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Parametric Cubic Curve

C(t) = a0 + a1t + a2t2 + a3t3

Example (“twisted cubic”): C(t) =
〈

t, t2, t3
〉
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Singularity of a Parametric Curve
Singularity of a curve C(t): t∗ where C′(t∗) = ~0

Geometrically, a cusp, except when also C
′′(t∗) = 0,

Geometrically, a cusp, which for cubic can happen only when curve is a line

Example: C(t) =
〈

4t3 − 3t2 + 1, 4t3 − 9t2 + 6t
〉
, t ∈ [0, 1]

C′(t) =
〈

12t2 − 6t, 12t2 − 18t + 6
〉

t∗ = 1
2, C(t∗) =

〈
3
4, 5

4

〉
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Bézier Curves

A representation of parametric polynomial curves

Geometric and intuitive, facilitating creative design process

Computationally efficient and stable

At the core of Computer Aided Geometric Design (CAGD)
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Bézier Curves of degree 1

C(t) = (1− t)P0 + t P1, t ∈ [0, 1]

P0

P1

C H0.25L
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Bézier Curves of degree 1

C(t) = (1− t)P0 + t P1, t ∈ [0, 1]

P0

P1

C H0.5L
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Bézier Curves of degree 1

C(t) = (1− t)P0 + t P1, t ∈ [0, 1]
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Bézier Curves of degree 1

C(t) = (1− t)P0 + t P1, t ∈ [0, 1]
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Bézier Curves of degree 2

P01 = (1− t)P0 + t P1 ; P12 = (1− t)P1 + t P2

C(t) = (1− t)P01 + t P12, t ∈ [0, 1]

P0

P1

P2
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Bézier Curves of degree 2

P01 = (1− t)P0 + t P1 ; P12 = (1− t)P1 + t P2
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Bézier Curves of degree 2

P01 = (1− t)P0 + t P1 ; P12 = (1− t)P1 + t P2

C(t) = (1− t)P01 + t P12, t ∈ [0, 1]

P0

P1

P2

P01

P12

C H0.88L
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Bézier Curves of degree 3

P01 = (1− t)P0 + t P1 ; P12 = (1− t)P1 + t P2 ; P23 = (1− t)P2 + t P3

P012 = (1− t)P01 + t P12 ; P123 = (1− t)P12 + t P23

C(t) = (1− t)P012 + t P123, t ∈ [0, 1]

P0

P1

P2

P3
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Bézier Curves of degree 3

P01 = (1− t)P0 + t P1 ; P12 = (1− t)P1 + t P2 ; P23 = (1− t)P2 + t P3

P012 = (1− t)P01 + t P12 ; P123 = (1− t)P12 + t P23

C(t) = (1− t)P012 + t P123, t ∈ [0, 1]

= (1− t) [(1− t)P01 + t P12] + t [(1− t)P12 + t P23]

E. Nadler, Eastern Michigan University Bézier Curve Singularity 8/29



Bézier Curves of degree 3

P01 = (1− t)P0 + t P1 ; P12 = (1− t)P1 + t P2 ; P23 = (1− t)P2 + t P3

P012 = (1− t)P01 + t P12 ; P123 = (1− t)P12 + t P23

C(t) = (1− t)P012 + t P123, t ∈ [0, 1]

= (1− t) [(1− t)P01 + t P12] + t [(1− t)P12 + t P23]

= (1− t)
[
(1− t)[(1− t)P0 + t P1] + t [(1− t)P1 + t P2]

]

= 1- + t
[
(1− t)[(1− t)P1 + t P2] + t [(1− t)P2 + t P3]

]

E. Nadler, Eastern Michigan University Bézier Curve Singularity 8/29



Bézier Curves of degree 3

P01 = (1− t)P0 + t P1 ; P12 = (1− t)P1 + t P2 ; P23 = (1− t)P2 + t P3

P012 = (1− t)P01 + t P12 ; P123 = (1− t)P12 + t P23

C(t) = (1− t)P012 + t P123, t ∈ [0, 1]

= (1− t) [(1− t)P01 + t P12] + t [(1− t)P12 + t P23]

= (1− t)
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(1− t)[(1− t)P0 + t P1] + t [(1− t)P1 + t P2]

]

= 1- + t
[
(1− t)[(1− t)P1 + t P2] + t [(1− t)P2 + t P3]

]

