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Abstract— New pendulum models are introduced and stud-
ied. The pendulum consists of a rigid body, supported at a fixed
pivot, with three rotational degrees of freedom. The pendulum
is acted on by a gravitational force and control forces and
moments. Several different pendulum models are developed to
analyze properties of the uncontrolled pendulum. Symmetry
assumptions are shown to lead to the planar 1D pendulum
and to the spherical 2D pendulum models as special cases.
The case where the rigid body is asymmetric and the center
of mass is distinct from the pivot location leads to the 3D
pendulum. Rigid pendulum and multi-body pendulum control
problems are proposed. The 3D pendulum models provide a
rich source of examples for nonlinear dynamics and control,
some of which are similar to simpler pendulum models and
some of which are completely new.

I. INTRODUCTION

Pendulum models have provided a rich source of ex-
amples in nonlinear dynamics and, in recent decades, in
nonlinear control. A brief review is given of some of these
models; this review provides appropriate background for the
subsequent introduction of a new 3D pendulum model. The
most common rigid pendulum model consists of a mass
particle that is attached to one end of a mass-less, rigid
link; the other end of the link is fixed to a pivot point that
provides a rotational joint for the link and mass particle. If
the link and mass particle are constrained to move within
a fixed plane, the system is referred to as a planar 1D
pendulum. If the link and mass particle are unconstrained,
the system is referred to as a spherical 2D pendulum.

The published literature on such pendulum models is very
large. Few publications view the pendulum as a rigid body.
Standard pendulum models are defined by a single rotational
degree of freedom, referred to as a planar rigid pendulum, or
two rotational degrees of freedom, referred to as a spherical
rigid pendulum. Control problems for planar and spherical
pendulum models have been studied in [1], [2] and [3] and
in many other references, such as [4], [5], [6], [7], [8], [9],
[10], [11].

Numerous extensions of simple pendulum models have
been proposed. These include various categories of elastic
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pendulum models and multi-body pendulum models. In-
teresting examples of multi-body pendulum models are: a
pendulum on a cart, an acrobot, a pendubot, a pendulum
actuated by a reaction wheel, the Furuta pendulum, and
pendula consisting of multiple coupled bodies. Dynamics
and control problems for these types of multi-body pendu-
lum models have been studied in [10], [12], [13], [14], [15],
[16], [17], [18].

Pendulum models are useful for both pedagogical and
research reasons. They represent physical mechanisms that
can be viewed as simplified academic versions of me-
chanical systems that arise in robotics and spacecraft. In
addition to their important role in teaching the founda-
tions of nonlinear dynamics and control, pendulum models
have motivated the application of new research results in
nonlinear dynamics and nonlinear control. This theme was
recently emphasized in the plenary presentation given by
Katsuhisa Furuta at the 2003 Conference on Decision and
Control [2].

This paper introduces a new 3D pendulum model, ana-
lyzes its basic properties, and suggests several new asso-
ciated control problems. The 3D pendulum is, simply, a
rigid body, supported at a fixed pivot point, that has three
rotational degrees of freedom; it is acted on by a uniform
gravity force and, perhaps, by control and disturbance forces
and moments.

This paper is a consequence of our continuing research
on a laboratory facility, referred to as the Triaxial Attitude
Control Testbed (TACT). The TACT has been constructed
to provide a testbed for a variety of physical experiments on
attitude dynamics and attitude control. The most important
feature of the TACT design is that it is supported by a three-
dimensional air bearing that serves as an ideal frictionless
pivot, allowing nearly unrestricted three degrees of rotation.

The TACT has been described in several prior conference
publications [19], [20]. Issues of nonlinear dynamics for
the TACT have been treated in [20], [21] and stability
and control issues have been treated in [22], [23], [24],
[25], [26]. The present paper is motivated by the realiza-
tion that the TACT is, in fact, a physical implementation
of a 3D pendulum. We are beginning to use the TACT
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to experimentally verify theoretical dynamics and control
results that we obtained previously; we expect the TACT to
provide a valuable experimental tool for continued research
on advanced attitude dynamics and control problems.

