Testing Supersymmetry without the LHC

Aaron E. Leanhardt

October 31, 2008

DEPARTMENT OF PHYSICS

http://www.umich.edu/~aehardt/

High Energy Particle Physics

Particle Physics "Hit List", from Symmetry Magazine, December 2006

High Energy Particle Physics

Particle Physics "Hit List", from Symmetry Magazine, December 2006

- C [charge conjugation]: particle ↔ antiparticle
- P [parity]: $\{+x,+y,+z\} \leftrightarrow \{-x,-y,-z\}$
- T [time-reversal]: +t \leftrightarrow -t

- C [charge conjugation]: particle ↔ antiparticle
- P [parity]: $\{+x,+y,+z\} \leftrightarrow \{-x,-y,-z\}$
- T [time-reversal]: +t ↔ -t

P-Violation

- C [charge conjugation]: particle ↔ antiparticle
- P [parity]: $\{+x,+y,+z\} \leftrightarrow \{-x,-y,-z\}$
- T [time-reversal]: +t \leftrightarrow -t

P-Violation

$$^{60}Co \longrightarrow ^{60}Ni + e^- + \overline{V}_e$$

CP-Violation

K and B meson decays

$$K_{L} \xrightarrow{49.9\%} \pi^{+} + e^{-} + \overline{\nu}_{e}$$
$$K_{L} \xrightarrow{50.1\%} \pi^{-} + e^{+} + \nu_{e}$$

- C [charge conjugation]: particle ↔ antiparticle
- P [parity]: $\{+x,+y,+z\} \leftrightarrow \{-x,-y,-z\}$
- T [time-reversal]: +t \leftrightarrow -t

P-Violation

$$^{60}Co \longrightarrow ^{60}Ni + e^- + \overline{V}_e$$

CP-Violation

K and B meson decays

$$K_{L} \xrightarrow{49.9\%} \pi^{+} + e^{-} + \overline{V}_{e}$$
$$K_{L} \xrightarrow{50.1\%} \pi^{-} + e^{+} + V_{e}$$

• From the CPT Theorm: CP-violation is equivalent to T-violation.

P & T Applied to the Electron

- Electron has a spin, S.
- Assume electron has an electric dipole moment (EDM), d_e.
- d_e is NOT independent of S!

e Energy Levels

e⁻ Energy Levels

e⁻ Energy Levels

Frequency Shift:
$$\Delta v = \frac{2d_e E_{eff}}{h}$$

Frequency Resolution: $\Delta v = \frac{1}{2\pi\sqrt{2}}$

Extensions to the Standard Model

Extensions to the Standard Model

Extensions to the Standard Model

General Considerations

Resolution:

$$v = \frac{1}{2\pi\sqrt{N\tau}} \quad \text{Hz/}\sqrt{\text{Hz}}$$

EDM Shift:

$$v = \frac{2a_e E_{eff}}{h}$$
 ~30 mHz [d_e ~ 10⁻²⁷ e*cm, E_{eff} ~ 60 GV/cm]

Zeeman Shift:
$$\Delta v = \frac{2\mu_B B}{h}$$
 ~1

Δ

Λ

• (v x E_{lab})/c² effects:

~15 mHz [v ~ 10^3 m/s, E_{lab} ~ 1 V/cm]

• leakage currents:

Ramsey Method

Ramsey Method

Advantages of Molecules

- 1. Large internal electric fields.
 - Effective E-field seen by e^{-} , $E_{eff} \sim 10^{10}$ V/cm.
 - Compared to *maximum* $E_{lab} \sim 10^5$ V/cm.
- 2. Accessible internal electric fields.
 - Easy to polarize, need only $E_{lab} \sim 1 \text{ V/cm}$.
- 3. Rejection of systematic errors.
 - Magnetic field *insensitive* transitions.
 - E_{eff} *independent* of E_{lab}.

Molecules of Choice:

- Harvard: ThO
- Imperial College, London: YbF
- JILA: HfF⁺
- Michigan: WC
- Oklahoma: PbF
- Yale: PbO

Tungsten Carbide

¹Based upon ¹²C. () indicates the mass number of the most stable isotope.

For a description of the data, visit physics.nist.gov/data

NIST SP 966 (September 2003)

WC in the ${}^{3}\Delta_{1}$ State

- Small magnetic moment: $\mu_m \ll \mu_B$
- W nucleus: I=0 & I=1/2 isotopes

³Δ₁ *e*⁻ EDM Theory: Meyer *et. al.*, PRA **73**, 062108 (2006).

Polar Molecules

- Molecules do *not* have permanent electric dipole moments.
- Molecules do have closely spaced levels of opposite parity.
 - Ω -doubling ~10⁶ Hz vs. s/p splitting ~10¹⁴ Hz in atoms.

Intramolecular Electric Fields

 $\bullet \mbox{ } E_{\mbox{ } lab}$ mixes states of opposite parity inducing a net molecular dipole moment in the lab frame.

• Sign of E_{eff} is set by sign of induced molecular dipole moment.

$$_{eff} \rangle = 0 \qquad m = -1 \qquad m = 0 \qquad m = +1$$

Intramolecular Electric Fields

 $\bullet \mbox{ } E_{lab}$ mixes states of opposite parity inducing a net molecular dipole moment in the lab frame.

• Sign of E_{eff} is set by sign of induced molecular dipole moment.

Intramolecular Electric Fields

 $\bullet \mbox{ } E_{lab}$ mixes states of opposite parity inducing a net molecular dipole moment in the lab frame.

• Sign of E_{eff} is set by sign of induced molecular dipole moment.

Systematic Checks

- Measure frequency splitting in both Ω -doublet levels.
 - Zeeman shift is *common mode*.
- Vary magnitude of E_{lab}.
 - Linear Stark shift implies fully mixed states of opposite parity and E_{eff} nominally *independent* of E_{lab} .

Tungsten Carbide Beamline

worse

W Sputtering and Mass Spectrometry

$W + CH_4 \rightarrow WC + 2H_2$

Optical Spectroscopy (in progress...)

e⁻ EDM Search Outlook

Tungsten Carbide e⁻ EDM Search

Motivation

6

С

Carbon 12.0107

 $1s^{2}2s^{2}2n^{2}$

W

Tungster 183.84

Xe]4f¹⁴5d⁴

Extensions to the Standard Model predict permanent electric dipole moments (EDMs) that are within experimental reach.

Technique

Precision spectroscopy in a WC molecular beam to search for an energy splitting between spin states that is proportional to an *electric* field.

Group Members

<u>Graduate Students:</u> Emily Alden, Chris Lee, Yisa Rumala <u>Undergraduate Students:</u> Andrew Cadotte, Erika Etnyre <u>Summer REU Student:</u> Rabin Paudel

Rabin Paudel