= (1− t)3t0P0 + 3(1− t)2t1P1 + 3(1− t)1t2P2 + (1− t)0t3P3

=
3∑

i=0

(
3
i

)
(1− t)3−it i Pi
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Bézier Curve – Definition
Degree 3:

C(t) =

3∑

i=0

(
3
i

)
(1− t)3−it i Pi

=

3∑

i=0

B3
i (t) Pi

where

B3
i (t) =

(
3
i

)
(1− t)3−it i is

the ith Bernstein (basis) polynomial of degree 3, and

Pi are known as (Bézier) control points.
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Bézier Curve – Definition
Degree n:

C(t) =

n∑

i=0

(
n
i

)
(1− t)n−it i Pi

=

n∑

i=0

Bn
i (t) Pi

where

Bn
i (t) =

(
n
i

)
(1− t)n−it i is

the ith Bernstein (basis) polynomial of degree n, and

Pi are known as (Bézier) control points.
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Bernstein Basis Polynomials
Degree 3:

{B3
i (t)}

3
i=0 = {(1− t)3, 3(1− t)2t, 3(1− t)t 2, t3}

0.25 0.5 0.75 1.
t
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BHtL

Partition of unity:
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Bernstein Basis Polynomials
Degree 3:

{B3
i (t)}

3
i=0 = {(1− t)3, 3(1− t)2t, 3(1− t)t 2, t3}
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t
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BHtL

Partition of unity:
n∑

i=0

Bn
i (t) =

n∑

i=0

(
n
i

)
(1− t)n−it i

=
(
1− t + t

)n

= 1
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Historical Notes
Bernstein polynomials were used by Sergei Bernstein in 1910 in
his elegant proof of the Weierstrass Approximation Theorem
(1885): a continuous function on a closed interval can be
uniformly approximated by polynomials.

Bézier curves were first developed in the 1950s in the French
automobile industry.
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Historical Notes
Bernstein polynomials were used by Sergei Bernstein in 1910 in
his elegant proof of the Weierstrass Approximation Theorem
(1885): a continuous function on a closed interval can be
uniformly approximated by polynomials.

Bézier curves were first developed in the 1950s in the French
automobile industry.

Paul de Casteljau (Citroën) developed in
1959 the geometric algorithm presented –
bearing his name – for evaluating points
on a Bézier curve. It is the most robust
and numerically stable method for
evaluating polynomials, and one of the
most important algorithms in CAGD.

from de Casteljau’s writings

Pierre Bézier (Rénault) also worked on Bézier curves and
surfaces, which are now used in most computer-aided design and
computer graphics systems.

E. Nadler, Eastern Michigan University Bézier Curve Singularity 11/29



Examples of Cubic Bézier Curves

from Farin & Hansford 2000
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Properties of Bézier Curves

Endpoint interpolation: C(0) = P0 and C(1) = Pn

Endpoint tangency to control polygon:
C′(0)‖(P1 − P0) and C′(1)‖(Pn − Pn−1)

Convex Hull Property: C[{P}] ⊂ ConvexHull({P})
implies

(
{P} planar=⇒ C[{P}] planar

)

Convexity preservation for planar curves:
{P} convex=⇒ C[{P}] convex

Affine invariance: C[Φ{P}] = ΦC[{P}]

· · ·

E. Nadler, Eastern Michigan University Bézier Curve Singularity 13/29



Properties of Bézier Curves

Endpoint interpolation: C(0) = P0 and C(1) = Pn

Endpoint tangency to control polygon:
C′(0)‖(P1 − P0) and C′(1)‖(Pn − Pn−1)

Convex Hull Property: C[{P}] ⊂ ConvexHull({P})
implies

(
{P} planar=⇒ C[{P}] planar

)

Convexity preservation for planar curves:
{P} convex=⇒ C[{P}] convex

Affine invariance: C[Φ{P}] = ΦC[{P}]

· · ·

E. Nadler, Eastern Michigan University Bézier Curve Singularity 13/29



Properties of Bézier Curves

Endpoint interpolation: C(0) = P0 and C(1) = Pn

Endpoint tangency to control polygon:
C′(0)‖(P1 − P0) and C′(1)‖(Pn − Pn−1)

Convex Hull Property: C[{P}] ⊂ ConvexHull({P})
implies

(
{P} planar=⇒ C[{P}] planar

)

Convexity preservation for planar curves:
{P} convex=⇒ C[{P}] convex

Affine invariance: C[Φ{P}] = ΦC[{P}]

