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1 INTRODUCTION 

 

The locational decision making of firms can be modelled from different perspectives. Especially in 

economic research, several authors have suggested to use stated or revealed preference choice models to 

predict the probability that a particular location will be chosen as a function of its locational and non-

locational attributes (Timmermans, 1986; Moore, 1988; Henley et al., 1989; Friedman et al.,1992). Such 

algebraic models do have the appeal of theoretical rigour, mathematical sophistication, and an associated 

error theory. However, the application of such models, in particular when revealed preference is used, is 

characterised by many problems, including high multi-collinearity among explanatory variables, 

complexity in the sense of a large number of influential attributes, and the fact that algebraic equations 

by definition cannot capture all theoretical notions. For example, the situation that at one level a 

locational requirement serves as a veto criterion, whereas at another level compensation is allowed, is 

difficult to represent using an algebraic equation. 

 A modelling approach that avoids these problems is qualitative modelling. The quintessence of 

this approach is to represent the locational decision-making process in terms of a set of IF, THEN … ELSE 

expressions. These logical expressions have sufficient flexibility to represent a wider variety of decision 

rules. On the other hand, their “crisp” (or exact) nature implies the lack of an error theory, limiting in 

some cases the realism of such systems. In previous papers, Witlox et al. (1997) and Witlox and 

Timmermans (2000, 2002) therefore argued for the development of multidimensional fuzzy systems. 

 The current paper reports on the application of such a model to represent the locational decision 

making behaviour of firms, taking the petrochemical industry as an example. The article is organised as 

follows. In the second section, the problem of membership value measurement in a decision table 

environment is introduced. The aim is to introduce the technique that will enable us to estimate 

membership values of the fuzzy sets used in the condition part of a fuzzy decision table. The third 

section of this article discusses the process of membership value estimation. The fourth section reports 

on the application. Finally, in the fifth section, the results of this study are summarized and some issues 

for future research are discussed. 
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2  MEMBERSHIP VALUE MEASUREMENT IN A FUZZY DECISION TABLE 

 

2.1 Fuzzy decision tables 

 

A decision table (DT) consists of an exhaustive set of mutually exclusive conditions, leading to 

particular actions. Each DT consists of four quadrants: condition set [Ci], action set [Aj], condition space 

[SPACE (Ci)], and action space [SPACE (Aj)]. The condition set consists of all the relevant conditions or 

attributes (inputs, premises or causes) that have an influence on the decision-making process. The 

condition space specifies all possible combinations of condition states of a condition. The action set 

contains all the possible actions (outputs, conclusions or consequences) a decision-maker is able to take. 

This is, the action set points to the possible choice outcome if (for instance) an existing location with a 

number of specific characteristics is processed through the DT. Finally, the action space contains the 

categorizations of all the possible action states of an action. Any vertical linking of an element from the 

condition space with an element from the action space produces a decision rule (Figure 1). 

 

Figure 1: The general structure of a decision table 
 

Problem area  

CONDITION SET CONDITION SPACE 

ACTION SET ACTION SPACE 
 

Traditionally, decision tables (DTs) are crisp, indicating that the conditions are specified in an exact 

manner. A potential problem of such DTs is that any measurement error is not taken into account. Fuzzy 

decision tables (FDTs) offer a solution to this problem. A fuzzy decision table (FDT) is an extended 

version of a crisp DT in order to deal with imprecise and vague decision situations (Francioni and 

Kandel, 1988; Vanthienen et al., 1996). The extension amounts to the introduction of fuzzy sets in the 

condition and action space of the crisp DT; the crisp condition and action states are replaced with fuzzy 

conditions and actions. The latter two are a combination of fuzzy sets. A membership function needs to 

be specified which represents the extent to which a particular attribute level meets a particular condition 
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.2.2 Membership value measurement 

 