II. MATHEMATICAL MODELS FOR A RIGID PENDULUM

A rigid pendulum is a rigid body supported by a fixed,
frictionless pivot, acted on by gravitational forces and
disturbance and control forces or moments. A schematic
of a rigid pendulum is shown in Figure 1.

Fig. 1.

A schematic of a Rigid Pendulum

The supporting pivot allows three degrees of rotational
freedom of the pendulum. Uniform, constant gravity is as-
sumed. The terminology 3D pendulum refers to the fact that
the pendulum is a rigid body with three spatial dimensions
and the pendulum has three rotational degrees of freedom.

Two coordinate frames are introduced. An inertial coordi-
nate frame has its origin at the pivot; the first two coordinate
axes lie in the horizontal plane and the third coordinate axis
is vertical in the direction of gravity. A coordinate frame
fixed to the pendulum body is also introduced. The origin
of this body-fixed frame is also located at the pivot. In the
body fixed frame, the moment of inertia of the pendulum is
constant. This moment of inertia can be computed from the
moment of inertia of a translated coordinate frame whose
origin is located at the center of mass of the pendulum using
the parallel axis theorem.

Rotation matrices can be used to describe the attitude of
the rigid pendulum. A rotation matrix maps a representation
of vectors expressed in the body-fixed coordinate frame to
a representation expressed in the inertial coordinate frame.
Rotation matrices provide global representations of the
attitude of the pendulum, which is why they are utilized
here. Other attitude representations, such as exponential
coordinates, quaternions, or Euler angles, can also be used
following standard descriptions. Hence the configuration
of the rigid pendulum is a rotation matrix R in SO(3).

The associated angular velocity, expressed in the body-fixed
coordinate frame, is denoted by w in R3.

The equations of motion of a rigid pendulum are now
presented. The constant inertia matrix, in the body-fixed
coordinate frame, is denoted by the symbol J. The body-
fixed vector from the pivot to the center of mass of the
pendulum is denoted by p. The symbol g denotes the
constant acceleration due to gravity. This is the data on
which the equations of motion are based.

Standard arguments lead to the equations of motion for
the rigid pendulum. In this section, it is assumed that
there are no control or disturbance forces or moments. The
dynamics are given by the Euler equation that includes the
moment due to gravity:

Jw=Jw x w+mgp x R'es. (D

The rotational kinematics equations are
R =Ro. 2
Equations (1) and (2) define the full dynamics of a rigid
pendulum on the tangent bundle 7"SO(3). In the above
equations, es denotes the third unit vector in the inertial

coordinate frame, namely es = (0,0, 1)". The cross product
notation a x b for vectors a and b in R? is

axb= [agbg—agbg, a3b1 —a1b3, albg—agbl} = 61), (3)

where, the skew-symmetric matrix @ is defined as

0 —as as
a = as 0 —aq . (4)
—asg aq 0

A special case occurs if the center of mass of the rigid
pendulum is located at the pivot. In this case p = 0, so
that (1) given by Euler’s equations with no gravity terms
included. In the context of the rigid pendulum, this is
referred to as the balanced case. Since there is a large
literature on Euler’s equations and the associated rotational
kinematics, this case is not considered further in this paper.
Rather, the focus of this paper is on the unbalanced case,
where p # 0.

There are two conserved quantities for the rigid pendu-
lum. First, the total energy, which is the sum of the rota-
tional kinetic energy and the gravitational potential energy,
is conserved. In addition, there is a rotational symmetry
of the equations of motion corresponding to the group of
rotations about the vertical line through the pivot. This
symmetry leads to conservation of the component of angular
momentum about the vertical axis through the pivot. These
two results are summarized as follows.

Proposition 1: The total energy

E =0.5w"Jw — mgp'R'es
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and the component of the angular momentum vector about
the vertical axis through the pivot

h= wTJRT(fg
are each constant along motions of the rigid pendulum.

The proof follows by showing that the time derivative of
the total energy and the time derivative of the angular mo-
mentum component are each identically zero. This can be
shown using the dynamics equation (1) and the kinematics
equation (2).