· · ·

E. Nadler, Eastern Michigan University Bézier Curve Singularity 13/29



Properties of Bézier Curves

Endpoint interpolation: C(0) = P0 and C(1) = Pn

Endpoint tangency to control polygon:
C′(0)‖(P1 − P0) and C′(1)‖(Pn − Pn−1)

Convex Hull Property: C[{P}] ⊂ ConvexHull({P})
implies

(
{P} planar=⇒ C[{P}] planar

)

Convexity preservation for planar curves:
{P} convex=⇒ C[{P}] convex

Affine invariance: C[Φ{P}] = ΦC[{P}]

· · ·

E. Nadler, Eastern Michigan University Bézier Curve Singularity 13/29



Properties of Bézier Curves

Endpoint interpolation: C(0) = P0 and C(1) = Pn

Endpoint tangency to control polygon:
C′(0)‖(P1 − P0) and C′(1)‖(Pn − Pn−1)

Convex Hull Property: C[{P}] ⊂ ConvexHull({P})
implies

(
{P} planar=⇒ C[{P}] planar

)

Convexity preservation for planar curves:
{P} convex=⇒ C[{P}] convex

Affine invariance: C[Φ{P}] = ΦC[{P}]

· · ·

E. Nadler, Eastern Michigan University Bézier Curve Singularity 13/29



Derivative of Bézier Curve

C′(t) =

n∑

i=0

Bn
i
′(t) Pi

=
n∑

i=0

(
n
i

)(
(1− t)n−it i)′ Pi

= n
n−1∑

i=0

Bn−1
i
′(t) (Pi+1 − Pi)

That is, the Bézier control points of C′ are simply
That is, the Bézier c {n (Pi+1 − Pi)}

n−1
i=0

Differentiate a Bézier Curve by differencing its control points!

The curve C′ is known as the hodograph of the curve C.
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Singularity of Bézier Curve of degree 1

Recall definition of singularity of a curve C(t):
t∗ where C′(t∗) = ~0

Apply this to Bézier Curve of degree 1:

C(t) = (1− t)P0 + t P1

C′(t) = P1 − P0

= ~0 ∀t iff P0 = P1

That is, the only case of singularity of a polynomial curve of
degree 1 is the trivial case when its two endpoints agree!
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Singularity of Bézier Curve of degree 2 – part 1

C′(t∗) = ~0 for n = 2:

C(t) = B2
0P0 + B2

1P1 + B2
2P2

C′(t) = B1
0(P1 − P0) + B1

1(P2 − P1) by derivative formula

= (1− t)(P1 − P0) + t (P2 − P1)

Hence, the only cases of singularity of a polynomial curve
of degree 2 occur when its Bézier control points satisfy

(P1 − P0)‖(P2 − P1)

i.e., they are collinear

Hence, by the Convex Hull Property, the curve actually lies
on a line.
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Singularity of Bézier Curve of degree 2 – part 2

Equation for singularity:

C′(t∗) = (1− t∗)(P1 − P0) + t∗ (P2 − P1) = ~0, t∗ ∈ [0, 1]

For singularity, in addition to being collinear, must have P0, P1, P2 “out
of order”, i.e.,
P0 between P1 and P2: t∗ ∈ [0, 1

2]
OR
P2 between P0 and P1: t∗ ∈ [ 1

2, 1]

In all cases, the singularity is at P1; curve reverses direction there.

Special cases of coincident adjacent end control points:

If P0 = P1, singularity there at t = 0

If P1 = P2, singularity there at t = 1
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Special cases of coincident adjacent end control points:

If P0 = P1, singularity there at t = 0

If P1 = P2, singularity there at t = 1
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Singularity of Bézier Curve of degree 3 – part 1
Basics

C′(t∗) = ~0 for n = 3:

C(t) = B3
0P0 + B3

1P1 + B3
2P2 + B3

3P3

1
3C
′(t) = B2

0(P1 − P0) + B2
1(P2 − P1) + B2

2(P3 − P2)

= (1− t)2(P1 − P0) + 2(1− t)t (P2 − P1) + t2(P3 − P2)

Hence, the only cases of singularity of a polynomial curve
of degree 3 occur when a linear combination of
{(P1 − P0), (P2 − P1), (P3 − P2)} equals ~0

Hence, for singularity, these three vectors, and hence,
{P0, P1, P2, P3} themselves, must be coplanar