To discuss the issue of membership value measurement in a decision table environment, the problem is 

formally defined as follows. Assume that a decision table is characterised by I conditions (i = 1, 2, ..., I) 

with ni states and A action states. In the case of a fuzzy table, the ni states for each condition are fuzzy, 

and the table has M fuzzy action states, FASm (m = 1, 2, ..., M). FASm (m = 1, 2, ..., M) is carried out, if 

and only if, the fuzzy condition states FCS1? & FCS2? & FCS3? & FCS4? & FCS5? & ... & FCSI? are 

simultaneously satisfied. The question marks in the indices refer to the fuzzy condition states associated 

with each particular condition that, simultaneously combined, will result in the execution of fuzzy action 

state FASm. Note that FASm may be carried out by means of various combinations of fuzzy condition 

states. An important point is that in an FDT all interpretations should be made at the individual decision 

rule level (Wets, 1998). This point implies that we need to formalize our problem at the level of rules. To 

this end, three new notations are introduced: Sr, xir, and rRULEµ . Let Sr define the crisp set of all 

combinations (x1r, x2r, ..., xIr) resulting in the execution of RULEr (r = 1, 2, ..., R). Let xir define the 

identifier or index (one of the numbers 1, 2, ..., ni) of the fuzzy condition state of Ci, in a way that RULEr 

is carried out, if fuzzy condition states  for all i (i = 1, 2, ..., I) are satisfied. More formally: if ∃ r 

∈ {1,..., R} and ∀ i ∈ {1,..., I}: is satisfied, then RULE

irixFCS

irixFCS r is carried out. Finally, rRULEµ represents 

the membership value for RULEr. The membership value for a single fuzzy action state (i.e. mFASµ ) can 

be achieved by adding the membeship values for the corresponding rules. From now on, it is assumed 

that when action RULEr (r = 1, 2, ..., R) is executed, all indexes xir (i = 1, 2, ..., I; r = 1, 2, ..., R) are 

known.  

The finite set of fuzzy decision rules may then be defined as follows: 

 

if and  and ... and  → RULE1x1rFCS 2x2rFCS IrIxFCS r; ∀ r ∈ {1,..., R}. [1] 

 

Assume further that for I conditions with ni fuzzy condition states for each i, there exists a membership 

value (or truth value) µ ∈ [0,1]. The problem then is to estimate these membership values according to 

the following model specification: 

 

1RULEµ  = 1x 1 2x 2 Ix I11 21 I1
(C ) (C )... (C )µ µ µ  [2a] 

 

2RULEµ  = 1x 1 2x 2 Ix I12 22 I2
(C ) (C )... (C )µ µ µ  [2b] 
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...    ... 

RRULEµ  = 1x 1 2x 2 Ix I1R 2R IR
(C ) (C )... (C )µ µ µ  [2c] 

 

Or, equivalently, 

 

rRULEµ  = 1x 1 2x 2 Ix I1r 2r Ir
(C ) (C )... (C )µ µ µ ; ∀ r ∈ {1,..., R}. [2d] 

 

Subject to: 

 

k=1

ni

∑ µik(Ci) = 1; ∀ i ∈ {1,..., I}. [3] 

 

Relation [3] is called the fuzzy condition state partition constraint. It states that the membership function 

values associated with the fuzzy condition states of a particular condition in the FDT need to sum up to 

unity. Hence, a probabilistic approach to fuzzy set theory is advocated here.  

 

Suppose that an estimate of irix i(C )µ can be represented by the parameters, irix ,α  leading to an estimate 

of , the model to be estimated then becomes: rRULE
$µ

 

rRULE
$µ  = 1x 2x 3x1r 2r 3r Ir ... Ixα α α α ; ∀ r ∈ {1,..., R} [4] 

 

Subject to  

 

0 ≤ irixα ≤ 1; ∀ r ∈ {1,..., R}; ∀ i ∈ {1,..., I}. [5a] 

 

k=1

ni

∑ α ik = 1; ∀ i ∈ {1,..., I}. [5b] 

 

For the model to be consistent, the following relation should also be satisfied: 

 

r=1

R

∑   = 1. [6] rRULE
$µ

 

 
 

4

  



 

Finally, the number of parameters to be estimated can be derived from the number of conditions and the 

number of associated fuzzy condition states. For instance, to estimate C1 with n1 fuzzy condition states, 

(n1-1) parameters are required. This complies with the imposed constraints on the model specification. 

