When Quantum States Grow Macroscopic

Hui Deng

Mini-Colloquium, Sept 26, 2008

When Quantum States Grow Macroscopic

Laser, Lick observatory California

Vortex, MIT, Massachusetts

Josephson array, Mooij group, Delft

An Optical Parametric Amplifier at Univ. Alberta

When, where, how, and what about it?

- 1. Can quantum coherence exist in many-body systems, either spontaneously acquired or externally induced and preserved?
- 2. How does that happen, how do we measure, manipulate, and utilize the macroscopic coherence?

Spontaneous Macroscopic Order in Quantum Phases

- Superfluidity in liquid He⁴
- Superconductivity, BCS state of cooper pairs
- High Tc superconductivity
- Atomic BEC

.

Fundamental Physics & Technology Innovation

Induced Coherence and 'Macro-sized' Quantum Control

- Quantum memories
- Quantum processors

Quantum Information & Quantum Technology

Many-body Physics, Emergence (vs. Reductionism) "More is different" P. Anderson "A Different Universe' R. Laughlin

Macroscopic Quantum Coherence in Matter-Light Systems

Spontaneous Macroscopic Order of Microcavity Polaritons

- What are polaritons? What's special about them?
- What quantum phases may they possess? How to realized them?
- What have we found? What I am looking for?
- What potential applications?

Scalable Quantum Memories and Processors -- Electron Spin Ensembles

- Why quantum information?
- Why quantum memory?
- Why/which ensembles and solid state systems?
- How to establish coherent <u>Light</u> Matter interface? 4

Spontaneous Macroscopic Order of Microcavity Polaritons

- Introduction to Bose-Einstein Condensation (BEC)
- Introduction to Microcavity Polariton
- Experiments on Polariton BEC and beyond

polariton condensation

Satyendra Nath Bose (1894-1974)

Albert Einstein (1879-1955)

Introduction to Bose-Einstein Condensation

S.N. Bose, Zeitschrift für Physik 26:178-181 (1924). A. Einstein, Sitz. Ber. Preuss. Akad. Wiss. (Berlin) 1, 3 (1925)

Simplified Definition of BEC

A uniform infinite system of non-interacting particles of mass m, total number N, the occupation numbers are:

Essential Features of BEC

- 1. Macroscopic population in a *single* state
- 2. The condensed state becomes a 'classical state' (coherent state)

Hamiltonian of free boson gas:
$$H = \sum_{k} \left(\frac{\hbar^{2}k^{2}}{2m} - \mu\right) a_{k}^{\dagger} a_{k}$$

In BEC:
$$\lim_{N,V \to \infty} \left[\frac{a_{0}}{\sqrt{V}}, \frac{a_{0}^{+}}{\sqrt{V}}\right] = \frac{1}{V} \xrightarrow{V \to \infty} 0 \qquad \frac{\langle a_{0}^{+}a_{0} \rangle}{V} = \frac{N_{0}}{V} \rightarrow finite$$
$$\implies a_{0} \sim \sqrt{N_{0}} e^{-i\phi}, \quad a_{0}^{+} \sim \sqrt{N_{0}} e^{i\phi} \implies a_{0} |\Omega \rangle \sim \sqrt{N_{0}} e^{-i\phi} |\Omega \rangle$$

3. BEC has off-diagonal long range order \rightarrow Macroscopic coherence

Order Parameter
for BEC:
$$\Psi(r) = \frac{1}{\sqrt{V}} \sum_{k} a_{k} e^{ikr} = \frac{a_{k_{0}}}{\sqrt{V}} + \frac{1}{\sqrt{V}} \sum_{k \neq k_{0}} a_{k} e^{ikr} \sim \frac{\sqrt{n_{0}}e^{i\phi}}{\text{finite in BEC}}$$
1st Reduced density matrix

$$\rho_1(r,r') = <\Psi^+(r')\Psi(r) > = \underbrace{\underbrace{\bigvee_{k=0}^{N_{k_0}} e^{ik_0(r-r')}}_{V} + \frac{1}{V} \sum_{\substack{k \neq k_0 \\ \text{non-condensed part} \rightarrow 0} < e^{ik(r-r')} \\ \text{Condensate Fraction} \qquad \text{non-condensed part} \rightarrow 0 \\ e^{ik(r-r')} = \underbrace{\bigvee_{k=0}^{N_{k_0}} e^{ik(r-r')}}_{N} + \underbrace{\bigvee_{k=0}^{N_{k_0}} e^{ik(r-r')}_{N} + \underbrace{\bigvee_{k=0}^{N_{k_0}} e^{ik(r-r')}_{N} + \underbrace{\bigvee_{k=0}^{N_{k_0}} e^{ik(r-r')}_{N} + \underbrace{\bigvee_{k=0}^{N_{k_0}} e^{ik(r-r')}_{N} + \underbrace{\bigvee_{k=0}^{N_{k_0}} e^{ik(r')}_{N} + \underbrace{\bigvee_{k=0}^{N_{k_0}} e^{ik(r')}_{N} + \underbrace{\bigvee_{k$$

when $|r - r'| \to \infty$

Where 'Quantum' Grows 'Macroscopic'