Hence, for singularity, by the Convex Hull Property, the
curve must be planar
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Singularity of Bézier Curve of degree 3 – part 2
Construct singular curve, given some translate of its hodograph

∆Pi = Pi+1 − Pi

Hodograph
C[{P}]′ = C[{3∆P}] =⇒

singularity: C[{∆P}](t∗) = ~0

C[{∆̃P}](t), ∆̃Pi = ∆Pi + ~C

DP
�

0

DP
�

1
DP
�

2
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Singularity of Bézier Curve of degree 3 – part 3
Examples of singular cubics with various values of t∗, using the
construction:

P2 = P3 P1 = P0

DP0

DP1

DP2

P0

P1

P2

P3

t_sing=0.5

tangent@sing. ‖ (P3 − P1)
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Examples of singular cubics with various values of t∗, using the
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Examples of singular cubics with various values of t∗, using the
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Examples of singular cubics with various values of t∗, using the
construction:
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Singularity of Bézier Curve of degree 3 – part 3
Examples of singular cubics with various values of t∗, using the
construction:

P2 = P3 P1 = P0
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Singularity of Bézier Curve of degree 3 – part 3
Examples of singular cubics with various values of t∗, using the
construction:

P2 = P3 P1 = P0

DP0
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Singularity of Bézier Curve of degree 3 – part 4a
Solution for singularity using Bézier singularity condition

Define points
O = ℓ(P0, P3−P2)∩ ℓ(P3, P1−P0)
R = ℓ(P1, P3 −P2)∩ ℓ(P2, P1 − P0)

where ℓ(P, V) is the line defined by
point P and vector V .

P0
P1

P2

P3

O

R

From the geometry above, R − O = ∆P0 − ∆P2,

∆P0 ‖ (P3 − O) and ∆P2 ‖ (P0 − O)

∆P0 = x(P3 − O), x = det(∆P2,∆P0)
det(∆P2,P3−P0)

(1)

∆P2 = −y(P0 − O), y = det(∆P0,∆P2)
det(∆P0,P3−P0)

(2)

with (x, y) capturing the essential shape of the control polygon.
Under the Bézier singularity condition C[{∆P}](t∗) = ~0, (1), (2) −→

(x, y) =
(

2t∗

3t∗−1,
2(1−t∗)
2−3t∗

)
, which satisfies

(
x − 4

3

) (
y − 4

3

)
= 4

9 (∗)

Condition (∗) for singularity was found by [Su & Liu 1990] using other methods that did not make
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Under the Bézier singularity condition C[{∆P}](t∗) = ~0, (1), (2) −→

(x, y) =
(

2t∗

3t∗−1,
2(1−t∗)
2−3t∗

)
, which satisfies

(
x − 4

3

) (
y − 4

3

)
= 4

9 (∗)

Condition (∗) for singularity was found by [Su & Liu 1990] using other methods that did

not make essential use of the Bézier form.
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, which satisfies
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)
= 4

9 (∗)

Additional case: special doubly degenerate case of (x, y) = (0, 0) =⇒

P1 = P0 & P2 = P3 =⇒ singular at t = 0 & t = 1
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Singularity of Bézier Curve of degree 3 – part 4b
Summary of main result

Define affine coordinates (x, y) of the control polygon of a cubic Bézier
curve by R − O = (P3 − O)x + (P0 − O)y ; see graph at bottom left.

The curve has a singularity at t = t∗ iff

(x, y) =
(

2t∗

3t∗−1,
2(1−t∗)
2−3t∗

)
, which satisfies

(
x − 4

3

) (
y − 4

3

)
= 4

9

or two singularities at t∗ ∈ {0, 1}, for the case (x, y) = (0, 0).

P0
P1

P2

P3

O

R
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Singularity of Bézier Curve of degree 3 – part 4b
Summary of main result

Define affine coordinates (x, y) of the control polygon of a cubic Bézier
curve by R − O = (P3 − O)x + (P0 − O)y ; see graph at bottom left.

The curve has a singularity at t = t∗ iff

(x, y) =
(

2t∗

3t∗−1,
2(1−t∗)
2−3t∗

)
, which satisfies

(
x − 4

3

) (
y − 4

3

)
= 4

9

or two singularities at t∗ ∈ {0, 1}, for the case (x, y) = (0, 0).

The x-y hyperbola,with some values of t∗:

P0
P1

P2

P3

O

R

-4 -2 2 4
x

-4

-2

2

4

y

0.0.10.2
0.4

0.5

0.6

0.8

0.9
1.

