AK Peters, 2000
Q G. Farin, J. Hoschek, M.-S. Kim, eds.
Handbook of Computer Aided Geometric Design
Elsevier, 2002
Q R.T. Farouki
Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable Springer-Verlag, 2008

Q B.-Q. Su, D.-Y. Liu
Computational Geometry - Curve and Surface Modeling Academic Press, 1990