-- Parameters of atomic and semiconductor BEC systems

systems	atomic gas	exciton	polariton	
	realized in 1995	proposed in 1962	proposed in 1968	
effective mass m*/m _e	10 ³	10-1	10-5	← extremely light m*
Bohr radius $a_B(A)$	10-3	10 ²	10 ²	photons)
particle spacing n _c ^{-1/d} (nm)	102	10 ³	10 ³	
critical temperature T _c	1nK~1mK	1mK~1K	1K~300K	$\leftarrow \text{ high } T_c$ $T \propto m^{-1}$
thermalization time lifetime	1ms/1s ~10 ⁻³	$10 \text{ps/1ns} = 10^{-2} \sim 1$	$(1~10 \text{ ps}) \\ (1~10 \text{ ps}) \\ = 10^{-1} \sim 10^{1}$	$\leftarrow \text{dynamic}_{9}$

- 1. Why such small mass?
- 2. Why such short lifetime?

What is a Microcavity Polariton?

strong coupling of semiconductor exciton and microcavity photon

What is Exciton: bound-state of an electron and a hole

Semiconductor crystal ground state /vac >: filled valence band, empty conduction band Lowest energy elementary excitation from /vac >: an exicton → an electron and hole pair bound by attractive Coulomb interaction

Exciton creation operatorelectron hole
$$e_{\nu,K}^{\dagger} = |\nu, K\rangle \langle vac| = \sum_{k} f_{\nu}(k, K) c_{k}^{\dagger} b_{K-k}^{\dagger}$$
exciton $m_{h}^{*}/m_{e}^{*} < 10$ $mode index$ envelope function of relative motion
(analogous to Hydrogen atom) $E_{b} = \frac{e^{4}}{2\hbar^{2}} \frac{m_{r}}{\epsilon^{2}} \sim 10 \text{ MeV}$

What is Exciton: bound-state of an electron and a hole

Semiconductor crystal ground state /vac >: <u>filled valence band, empty conduction band</u> Lowest energy elementary excitation from /vac >: <u>an exciton → an electron and hole pair bound by attractive Coulomb interaction</u>

What is Polariton: strong coupling of exciton & photon

polariton is the elementary excitation of a semiconductor microcavity, when the energy exchange rate between the coupled photon and exciton is faster than their decay and decoherence rates

Hamiltonian of coupled cavity photon-QW exciton

$$H = \sum_{k} [E_{ph}(k)a_{k}^{\dagger}a_{k} + E_{ex}(k)e_{k}^{\dagger}e_{k} + g_{0}(a_{k}^{\dagger}e_{k} + a_{k}e_{k}^{\dagger})]$$

$$polariton operator P_{k} = u_{k}e_{k} + \nu_{k}a_{k} - \begin{bmatrix} \text{linear superposition of a} \\ \text{microcavity-photon and a} \\ \text{QW-exciton with the same } \mathbf{k}_{\parallel} \end{bmatrix}$$

$$H = \sum_{k} E_{pol}(k)P_{k}^{\dagger}P_{k},$$

$$E_{pol}(k) = \frac{1}{2}[E_{ph}(k) + E_{ex}(k) \pm \sqrt{4g_{0}^{2} + (E_{ph} - E_{ex})^{2}}] \Delta E_{pol} = 2g_{0}, \text{ when } E_{ph} = E_{pr}$$

Properties of Polaritons

Experimental Access of Polaritons

Polariton for BEC

- * BEC critical temperature $T_c \propto m^{-1}$
- BEC originates from quantum statistics

- Exciton suffer localization and inhomogeneous broadening due to disorders in solids
- Avoid exciton saturation

 Spontaneous coherence needs efficient cooling

- Very high critical temperature (>4K)
 Polaritons mass ~10⁻⁴ m_{exc}~10⁻⁸ m_H
 - Can directly measure quantum statistics
 - convenient experimental access by one-to-one mapping between outcoupled photon and internal POL
 - Extended coherence in the combinedexcitation when excitons dressed by themicrocavity vacuum field
 - Use multiple, narrow QWs

$$g_{\scriptscriptstyle 0}\!\propto\!\sqrt{N_{\scriptscriptstyle \mathrm{QW}}},\;n_{\scriptscriptstyle exc}\!\propto\!n_{\scriptscriptstyle LP}/N_{\scriptscriptstyle \mathrm{QW}}$$

Pronounced stimulated scattering into states at k~0 due to small DOS

How to study polariton condensation in experiment?