0.250.28
0.38

0.62

0.625

0.72

0.75

t∗ /∈ [0, 1]←→ missing segment
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Singularity of Bézier Curve of degree 3 – part 5a
Examples of singular solution

Singular cubic curves with various values of t∗ ∈ [0, 1], with
P0,P3, and the directions of P1 − P0 and P3 − P2 fixed.

P0 P1

P2

P3

t_sing=0.5

O

R
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Examples of singular solution

Singular cubic curves with various values of t∗ ∈ [0, 1], with
P0,P3, and the directions of P1 − P0 and P3 − P2 fixed.
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Singularity of Bézier Curve of degree 3 – part 5a
Examples of singular solution

Singular cubic curves with various values of t∗ ∈ [0, 1], with
P0,P3, and the directions of P1 − P0 and P3 − P2 fixed.

P0 P1

P2

P3

t_sing=0.6

O

R
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Singularity of Bézier Curve of degree 3 – part 5a
Examples of singular solution

Singular cubic curves with various values of t∗ ∈ [0, 1], with
P0,P3, and the directions of P1 − P0 and P3 − P2 fixed.

P0 P1

P3

t_sing=0.65

O
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Singularity of Bézier Curve of degree 3 – part 5a
Examples of singular solution

Singular cubic curves with various values of t∗ ∈ [0, 1], with
P0,P3, and the directions of P1 − P0 and P3 − P2 fixed.

P0 P1

P3

t_sing=0.7

O
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Singularity of Bézier Curve of degree 3 – part 5a
Examples of singular solution

Singular cubic curves with various values of t∗ ∈ [0, 1], with
P0,P3, and the directions of P1 − P0 and P3 − P2 fixed.

P0 P1

P2

P3

t_sing=0.75

O

R
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Singularity of Bézier Curve of degree 3 – part 5a
Examples of singular solution

Singular cubic curves with various values of t∗ ∈ [0, 1], with
P0,P3, and the directions of P1 − P0 and P3 − P2 fixed.

P0 P1

P2

P3

t_sing=0.8

O

R
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Singularity of Bézier Curve of degree 3 – part 5a
Examples of singular solution

Singular cubic curves with various values of t∗ ∈ [0, 1], with
P0,P3, and the directions of P1 − P0 and P3 − P2 fixed.

P0 P1

P2

P3

t_sing=0.85

O

R
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Singularity of Bézier Curve of degree 3 – part 5a
Examples of singular solution

Singular cubic curves with various values of t∗ ∈ [0, 1], with
P0,P3, and the directions of P1 − P0 and P3 − P2 fixed.

P0 P1

P2
P3

t_sing=0.9

O
R

E. Nadler, Eastern Michigan University Bézier Curve Singularity 23/29



Singularity of Bézier Curve of degree 3 – part 5a
Examples of singular solution

Singular cubic curves with various values of t∗ ∈ [0, 1], with
P0,P3, and the directions of P1 − P0 and P3 − P2 fixed.

P0 P1

P2
P3

t_sing=0.95

O
R
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Singularity of Bézier Curve of degree 3 – part 5a
Examples of singular solution

Singular cubic curves with various values of t∗ ∈ [0, 1], with
P0,P3, and the directions of P1 − P0 and P3 − P2 fixed.

P0 P1

P2P3

O R
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Singularity of Bézier Curve of degree 3 – part 5a
Examples of singular solution

Singular cubic curves with various values of t∗ ∈ [0, 1], with
P0,P3, and the directions of P1 − P0 and P3 − P2 fixed.

P0P1 P2

P3

t_sing=0

O

R
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Singularity of Bézier Curve of degree 3 – part 5a
Examples of singular solution

Singular cubic curves with various values of t∗ ∈ [0, 1], with
P0,P3, and the directions of P1 − P0 and P3 − P2 fixed.

P0P1 P2

P3

t_sing=0.05

O

R
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Singularity of Bézier Curve of degree 3 – part 5a
Examples of singular solution

Singular cubic curves with various values of t∗ ∈ [0, 1], with
P0,P3, and the directions of P1 − P0 and P3 − P2 fixed.

P0P1 P2

P3

t_sing=0.1

O

R
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Singularity of Bézier Curve of degree 3 – part 5a
Examples of singular solution

Singular cubic curves with various values of t∗ ∈ [0, 1], with
P0,P3, and the directions of P1 − P0 and P3 − P2 fixed.