A. Reduced Equations of Motion

The equations of motion (1) and (2) for a rigid pendulum
are viewed as a model for the dynamics on the tangent
bundle T'SO(3); these are referred to as the full equations
of motion since they depend on the full attitude of the rigid
pendulum. Since there is a rotational symmetry correspond-
ing to the group of rotations about the vertical axis through
the pivot and an associated conserved angular momentum
component, it is possible to obtain a lower dimensional
reduced model for the rigid pendulum. This reduction
is based on the fact that the dynamics and kinematics
equations can be written in terms of the reduced attitude
vector ' = R"es, which is the unit vector that expresses
the gravity direction in the body-fixed coordinate frame.

Proposition 2: The dynamics of the 3D pendulum
given by (1) and (2) induce a flow on the tangent bundle
TSO(3)/S* given by the reduced dynamics

Jw=Jwxw+mgpxT, 4)
and the reduced kinematics
=" xw. (6)

The proof follows from the definition of the reduced
attitude vector I' and a demonstration that ||T'[|? = 1.

Equations (5) and (6) are in a non-canonical form, but
they are useful for studying the reduced dynamics. These
equations can be easily modified to include control inputs,
so long as the control inputs do not destroy the symmetry
property that the angular momentum component about the
vertical axis through the pivot is constant.

The reduced dynamics can also be expressed in other
forms. In particular, the process of Routh reduction, as
described in [27], leads to an alternative formulation of
the reduced equations on 7'S2?. The equations are rather
complex but they provide a different formulation making
explicit that the reduced equations of motion are equivalent
to two coupled rotational degrees of freedom.

B. Special Cases of the Rigid Pendulum

Two interesting special cases are now examined. It is
assumed that the rigid pendulum is axisymmetric, that is
two of the principal moments of inertia of the pendulum are
identical and the pivot is located on the axis of symmetry of
the pendulum. Assume that the body-fixed axes are selected
so that J = diag(J;, Ji, J,) and p = pses where p; is a
positive scalar constant. Consequently, equation (5) can be
written in scalar form, as

Jyw, = (Jt - Ja) WyWz — mgpsryv
Ji wy = (Ja - Jt) WrWy + mgpsrzv (N
Jow, = 0.

From the last equation in (7), we see that the component
of the pendulum angular velocity vector about its axis
of symmetry is constant. This means that a constant w,
defines an invariant manifold for the pendulum dynamics.
The resulting reduced equations of motion, for constant w,,
are given by equations (6) and (7).

The special case that w, = 0 leads to an invariant
dynamics of the axisymmetric rigid pendulum, described
as follows:

Proposition 3: Assume the rigid pendulum has a single
axis of symmetry and the pivot is located on the axis
of symmetry of the pendulum as above. The equations of
motion of the rigid pendulum define an induced flow on the
tangent bundle T'S? corresponding to w, = 0, given by the
equations

Jiwy, = —mgpsly,
Jy Wy = mgpsls,
I = I'xw.

These equations are said to represent a 2D spherical
pendulum.

Now assume w, = 0, w, = 0 and I' is parameterized
by an angle § as I' = [—sinf 0 cos@|". This leads to
an invariant dynamics of the axisymmetric rigid pendulum,
described as follows:

Proposition 4: Assume the rigid pendulum has a single
axis of symmetry and the pivot is located on the axis
of symmetry of the pendulum as above. The equations of
motion of the rigid pendulum define an induced flow on
the tangent bundle TS corresponding to w, =0, w, = 0
given by the equations

Jiwy = —mgpssind,

b= w,

These equations are said to represent a 1D planar pendu-
lum.
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Thus for an axially symmetric pendulum with the pivot
located on the axis of symmetry, the well known 2D spher-
ical pendulum and the 1D planar pendulum can be viewed
as special cases of the pendulum dynamics described in
Proposition 2. For an axially symmetric pendulum with the
pivot located on the axis of symmetry, the induced dynamics
corresponding to a nonzero value of w, is fundamentally
different from the dynamics of the spherical pendulum;
these dynamics seem not to have been previously studied.
It should be emphasized that if the pendulum is asymmetric
then the dynamics is general in the sense that neither the 2D
spherical pendulum dynamics nor the 1D planar pendulum
dynamics arise as special cases.

C. The 3D Rigid Pendulum

In the remainder of this paper, we assume the rigid
pendulum is unbalanced, that is p # 0, and the rigid
pendulum is asymmetric. These assumptions define the 3D
rigid pendulum.