Thus, generalizing for I conditions with ni (i = 1, 2, ..., I) fuzzy condition states, the number of 

parameters, denoted by J, to estimate is equal to: 

 

j=1

I

∑  (nj-1), or rearranged: ( n
j=1

I

∑ j ) - I. [7] 

 

3  MEMBERSHIP VALUE ESTIMATION 

 

The goal of the membership estimation is to find parameters that lie within the [0,1] interval. Calibration 

is done using maximum-likelihood (ML) estimation. To briefly describe the ML procedure, a likelihood 

function, L: Q → R+ is introduced. This is a function of the unknown parameters that is denoted L(Q), 

where Q denotes the collection of unknown parameters being estimated in the model. The basic principle 

of the ML estimation is to find the value that maximises the likelihood of the observed sample. The 

maximum likelihood function for I independent conditions can then be written as follows: 

 

L(Q) =  [8] ( )  ( )  ... ( )
1

1RULE

2
2RULE

Z
ZRULE

RULE
f

RULE
f

RULE
f$ $ $µ µ µ

 

which is equal to, 

 

L(Q) =  [9] 
z=1

Z

RULE
f( )

z
zRULE∏ $µ

 

where  denotes the number of observations (or frequencies) for each of the z ∈ {1,..., Z} 

associated fuzzy decision rules RULE

zRULEf

z. 

 The log-likelihood function may then be written as: 

 

L*(Q) =  [10] 
z=1

Z

RULE RULE f   (
z z∑ ln $µ ).
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By substituting  with their associated, expanded fuzzy condition state paths, the result is the 

following: 

zRULE
$µ

 

L*(Q) =  ln ; ∀ z ∈ {1,..., Z} [11] 
z=1

Z

RULE f
z∑ [   ... ].

z

1z 2z 3z Iz
S

1x 2x 3x Ix∑ α α α α

 

The log-likelihood function L*(Q) is maximized with respect to the parameters izixα subject to the 

imposed constraints stated in relations [5a] and [5b] and [6].  

 

4  APPLICATION 

 

4.1 The case 

 

In this sub-section, we will illustrate the use of the multi-dimensional membership value estimation 

procedure applied to the data collected. In particular, we intend to create a fuzzy equivalent of the 

following DT representing locational requirements.  

 

Table 1: DT representing the locational requirements 

C1 Site within port zone? yes no 
C2 Site near residential area? yes no - 
C3 Site near school/hospital? - yes no - 
C4 Site near recreational area? - - yes no - 
C5 Site near scenic area? - - - yes no - 
A1 Suitable . . . . x . 
A2 Non-suitable x x x x . x 
 RULE1 RULE2 RULE3 RULE4 RULE5 RULE6 

 

Table 1 depicts a decision table that specifies a number of essential locational requirements that have 

to be fulfilled to consider a particular site suitable for the economic activity under investigation. Only 

if a site meets all five conditions, is it classified as being suitable (i.e. rule RULE5). In all other cases, a 

site is evaluated as "non-suitable". Note that condition C1 is a strictly crisp condition. It deals with the 

issue of whether or not a site is situated somewhere within the legal boundaries demarcating the port 

region. Given that a site is either located within this zone or is not, only a crisp evaluation is possible. 

In contrast, the remaining four conditions all contain the notion of nearness, which is fuzzy and 

context-related. One way to avoid this type of vagueness is to redefine the conditions in the table in 
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non-fuzzy, crisp terms. For example, instead of asking a decision-maker whether or not a potential 

site is "near" a residential area, school/hospital, recreational area and scenic area, the decision-maker 

can be asked to indicate minimum separating distances. By way of illustration, Table 2 displays the 

resulting values. 

 

Table 2: DT representing the locational redefined requirements 

 

C1 Site within port zone? yes no 
C2 Distance to residential 
area (km)? 

X ≤ 5 
(short) 

X > 5 
(long) 

- 

C3 Distance to school or 
hospital (km)? 

- X ≤ 8 
(short) 

X > 8 
(long) 

- 

C4 Distance to recreational 
area (km)? 