P0P1
P2

P3

t_sing=0.15

O

R
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Singularity of Bézier Curve of degree 3 – part 5a
Examples of singular solution

Singular cubic curves with various values of t∗ ∈ [0, 1], with
P0,P3, and the directions of P1 − P0 and P3 − P2 fixed.

P0P1
P2

P3

t_sing=0.2

O

R
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Singularity of Bézier Curve of degree 3 – part 5a
Examples of singular solution

Singular cubic curves with various values of t∗ ∈ [0, 1], with
P0,P3, and the directions of P1 − P0 and P3 − P2 fixed.
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Examples of singular solution
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P0,P3, and the directions of P1 − P0 and P3 − P2 fixed.
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Singularity of Bézier Curve of degree 3 – part 5a
Examples of singular solution

Singular cubic curves with various values of t∗ ∈ [0, 1], with
P0,P3, and the directions of P1 − P0 and P3 − P2 fixed.

P0

P2

P3

t_sing=0.35

O
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Singularity of Bézier Curve of degree 3 – part 5a
Examples of singular solution

Singular cubic curves with various values of t∗ ∈ [0, 1], with
P0,P3, and the directions of P1 − P0 and P3 − P2 fixed.

P0 P1

P2

P3

t_sing=0.4

O

R
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Singularity of Bézier Curve of degree 3 – part 5a
Examples of singular solution

Singular cubic curves with various values of t∗ ∈ [0, 1], with
P0,P3, and the directions of P1 − P0 and P3 − P2 fixed.

P0 P1

P2

P3

t_sing=0.45

O

R
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Singularity of Bézier Curve of degree 3 – part 5a
Examples of singular solution

Singular cubic curves with various values of t∗ ∈ [0, 1], with
P0,P3, and the directions of P1 − P0 and P3 − P2 fixed.

P0 P1

P2

P3

t_sing=0.5

O

R
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Singularity of Bézier Curve of degree 3 – part 5b
Examples of cubic curves in x-y space

A "tour" of cubic curves in other regions of x-y space, again,
with P0,P3, and the directions of P1 − P0 and P3 − P2 fixed.

P0 P1

P2

P3

t_sing=0.5

O

R
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Singularity of Bézier Curve of degree 3 – part 5b
Examples of cubic curves in x-y space

A "tour" of cubic curves in other regions of x-y space, again,
with P0,P3, and the directions of P1 − P0 and P3 − P2 fixed.

P0 P1

P2

P3

t_sing=0.5

O

R

A complete description cubic curve shapes in x-y space is given in [Su & Liu 1990].
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Singularity of Bézier Curve of degree 3 – part 6a
Interval interior like endpoints – coincident end-control points

Seen t∗ = 0 =⇒ P0 = P1 ; t∗ = 1 =⇒ P2 = P3.
For t∗ ∈ (0, 1), can also regard singularity as coincident
end-control points (from e.g., Farin & Hansford 2000). . .

C = C− ∪ C+, with domains [0, t̂] & [̂t, 1],
control points {P−

i } & {P+
i }, i = 0, 1, 2, 3, respectively,

with P−

3 = P+
0 = C (̂t)

If t̂ = t∗, then, also, P−

2 = P−

3 & P+
1 = P+

0 =⇒ P−

2 = P+
1

de Casteljau algorithm, revisited:
Subdivision:
{P−

i } = {P0, P01, P012, P0123}
{P+

i } = {P0123, P123, P23, P3}
P0123 = C(t∗)

P−

2 = P+
1 =⇒ P012 = P123 :

[(1− t∗)P01 + t∗ P12] = [(1− t∗)P12 + t∗ P23]

. . . C[{P}]′(t∗) = ~0
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Interval interior like endpoints – coincident end-control points

Seen t∗ = 0 =⇒ P0 = P1 ; t∗ = 1 =⇒ P2 = P3.
For t∗ ∈ (0, 1), can also regard singularity as coincident
end-control points (from e.g., Farin & Hansford 2000). . .