It should be emphasized that the full equations and the
reduced equations for the 3D pendulum have been studied
previously as models for heavy top dynamics [27], [28],
[29], [30], [31]. However, the published literature, without
exception, treats dynamics and control problems defined
by relative equilibrium solutions rather than dynamics and
control problems defined by usual equilibrium solutions that
arise from the pendulum interpretation. This focus on the
dynamics and control of equilibrium solutions of the full
and reduced equations for the 3D pendulum is a novel
perspective.

III. EQUILIBRIA OF THE 3D PENDULUM

To further understand the dynamics of the 3D pendulum,
we study its equilibria. To simplify the equilibrium analysis
it is convenient to choose the body-fixed frame so that its
third axis is aligned with the vector from the pivot to the
center of mass of the rigid pendulum. Thus, in the body-
fixed frame, p = pses, where ps; > 0. Consequently, the
gravity terms that appear in the dynamics equation (1) can
be considerably simplified.

The equilibrium solutions for the 3D pendulum satisfy
w = 0 so that the attitude of the pendulum is constant.
Substituting in equation (1), we obtain

px Rles =0. (8)

The above equation implies that the 3D pendulum is in
equilibrium if and only if the center of mass vector p is
collinear with the gravity vector R"es in the body-fixed
coordinate frame. This implies that either the center of mass
vector p of the 3D pendulum points in the direction of the
gravity vector or the center of mass vector p points in the
direction opposite to the gravity vector.

If R. defines an equilibrium attitude for the 3D pen-
dulum, then a rotation of the 3D pendulum about the
gravity vector by an arbitrary angle is also an equilibrium.
Consequently, in SO(3), there are two disjoint equilibrium
manifolds of the 3D pendulum. The manifold corresponding
to the first case in the above description is referred to
as the hanging equilibrium manifold, since the center of
mass is below the pivot for each attitude in the manifold.
The manifold corresponding to the second case in the
above description is referred to as the inverted equilibrium
manifold, since the center of mass is above the pivot for
each attitude in the manifold.

Next, we study the equilibria of the reduced equations
(5) and (6). As before, the equilibria of the system satisfies
w = 0. Substituting in (5), we get

pxT'=0.

Thus, we obtain two isolated equilibrium solutions of the
reduced equations in 7'SO(3)/S! given by I' = e3, w = 0,
and by I' = —es3, w = 0. The first corresponds to the
hanging equilibrium where the center of mass is below the
pivot and the second corresponds to the inverted equilibrium
where the center of mass is above the pivot.

The stability of the two isolated equilibrium solutions
of the reduced equations of motion is readily assessed.
Presumably, the stability of the two families of equilibrium
manifolds of the full equations of motion follows. The
stability analysis can be based on the reduced equations.

Proposition 5: The hanging equilibrium T'y, = L, of

the reduced dynamics of the 3D pendulum descrined by
equations (5) and (6) is stable in the sense of Lyapunov. The
hanging equilibrium manifold of the full dynamics of the 3D
pendulum described by equations (1) and (2) is stable in
the sense of Lyapunov.

Proof: Consider the candidate Lyapunov function
1
V(w,D) = 5 " Jw+mg(lp] = p"T). ©)

Note that V(0,I',) = 0 and V(w,I') > 0 elsewhere.
Furthermore, the derivative along a solution of (5) and (6)
is given by
V(w,T) =wbJw —mgp™T,
=wl(Jw xw+mgpxT) —mgp™ (T x w),

=wlmgp x T —mgpI' x w = 0.

Thus, the hanging equilibrium is Lyapunov stable. The
stability of the hanging equilibrium manifold of the full
dynamics follows accordingly. |

Proposition 6: The inverted equilibrium T"; = —ﬁ of
p
the reduced dynamics of the 3D pendulum descriJJeJ by
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equations (5) and (6) is unstable. The inverted equilibrium
manifold of the full dynamics of the 3D pendulum described
by equations (1) and (2) is unstable.