- 1. Macroscopic population in the ground state — quantum degeneracy threshold
- 2. Thermodynamic properties
 - momentum distribution
- 3. Coherence properties
 - second order coherence function
 - first order coherence function

Sample and Setup

18

Experimental Scheme

Experimental Scheme

Time Resolved Measurements

Polariton Quantum Degeneracy Threshold

H. Deng, et. al., Proc. Natl. Acad. Sci. 100, 15318 (2003)

Spin Dynamics and Spontaneous Polarization

H. Deng, G. Weihs, et. al., Proc. Natl. Acad. Sci. 100, 15318 (2003)

Bose-Einstein Momentum Distribution

H. Deng, G. Weihs, et. al., Proc. Natl. Acad. Sci. 100, 15318 (2003) H. Deng et al., Phys. Rev. Lett. **97**, 146402 (2006).

Spatial Distribution

Compare with a photon laser

- homogeneous spatial mode
- anomalous shrinkage of spatial size

H. Deng, et. al., Proc. Natl. Acad. Sci. 100, 15318 (2003)

Spatial Coherence by Double-Slit Interference

H. Deng, et al., Phy. Rev. Lett. 99, 126403 (2007)

Second Order Coherence Function

$$g^{(2)}(\tau) = \frac{\left\langle \hat{E}^{(-)}(t)\hat{E}^{(-)}(t+\tau)\hat{E}^{(+)}(t+\tau)\hat{E}^{(+)}(t) \right\rangle}{\left\langle \hat{E}^{(-)}(t)\hat{E}^{(+)}(t) \right\rangle^{2}} = \frac{\left\langle :n(t)n(t+\tau): \right\rangle}{\left\langle n \right\rangle^{2}} \approx \frac{\left\langle n_{1}(i)n_{2}(i+j) \right\rangle_{i}}{\left\langle n_{1} \right\rangle \left\langle n_{2} \right\rangle} = \overline{g^{(2)}}(jT)$$

H. Deng, et. al., Science 298, 199 (2002)

Multitudes of Open Questions and Opportunities

Practicalities:

- Room temperature polariton condensation using material with large binding energy, e.g. ZnSe, GaN, organics ...
- Electrical injection
- In-plane confinement potential
 - single-mode coherent light source
 - better defined system size to facilitate theoretical understanding
- Device applications: huge nonlinearity and very fast response time
 - -ultra-low threshold source of coherent light
 - resonant parametric appliifer
 - spintronics devices

Multitudes of Open Questions and Opportunities

Fundamentals:

- Properties of the 2D condensate
- Exact quantum state of the condensed ground state
- Superfluidity and vortices
- Excitation spectra Goldstone mode, roton mode?
- Critical exponent of the phase transition
- Magnetic field responses

Other quantum phases

- Kosterlitz-Thouless transition in larger systems
- BEC to BCS crossover at high densities
- Lattice potential and a polariton quantum simulator

Other dimensions and structures

- One-dimensional polaritons in quantum wires
- Polaritons in quantum disks, in flat band photonic crystals, ...

Lai et al, Nature, 2007

Scalable Quantum Information Processing

- Why Quantum Information, What's in it?
- An example of atom-light quantum interface
- A solid-state candidate

Why Quantum Information

Fundamental Scientific Questions & New Paradigms in Modern Technologies

What is "Quantum Information"?

Quantum Communication Wiesner (1970)

Information theory

information is physical! channel capacity, super-dense coding ...

Quantum teleportation

Information reconciliation & privacy amplification: Bennet (1992)

> Quantum cryptography non-local & perfectly secure Bennett & Brassard (1984) Ekert (1991)

Quantum Metrology

Quantum Cosmology **Quantum Simulation** Feynman (1982) Q... Q... Q...

Quantum Computation

Computer science Turing (1936) Deutsch (1985)

Quantum error-correction Shor, Steane (1995)

Quantum algorithms Deutsch (1992) Shor (1994) Grove (1996)

Q...

What is "Quantum Information"?

"Quantum Technology"

generation, storage, manipulation, transportation, and application of quantum systems

Info

infornation to physical channel capacity, super-dense coding ...