- - X ≤ 10 
(short) 

X > 10 
(long) 

- 

C5 Distance to scenic area 
(km)? 

- - - X ≤ 15 
(short) 

X > 15 
(long) 

- 

A1 Suitable . . . . x . 
A2 Not satisfied x x x x . x 
 RULE1 RULE2 RULE3 RULE4 RULE5 RULE6 

 

An alternative approach would be to construct a fuzzy decision table by replacing all crisp condition 

states that have to be fuzzified with associated fuzzy membership values. In the present context, only 

condition C1 remains crisp which implies that its two states are each assigned a crisp value: i.e. CS11= 

1 (denoting "yes") and CS12 = 0 (denoting "no"). The condition states of the four remaining conditions 

are each assigned an unknown fuzzy value (denoted by α). In what follows, we assume that α refers 

to the fuzzy set "long", whereas (1 - α) points to the fuzzy set "short". Note that the degree of 

accepting the alternative increases as distance increases. Consequently, we are concerned with the 

estimation of the membership values of the fuzzy set "long", and deduce from it the membership 

values of the fuzzy set "short". Hence, FCS22 = α1, FCS32 = α2, FCS42 = α3 and FCS52 = α4. Because 

the membership function values over the domain of a fuzzy set need to add to one, the corresponding 

fuzzy condition state values for the notion "short" are equal to FCS21 = (1-α1), FCS31 = (1-α2), FCS41 

= (1-α3) and FCS51 = (1-α4). The result is shown in Table 3. 
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Table 3: Contracted FDT representing the locational prerequisites 

 

C1 Site within port zone? 1 0 crisp 
C2 Distance to residential area? (1-α1) α1 - fuzzy
C3 Distance to school or hospital? - (1-α2) α2 - fuzzy
C4 Distance to recreational area? - - (1-α3) α3 - fuzzy
C5 Distance to scenic area? - - - (1-α4) α4 - fuzzy
FAS1 Suitable . . . . x . fuzzy
FAS2 Non-suitable x x x x . x fuzzy
 RULE1 RULE2 RULE3 RULE4 RULE5 RULE6  

 

With the exception of condition C1, all conditions in Table 3 have been assigned an unknown 

membership value that needs to be estimated. As a result of this membership value substitution, the 

action states of the table (i.e. FAS1 and FAS2) also become fuzzy since they combine different fuzzy 

condition states. The fuzziness in the table is visualised by the shades in the table.  

 In order to obtain valid parameter estimates, the estimation should take place at the individual 

decision rule level of the expanded FDT. Hence, the log-likelihood function, L*(Q) with Q = 

(α1,α2,α3,α4), for the expanded FDT requirements is: 

 

L*(Q) =   
z=1

16

RULE RULE f  ( )
z z∑ ln $µ

 
[12]

 

The value of  referring to the number of observations for RULEzRULEf z (z = 1, 2, …, I), should then be 

maximised with respect to the four unknown α-values, subject to the constraint: 0 ≤ α1,α2,α3,α4 ≤ 1. 

Note again that all interpretations are done on the expanded version of the FDT. Thus, all columns of 

the table contain only simple states (no combination of states). The relation between the expanded 

(with I = 16) and contracted (with I = 5) FDT is as follows: 
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Decision rules expanded FDT Corresponding decision rule 

contracted FDT (Table 3) 
RULE1 = (1 - α1) (1 - α2) (1 - α3) (1 - α4); 
RULE2 = (1 - α1) (1 - α2) (1 - α3) α4; 
RULE3 = (1 - α1) (1 - α2) α3 (1 - α4); 
RULE4 = (1 - α1) (1 - α2) α3 α4; 
RULE5 = (1 - α1) α2 (1 - α3) (1 - α4); 
RULE6 = (1 - α1) α2 (1 - α3) α4; 
RULE7 = (1 - α1) α2 α3 (1 - α4); 
RULE8 = (1 - α1) α2 α3 α4; 

 
 
 
 
          → 

 
 
 
 
RULE1; 

RULE9 = α1 (1 - α2) (1 - α3) (1 - α4); 
RULE10 = α1 (1 - α2) (1 - α3) α4; 
RULE11 = α1 (1 - α2) α3 (1 - α4); 
RULE12 = α1 (1 - α2) α3 α4; 

 
 
          → 

 
 
RULE2; 

RULE13 = α1 α2 (1 - α3) (1 - α4); 
RULE14 = α1 α2 (1 - α3) α4; 

 
          → 

 
RULE3; 

RULE15 = α1 α2 α3 (1 - α4);           → RULE4; 
RULE16 = α1 α2 α3 α4.           → RULE5. 