Proof: Consider the candidate Lyapunov function

1
V(w.T) = 5w+ mg(lp] + o). (10)
Note that V(0,I;) = 0 and V(w,I') > 0 elsewhere.
Furthermore, the derivative of along a solution of (5) and
(6) is given by

V(w, I) =wTJw+mgp™l,
=wT(Jw x w+mgp xT) +mgp™ (T x w),
=wimgp x T +mgp'TI' x w,
= 2mgw" (p x T),

which is sign indefinite in a neighborhood of the inverted
equilibrium. Thus, by Chetaev’s theorem, the inverted equi-
librium is unstable. The instability of the inverted equilib-
rium manifold of the full dynamics follows accordingly. W

IV. CONTROL OF 3D RIGID PENDULUM

The previous equations of motion for the 3D rigid
pendulum can be modified to include control moments. In
particular, equation (1) can be modified as

Jir=Jw xw~+mgp x RTes + M, 1n

where M 1is the vector control moment on the 3D rigid
pendulum, expressed in the body fixed coordinate frame.
The specific form of the control moment depends on the
control actuation assumptions.

One control actuation assumption, generalizing the devel-
opment in [3], is that the pivot acceleration is the control
input. In this case the control moment is

M =mp x RTu, (12)
where u denotes the pivot acceleration vector, expressed
in the inertial coordinate frame. Such a control actuation
assumption typically breaks the symmetry of the uncon-
trolled rigid pendulum dynamics. Consequently, the angular
momentum component about the vertical axis through the
pivot is not conserved and it is not possible to express the
controlled dynamics in terms of the reduced attitude of the
pendulum.

Another control actuation assumption, generalizing the
developments in [21], [23], is that proof mass actuators
are rigidly mounted on the rigid pendulum. Although the
models in [21], [23] include actuation dynamics, it is
possible to give a simple expression for the control moment
as

M = mgu X RTes, (13)

if the dynamics of the proof mass actuators are ignored.
Here the control input u denotes the incremental displace-
ment vector due to the proof mass motions expressed in
terms of the body fixed coordinate frame so that the position
vector of the center of mass of the 3D rigid pendulum is
p + u expressed in the body fixed coordinate frame. In this
case, the mass m denotes the total mass of the 3D pendulum
and the proof mass actuators. It is easy to show that this
type of control actuation does not invalidate conservation of
the angular momentum component about the vertical axis
through the pivot. It is clear that the resulting controlled
dynamics can be expressed in terms of the reduced attitude
vector.

It suffices here to mention that there are many stabiliza-
tion and control problems for the 3D rigid pendulum that
are analogous to problems for the 1D planar pendulum and
for the 2D spherical pendulum.

Specific control problems for the 3D rigid pendulum
based on the reduced dynamics on 7'SO(3)/S! include
determining controllers that achieve one or more of the
following objectives:

o Asymptotic stabilization of the hanging equilibrium of
equations (5) and (6)

o Stabilization and asymptotic stabilization of the in-
verted equilibrium

o Swing up control, that is, making the inverted equilib-
rium of equations (5) and (6) an attractor

o Large domain of attraction of an equilibrium, that is,
the domain of attraction of the hanging or the inverted
equilibrium of equations (5) and (6)

Since feedback control can break the symmetry of ro-
tations about the vertical axis through the pivot, the above
problems can also be posed for the 3D rigid pendulum based
on the full dynamics on T'SO(3). These problems include
control of the complete attitude of the rigid body, including
its rotation about the vertical axis through the pivot.

Each of the above control problems is considerably
more challenging than the 1D planar pendulum version or
the 2D spherical pendulum version of the problems. The
challenges arise from the additional degrees of freedom
and the nonlinear coupling between all of the degrees of
freedom.

Additional control challenges arise if the 3D pendu-
lum is underactuated, that is there are fewer than three
independent control inputs. Interesting problems are the
asymptotic stabilization of the 3D pendulum using two (or
even one) independent control inputs. These underactuated
3D pendulum control problems have no analogies in the 1D
planar pendulum or 2D spherical pendulum problems; these
are new nonlinear control problems.
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V. CONTROL OF A MULTI-BODY 3D RIGID PENDULUM

There is a large published literature on the dynamics and
control of multi-body versions of 1D planar pendulums and
2D spherical pendulums. These include planar connections
of two or more 1D planar pendulums using 1D planar joints,
connections of two or more spherical pendulums using 2D
spherical joints, a 1D planar pendulum connected to a cart
that can translate, a 2D spherical pendulum connected to a
cart that can translate, the Furuta pendulum, the 1D planar
pendulum supporting a rotational wheel, and many other
examples. Each one of these examples suggests extensions
based on 3D pendula. The possible complexity of multi-
body 3D rigid pendulum systems is unlimited.