C = C− ∪ C+, with domains [0, t̂] & [̂t, 1],
control points {P−

i } & {P+
i }, i = 0, 1, 2, 3, respectively,

with P−
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If t̂ = t∗, then, also, P−
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1 = P+
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de Casteljau algorithm, revisited:
Subdivision:
{P−

i } = {P0, P01, P012, P0123}
{P+

i } = {P0123, P123, P23, P3}
P0123 = C(t∗)

HP-L0

HP-L1

HP-L2

HP-L3
IP+M

0

IP+M
1 IP+M

2

IP+M
3
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Interval interior like endpoints – coincident end-control points

Seen t∗ = 0 =⇒ P0 = P1 ; t∗ = 1 =⇒ P2 = P3.
For t∗ ∈ (0, 1), can also regard singularity as coincident
end-control points (from e.g., Farin & Hansford 2000). . .

C = C− ∪ C+, with domains [0, t̂] & [̂t, 1],
control points {P−

i } & {P+
i }, i = 0, 1, 2, 3, respectively,

with P−
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1 = P+
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P0

P1

P2

P3

P01

P12 P23

P012

P123

C H0.375L

P−

2 = P+
1 =⇒ P012 = P123 :

[(1− t∗)P01 + t∗ P12] = [(1− t∗)P12 + t∗ P23]

. . . C[{P}]′(t∗) = ~0
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Singularity of Bézier Curve of degree 3 – part 6b
Example: Interval interior like endpoints

Convergence of de Casteljau points P012 and P123 as t → t∗:

P0 P1

P2

P3

t_sing=0.55
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Convergence of de Casteljau points P012 and P123 as t → t∗:

P0 P1
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Singularity of Bézier Curve of degree 3 – part 6b
Example: Interval interior like endpoints

Convergence of de Casteljau points P012 and P123 as t → t∗:

P0 P1

P2

P3

P01

P12

P23P012

P123

C H0.45L

t=0.45
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Singularity of Bézier Curve of degree 3 – part 6b
Example: Interval interior like endpoints

Convergence of de Casteljau points P012 and P123 as t → t∗:

P0 P1

P2

P3

P01

P12

P23
P012

P123

C H0.5L

t=0.5
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Singularity of Bézier Curve of degree 3 – part 6b
Example: Interval interior like endpoints

Convergence of de Casteljau points P012 and P123 as t → t∗:

P0 P1

P2

P3

P01

P12

P23

P012
P123

C H0.525L

t=0.525
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Singularity of Bézier Curve of degree 3 – part 6b
Example: Interval interior like endpoints

Convergence of de Casteljau points P012 and P123 as t → t∗:

P0 P1

P2

P3

P01

P12

P23

P012P123

C H0.55L

t=0.55
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Singularity of Bézier Curve of degree 3 – part 6c
Interval endpoints like interior – cusp

Seen how singularity in the interior of the parameter interval
[0, 1] is like one on the ends: characterized by coincident end
control points (of the two control polygons of de Casteljau subdivision)

Also, singularity at ends is like one in the interior: exhibits a cusp
. . .. . . if parameter interval is extended beyond [0, 1]:
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[0, 1] is like one on the ends: characterized by coincident end
control points (of the two control polygons of de Casteljau subdivision)

Also, singularity at ends is like one in the interior: exhibits a cusp
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Interval endpoints like interior – cusp

Seen how singularity in the interior of the parameter interval
[0, 1] is like one on the ends: characterized by coincident end
control points (of the two control polygons of de Casteljau subdivision)

Also, singularity at ends is like one in the interior: exhibits a cusp
. . .. . . if parameter interval is extended beyond [0, 1]:

P0
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P2

P3

t_sing=0.1

E. Nadler, Eastern Michigan University Bézier Curve Singularity 27/29



Singularity of Bézier Curve of degree 3 – part 6c
Interval endpoints like interior – cusp

Seen how singularity in the interior of the parameter interval
[0, 1] is like one on the ends: characterized by coincident end
control points (of the two control polygons of de Casteljau subdivision)

Also, singularity at ends is like one in the interior: exhibits a cusp
. . .. . . if parameter interval is extended beyond [0, 1]:

P0

P1

P2

P3

t_sing=0.2
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Singularity of Bézier Curve of degree 3 – part 6c
Interval endpoints like interior – cusp

Seen how singularity in the interior of the parameter interval
[0, 1] is like one on the ends: characterized by coincident end
control points (of the two control polygons of de Casteljau subdivision)

Also, singularity at ends is like one in the interior: exhibits a cusp
. . .. . . if parameter interval is extended beyond [0, 1]:

P0

P1

P2

P3

t_sing=0.3
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Singularity of Bézier Curve of degree 3 – part 6c
Interval endpoints like interior – cusp