 

The expanded part of the FDT contains 16 decision rules. In the crisp case, only one decision rule 

would match, namely that rule where all ones are found for a particular combination of αi and (1 - αi). 

In all other rules, at least one zero-value would be found which, using the product operator, results in 

a zero match. In the fuzzy case, however, more than one decision rule can match a given combination 

of condition values. Hence, each of the 16 decision rules will influence the decision to be made. The 

possibility of accepting a rule is found again by applying the product operator. 

 

4.2 Data collection 

 

To estimate the different membership values of the FDT, data on the relationship between actual 

distances and their classifications into long versus short are required. We propose to obtain these data 

by conducting an experiment in which the experts are presented with a number of profiles 

(combinations of conditions) and asked to evaluate these profiles in terms of the action states of the 

table. The profiles are derived from the expanded DT. The total number of profiles in the design is a 

function of the number of conditions to be fuzzified and the number of associated condition states 

making up the DT.  

 The DT shown in Table 2 contains four conditions, each having only two associated condition 

states. These two different states reflect the fact that only one crisp assessment point is used as a 

limiting value. For example, in the case of condition C2, this single measurement point is equal to 5 

 

 
 

9

  



km. The use of only one measurement point implies that no distinction can be made between values 

that fall within the same condition state. Hence, if the aim is to fuzzify a specified measurement point 

so that a gradual transition between crisp states becomes possible, it is necessary to introduce 

additional evaluation points. These additional measurement values should be centred on the initial 

crisp boundary point resulting in a fuzzy range.  

 Note that, if we do not introduce additional measurement points and simply present the experts 

with different profiles in which conditions can only take on two different values (e.g. X ≤ 5 and X > 

5), then this would not lead to a fuzzification of the initial measurement point in question. Instead, we 

would be measuring the degree of heterogeneity present in the sample. By contrast, the introduction 

of additional measurement points, subdividing the domain of the condition in more condition states, 

allows for subtler decision-making and is also indicative of the degree of crispness of the different 

boundary values.  

 The introduction of additional measurement points implies that the specified log-likelihood 

function, L*(Q) with Q = (α1,α2,α3,α4), or in short, Q = (αi) needs to be respecified. Hence, the 

following substitution is made:  

 

Q → Q*, with Q* = (α*
i), where α*

i = mp0
i ± ci. [13]

 

where mp0
i is the initial boundary measurement point. 

 As a result of this substitution, the following log-likelihood function specification, L*(Q*), is 

obtained which should be maximised subject to 0 ≤ α*
i ≤ 1. Note that ci determines the spread of the 

fuzzy interval around the initial crisp measurement point. It specifies a lower (i.e. mp0
i - ci = mp-

i) and 

an upper (i.e. mp0
i + ci = mp+

i) measurement point. The membership values for each introduced 

measurement point for each condition are represented by α*
i. Consequently, depending on the value of 

ci, α*
i denotes the estimated membership value for the: 

 

(i)  lower mp (mp0
i - ci = mp-

i) : α*
i = α-

i subject to 0 ≤ α-
i ≤ 1; 

(ii)  initial mp (mp0
i) : α*

i = α0
i subject to 0 ≤ α0

i ≤ 1; 

(iii) upper mp (mp0
i + ci = mp+

i) : α*
i = α+

i subject to 0 ≤ α+
i ≤ 1. 

 

It logically follows from the interpretation given to the estimated membership values that the 

following relation should also hold: 0 ≤ α-
i ≤ α0

i ≤ α+
i ≤ 1 for the results to have face validity. When 

the distance increases, the membership function should increase as well. 