It is suitable to mention some of our prior work on the
TACT since much of this work has been concerned with
multi-body attitude systems, which are essentially multi-
body 3D pendulum systems. Modeling and formulation of
control problems for multi-body 3D pendulum systems have
been treated in [21]; in particular, models are developed
for 3D pendulum systems that support mechanical systems
such as reaction wheels (additional rotational degrees of
freedom) or proof mass actuators (additional prismatic
degrees of freedom). Stability results have been presented
in [24], [25] and control results have been presented in [22],
[23] for specific classes of multi-body attitude systems.

VI. CONCLUSIONS

The main purpose of this paper is to motivate continuing
research on dynamics and control problems for 3D rigid
pendulums and for multi-body 3D rigid pendulum systems.
Many of these problems have not been previously studied,
and there are many opportunities for creative research.

REFERENCES

[1] A.S. Shiriaev, H. Ludvigsen, O. Egeland, “Swinging up the Spherical
Pendulum via Stabilization of its First Integrals,” Automatica, 40(1),
January, 2004, 73-85.

[2] K. Furuta, “Control of Pendulum: From Super Mechano-System to
Human Adaptive Mechatronics,” Proceedings of 42™¢ IEEE Confer-
ence on Decision and Control, December, 2003, 1498-1507.

[3] KJ. Astrom and K. Furuta, “Swinging-up a Pendulum by Energy
Control,” Proceedings of the IFAC Congress, Vol. E, 1996, 37-42.

[4] S. Mori, H. Nisihara and K. Furuta, “Control of Unstable Mechanical
Systems: Control of Pendulum,” International Journal of Control, 23,
1976, 673-692.

[5] C.C. Chung and J. Hauser, “Nonlinear Control of a Swinging Pendu-
lum,” Automatica, 31, 1995, 851-862.

[6] A.S. Shirieav, A. Pogromsky, H. Ludvigsen and O. Egeland, “On
Global Properties of Passivity-based Control of an Inverted Pendu-
lum,” International Journal of Robust and Nonlinear Control, 10,
2000, 283-300.

[7]1 A.S. Shirieav, O. Egeland, H. Ludvigsen and A. Fradkov, “VSS-
version of Energy-based Control of Swinging up of Pendulum,”
Systems & Control Letters, 44, 2001, 45-56.

[8] A.S. Shirieav, O. Egeland, and H. Ludvigsen, “Global Stabilization
of Unstable Equilibrium Point of Pendulum,” Proceedings of the
American Control Conference, 1999, 4034-4038.

[9] A.S. Shirieav, H. Ludvigsen, and O. Egeland, “Swinging up of the
Spherical Pendulum,” Proceedings of the IFAC World Congress, Vol.
E, 1999, 65-70.

[10] A.S. Shirieav, H. Ludvigsen, O. Egeland, and A.L. Fradkov, “Swing-
ing up of Simplified Furuta Pendulum,” Proceedings of the European
Control Conference, No. F1022-4, 1999.

[11] A.S. Shirieav, H. Ludvigsen, O. Egeland, and A. Pogromsky, “On
the Global Properties of Passivity Based Control of the Inverted
Pendulum,” Proceedings of 38" IEEE Conference on Decision and
Control, 1999, 2513-2518.

[12] J.E. Marsden, J. Scheurle, and J.M. Wendlandt, “Visualization of
Orbits and Pattern Evocation for the Double Spherical Pendulum,”
Proceedings of the ICIAM Conference, Hamburg, July, 1995.

[13] K. Furuta, T. Ochiai and N. Ono, “Attitude Control of a Triple
Inverted Pendulum,” International Journal of Control, 39, 1984, 1351-
1365.