Seen how singularity in the interior of the parameter interval
[0, 1] is like one on the ends: characterized by coincident end
control points (of the two control polygons of de Casteljau subdivision)

Also, singularity at ends is like one in the interior: exhibits a cusp
. . .. . . if parameter interval is extended beyond [0, 1]:

P0

P1

P2

P3

t_sing=0.4
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Singularity of Bézier Curve of degree 3 – part 6c
Interval endpoints like interior – cusp

Seen how singularity in the interior of the parameter interval
[0, 1] is like one on the ends: characterized by coincident end
control points (of the two control polygons of de Casteljau subdivision)

Also, singularity at ends is like one in the interior: exhibits a cusp
. . .. . . if parameter interval is extended beyond [0, 1]:

P0

P1

P2

P3

t_sing=0.5
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Singularity of Bézier Curve of degree 3 – part 6c
Interval endpoints like interior – cusp

Seen how singularity in the interior of the parameter interval
[0, 1] is like one on the ends: characterized by coincident end
control points (of the two control polygons of de Casteljau subdivision)

Also, singularity at ends is like one in the interior: exhibits a cusp
. . .. . . if parameter interval is extended beyond [0, 1]:

P0

P1

P2

P3

t_sing=0.6
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Singularity of Bézier Curve of degree 3 – part 6c
Interval endpoints like interior – cusp

Seen how singularity in the interior of the parameter interval
[0, 1] is like one on the ends: characterized by coincident end
control points (of the two control polygons of de Casteljau subdivision)

Also, singularity at ends is like one in the interior: exhibits a cusp
. . .. . . if parameter interval is extended beyond [0, 1]:

P0

P1

P2 P3

t_sing=0.7

E. Nadler, Eastern Michigan University Bézier Curve Singularity 27/29



Singularity of Bézier Curve of degree 3 – part 6c
Interval endpoints like interior – cusp

Seen how singularity in the interior of the parameter interval
[0, 1] is like one on the ends: characterized by coincident end
control points (of the two control polygons of de Casteljau subdivision)

Also, singularity at ends is like one in the interior: exhibits a cusp
. . .. . . if parameter interval is extended beyond [0, 1]:

P0

P1
P2 P3

t_sing=0.8
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Singularity of Bézier Curve of degree 3 – part 6c
Interval endpoints like interior – cusp

Seen how singularity in the interior of the parameter interval
[0, 1] is like one on the ends: characterized by coincident end
control points (of the two control polygons of de Casteljau subdivision)

Also, singularity at ends is like one in the interior: exhibits a cusp
. . .. . . if parameter interval is extended beyond [0, 1]:

P0

P1P2 P3

t_sing=0.9

E. Nadler, Eastern Michigan University Bézier Curve Singularity 27/29



Singularity of Bézier Curve of degree 3 – part 6c
Interval endpoints like interior – cusp

Seen how singularity in the interior of the parameter interval
[0, 1] is like one on the ends: characterized by coincident end
control points (of the two control polygons of de Casteljau subdivision)

Also, singularity at ends is like one in the interior: exhibits a cusp
. . .. . . if parameter interval is extended beyond [0, 1]:

P0

P1P2 P3

t_sing=0.95
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Singularity of Bézier Curve of degree 3 – part 6c
Interval endpoints like interior – cusp

Seen how singularity in the interior of the parameter interval
[0, 1] is like one on the ends: characterized by coincident end
control points (of the two control polygons of de Casteljau subdivision)

Also, singularity at ends is like one in the interior: exhibits a cusp
. . .. . . if parameter interval is extended beyond [0, 1]:

P0

P1P2P3

t_sing=1.
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Summary

Parametric polynomial curves of degree 3 are useful.

Need to understand their singularities

Bézier form is the best way to represent a parametric
polynomial curve.

Use Bézier form to describe singularities of parametric
polynomial curves of degrees 1,2,3.

Current and future related work
Curvature of curves
Singularity of surfaces
G1 surface fitting in the presence of T-junction
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For Further Reading I

P.J. Davis
Interpolation & Approximation
Dover, 1975

G. Farin, D. Hansford
The Essentials of CAGD
AK Peters, 2000

G. Farin, J. Hoschek, M.-S. Kim, eds.
Handbook of Computer Aided Geometric Design
Elsevier, 2002

R.T. Farouki
Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable

Springer-Verlag, 2008

B.-Q. Su, D.-Y. Liu
Computational Geometry – Curve and Surface Modeling
Academic Press, 1990
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