 In the present paper, ci was taken as 2 km. Thus, for condition C2 representing the distance to a 
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residential area the three measurement points with their associated to be estimated membership values 

are equivalent to: 

 

mp-
1 = 5 - 2 = "3" → α-

1; 

mp0
1 = "5"  → α0

1; 

mp+
1 = 5 + 2 = "7" → α+

1. 

 

The specification of the measurement points used for each of the four conditions that need to be 

fuzzified can be found in Table 4. 

 

Table 4: Specification and encoding of the measurement points 

Condition Specified crisp 
condition states 

Measurement 
points (mp) used

C1 "yes", "no" — 
C2 "X ≤ 5", "X > 5" mp-

1 
mp0

1 
mp+

1 

=
=
=

"3" 
"5" 
"7" 

C3 "X ≤ 8", "X > 8" mp-
2 

mp0
2 

mp+
2 

=
=
=

"6" 
"8" 

"10" 
C4 "X ≤ 10", "X > 10" mp-

3 
mp0

3 
mp+

3 

=
=
=

"8" 
"10" 
"12" 

C5 "X ≤ 15", "X > 15" mp-
4 

mp0
4 

mp+
4 

=
=
=

"13" 
"15" 
"17" 

 

Combining these 12 different measurement points in all possible ways would yield 34 = 81 

experimental profiles (Addelman, 1962). Obviously, evaluation of this number of profiles would be 

too demanding a task for the experts and hence it was decided to use an orthogonal fractional factorial 

design. There are several possible basic plans that can be used to construct such a design, whereby the 

number of profiles ranges from 9 to 32. In the present paper, it was decided to use a plan involving 16 

profiles, to construct the orthogonal fractional factorial design. Each profile consists of a combination 

of distances on the four conditions. 
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4.3 Tasks 

 

Next, experts were asked to evaluate each profile in terms of the decision table's action states. By way 

of an example, Table 5 illustrates how the first profile specified in Table 4 is transformed in a DT 

(split in two parts to fit the size of the page). This DT, depicting 16 different rules, was written on an 

option card and presented to the respondents. The respondents were then asked to appraise each 

individual decision rule by filling in the action part of the DT (FAS1 = ‘satisfied’; FAS2 = ‘not 

satisfied’). Clearly, an identical approach was followed with respect to the remaining 15 profiles in 

the experiment. Note that condition C1 is not included in the option card, given its non-fuzzy 

character. 

 

Table 5: Illustration of an option card (profile 0 0 0 0) 

 

 

 

 
 

In total, useful answers of 16 experts were obtained. These experts were all CEO’s of the companies 

included in the sample and had experience in site selection. The obtained answers are in fact 

frequency data for each action state of each decision rule of each DT in the experiment. In total, 4,096 

observations (i.e. 16 profiles or DTs, each consisting of 16 decision rules evaluated by 16 different 

respondents) were obtained. These observations were placed in a matrix in the form of aggregated 

frequency data. This data matrix was used as input file to estimate the membership values for the 12 

measurement points. 

 The membership values were estimated using an optimisation routine that was especially 

 

 
 

12

  



developed for our estimation problem. The threshold value suggests that the iterations ended if the 

goodness-of-fit of the model did not improve more than 0.0001. The minimum and maximum values 

for the estimates were set — logically — at 0.0 and 1.0, respectively. The starting values were all set 

equal to 0.5; but these values were later changed in order ensure that no local optimum was found 

(ML estimation implies having a unimodal function). The results of the optimisation routine are 

shown in Table 6. 

 Table 6 depicts the membership value estimation results for the 12 measurement points (lower, 

initial and upper measurement points) for the four conditions in the FDT that were fuzzified. In 

addition, the increment in these estimated membership values is also given. Note that convergence 

was achieved after 4 iterations.  