Quantum teleportation

Information reconciliation & privacy amplification: Bennet (1992)

Quantum cryptography non-local & perfectly secure Bennett & Brassard (1984) Ekert (1991)

Quantum Metrology

Quantum Cosmology

Quantum Computation

Computer science Turing (1936) Deutsch (1985)

Quantum error-correction Shor, Steane (1995)

Quantum algorithms Deutsch (1992) Shor (1994) Grove (1996)

Q...

The Real World Challenge

"Quantum Technology"

How to generate, store, manipulate, transport and use quantum systems

Quantum Communication

Entangled states (& single photons), and their faithful transportation

- Quantum teleportation photon: Bouwmeester *et al.* (1997) atom: Riebe *et al.*, Barrett *et al.* (2004)
- Quantum cryptography photon: Bennett *et al.* (1990)
- Commercial quantum cryptography!
 MagiQ Technologies (New York)
 id Quantique (Geneva)

Record distance: 150 km with photonic systems

Quantum Computation

Qubits, and their initialization, controlled interactions and read-out

- a variety of matter qubits nulcear spins, electron spins, charge qubits, flux qubits, phase qubits ...
- Diverse matter systems ions, neutral atoms, molecules, semiconductors, super-conductors ... single particle systems & ensemble systems ...

Biggest QC: 12-qubit Negrevergne et al. (2006)

The Real World Challenge

How to generate, store, manipulate, transport and use quantum systems

Quantum Networks

Building blocks of a Quantum Network?

- 1. Quantum nodes (Matter)
- 2. Quantum channels (Light)
- 3. Quantum interfaces (Matter $\leftarrow \rightarrow$ Light)

Quantum Memory of Atomic Ensembles

A-type energy levels, $\gamma_{gs} \sim 0$

an ultra high vacuum chamber – the host of our quantum nodes

Quantum Memory – Atomic Ensembles

$$6S_{1/2} \quad F = 4 \quad 9 \text{ GHz} \quad F = 3 \quad |S\rangle$$

 Λ -type energy levels, $\gamma_{gs} \sim 0$

Quantum Memory – Atomic Ensembles

A-type energy levels, $\gamma_{gs} \sim 0$

Retrieve QI: map single excitations into single photonic state, & restore atomic states

Probabilistic Quantum Interface by DLCZ Protocol Duan, Lukin, Cirac, Zoller, Nature, 414, 413 (2001)

- Heralded Single photons and entanglement
- Distribution of Polarization Entanglement for Scalable Quantum Cryptography Chou *et al.*, Science 316, 1316 (2007)

Deterministic Quantum Interface by Dynamic EIT

- Entanglement mapping IN and OUT of quantum memories
 Choi *et al.*, Nature 452, 66 (2008)
 Quantum
 - ✓ Reversible and coherent mapping
 - ✓ Entanglement transfer efficiency 20(2)%

From Atomic Gasses to Solids State Chips

- Compact, integrable, scalable
- Versatile
- New technologies, new physics
 - Can we pick out the 'right' systems, and the 'right' interactions?
 - Can we understand and control the interactions?
 - And manipulate the system the way we want?
 - ➢ How are they similar to, and different form atomic systems?

Why quantum information ... Why solid state ...

Which Solid State Systems and How

- Nuclear spin
 - long decoherence time
 - slow, no convenient optical interface, limited control techniques
- Single electron spins
 - could have long decoherence time and optical interface
 - ➢ fragile, difficult to isolate, difficult to make identical and scale up
- Superconductor qubits
 - Macroscopic, integrated on-chip microwave circuitry
 - > no optical access, extremely complicated microwave circuitry
- Donor-bound electron spin ensemble
 - robust, all identical, convenient optical access
 - material properties and control techniques less studied

Electron Spin Ensembles

Bulk GaAs with neutral donor (Si) impurities

- Λ -type energy levels with very long decay and homogeneous dephasing times
- Store quantum information in one lower level
- Manipulate quantum information by light through coupling to the upper level
- As an ensemble system, very robust against loss and noise
- Easy to scale up and integrate

Macroscopic Coherence in Matter-Light Systems

Matter

Quantum Information Processing Novel Devices Quantum Physics Collective Phenomena Cavity QED

Light

Spontaneous Macroscopic Coherent in a polariton condensate

Macroscopic Coherence in Matter-Light Systems

Quantum Control of Matter by Light in e Spin Ensembles

Quantum Information Processing Novel Devices Quantum Physics Collective Phenomena Cavity QED

Light

Material Science Fabrication Technology

Novel Mesoscopic Systems

- New Structures
- New Materials
- New Types of Ensembles