[14] T. Hoshino, H. Kawai and K. Furuta, “Stabilization of the Triple
Spherical Inverted Pendulum-A Simultaneous Design Approach,” Au-
tommatisierungstechnik, 48, 2000, 577-587.

[15] J. Zhao and M.W. Spong, “Hybrid Control for Global Stabilization
of the Cart-Pendulum System,” Automatica, 37, 2001, 1845-1851.
[16] M.W. Spong, P. Corke, and R. Lozano, “Nonlinear Control of the

Inertia Wheel Pendulum”, Automatica, 37, 2001, 1845-1851.

[17] I Fantoni, R. Lozano, and M.W. Spong, “Energy Based Control of
the Pendubot,” IEEE Transactions on Automatic Control, AC-45, 2000,
725-729.

[18] M.W. Spong, “The Swingup Control Problem for the Acrobot,” IEEE
Control Systems Magazine, 15, 1995, 72-79.

[19] D. S. Bernstein, N. H. McClamroch, and A. Bloch, “Development
of Air Spindle and Triaxial Air Bearing Testbeds for Spacecraft Dy-
namics and Control Experiments,” Proceedings of American Control
Conference, Arlington, VA, June, 2001, 3967-3972.

[20] S. Cho, J. Shen, N. H. McClamroch, and D. S. Bernstein, “Equations
of Motion of the Triaxial Attitude Control Testbed,” Proceedings
of 40th IEEE Conference on Decision and Control, Orlando, FL,
December, 2001, 3429-3434.

[21] S. Cho, J. Shen and N. H. McClamroch, “Mathematical Models for
the Triaxial Attitude Control Testbed,” Mathematical and Computer
Modeling of Dynamical Systems, Vol. 9, No. 2, 2003, 165-192.

[22] J. Shen, N. H. McClamroch and A. M. Bloch, “Local Equilibrium
Controllability of the Triaxial Attitude Control Testbed,” Proceedings
of 41st Conference on Decision and Control, 2002, 528-533.

[23] S. Cho and N. H. McClamroch, “Feedback Control of Triaxial
Attitude Control Testbed Actuated by Two Proof Mass Devices,”
Proceedings of 41st IEEE Conference on Decision and Control, 2002,
498-503.

[24] J. Shen, A. K. Sanyal, and N. H. McClamroch, “Asymptotic Stability
of Multibody Attitude Systems,” Stability and Control of Dynam-
ical Systems with Applications: A Tribute to Anthony N. Michel,
Birkhauser, 2003, 47-70.

[25] J. Shen, A. K. Sanyal, and N. H. McClamroch, “Asymptotic Stability
of Rigid-Body Attitude Systems,” Proceedings of 42nd Conference on
Decision and Control, 2003, 544-549.

[26] A. Sanyal, M. Chellapa, J. L. Valk, J. Shen, J. Ahmed, and D.
S. Bernstein, “Globally Convergent Adaptive Tracking of Spacecraft
Angular Velocity with Inertia Identification,” Proceedings of 42™%
Conference on Decision and Control, December 2003, 2704-2709.

[27] J.E. Marsden, T. Ratiu, and J. Scheurle, “Reduction Theory and the
Lagrange-Routh Equations,” Journal of Mathematical Physics, Vol
41(6), June 2000, 3379-3429.

[28] D. Lewis, T. Ratiu, J. C. Simo, and J. E. Marsden, “The Heavy Top:
A Geometric Treatment,” Nonlinearity, 5, 1992, 1-48.

[29] T.A. Posbergh and M.A. Egorov, “Robust stabilization of a Heavy
Top,” Proceedings of the 37" IEEE Conference on Decision and
Control, 1998, 3593-3598.

[30] C.J. Wan, V.T. Coppola, and D.S. Bernstein, “Global Asymptotic
Stabilization of the Spinning Top,” Optimal Control Applications &
Methods, 16, 1995, 189-215.

[31] K.Y. Lum, D.S. Bernstein, and V.T. Coppola, “Global Stabilization
of the Spinning Top with Mass Imbalance,” Dynamics and Stability
of Systems, 10, 1995, 339-365.

328



	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Courier
    /Helvetica
    /Helvetica-Bold
    /Times-Bold
    /Times-Roman
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