 

Table 6: Estimation results 

 
 membership value estimation results Increment in membership values 
 lower mpi initial mpi upper mpi  
 α-

i α0
i α+

i α-
i → 
α0

i 
α0

i → 
α+

i 
α-

i → α+
i 

C2 .088 .145 .241 .057 .096 .153 
C3 .285 .318 .410 .033 .092 .125 
C4 .353 .392 .416 .039 .024 .063 
C5 .412 .438 .461 .026 .023 .049 

Log-likelihood: - 3605.43400 (4 iterations); N = 4096 
 

The overall estimation results of the different membership values may be considered very satisfactory. 

First, the estimation results are consistent with theoretical and logical expectations giving face validity 

to the results. The membership values increase as a higher measurement point is used. Fulfilling this 

property of monotonicity in the present context is important since the following relation, 0 ≤ α-
i ≤ α0

i 

≤ α+
i ≤ 1, should hold.  

 Second, the model produces identical estimation results if other starting values are used, 

suggesting that the true optimum was reached. This means that our optimum found is stable and 

independent from the selection of the starting values. In each case, the model returned our initial 

optimum found; only the number of iterations needed differed.  

 Third, our approach demonstrates that a multi-dimensional approach to estimate membership 

values and functions is possible and also desirable. Instead of selecting ad hoc four separate 

membership functions, they are now estimated simultaneously from the input data. 
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Analysed in more detail, a number of additional interesting conclusions can be drawn. First, it can be 

noted that for condition C2 (representing the distance to a residential area), a distance of 3 km (i.e. 

lower measurement, mp-
1) results in an almost zero membership value (α-

1 = 0.088). Hence, all 

potential industrial locations that are situated at less than 3 km from a residential area will be 

evaluated as not satisfactory. In the data matrix used as input file, it can also be seen that nearly all 

decision rules that have X ≤ 3 result in a rejection of the alternative. Given that the associated 

membership value in the fuzzy set "long distance to a residential area" is (almost) equal to zero, the 

possibility of accepting this choice alternative will, as a result of the use of the product operator, also 

be (almost) equal to zero. Consequently, 3 km is considered (almost) a full member of the fuzzy set 

"short distance to a residential area" which implies that the possibility of not accepting this choice 

alternative will be (almost) equal to one. As the distance between a location site and a residential area 

increases (use of mp0
1 and mp+

1), the membership values to the fuzzy set "long distance to a 

residential area" also increase to .145 and .241, respectively. The increase is not strictly linear since 

the increments are .057 and .096. If the membership values found are set out against the three 

measurement points in a two-dimensional plane, and a curve is fitted through it, then the 

corresponding membership function for condition C2 is found. Once this function has been 

determined, it is also possible to calculate the corresponding membership values of other distances 

than those used as measurement points. 

 Second, the results found for condition C3 (distance to school or hospital) are equally satisfactory. 

Note, however, that the lower measurement point used does not result in an almost zero membership 

value. It is equal to .285. As one moves along the distance domain, the membership values increase. 

 Third, the membership value estimates for the measurement point of the remaining two conditions 

C4 and C5 show only little variation. The increment in membership value with changing distances is 

very small. Hence, their influence on the choice problem may be considered of minor importance. In 

particular, condition C5 (distance to a scenic area) has little influence on the choice outcome. The 

experts’ behaviour was little influenced by altering distances to a scenic area. Besides showing little 

variation, it can be seen that the membership values found are also close to 0.5, which may point to a 

situation of indecision.  

 

5 CONCLUSION AND DISCUSSION  

 

In this paper, a method proposed to estimate membership values of the fuzzy sets used in the condition 

and action part of a fuzzy decision table (FDT) was applied to the locational preference of decision 

makers in the petro-chemical industry.   Although, only 16 valuable results from 19 respondents were 
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obtained for the purpose of fuzzification, it can be stated that the constrained maximum likelihood 

estimation procedure performs adequately with real data. The model produces valid estimation results 

that fulfil all desired properties (face validity, unimodality, partition constraint). Furthermore, the 

approach is multi-dimensional and the method is also direct. The latter characteristic refers to the fact 

that the membership functions can be directly deduced from the input data. The developed approach 

also concurs very well with the introduced concept of an FDT. 

 A (more or less disadvantageous) point of the modelling approach that should also be stressed is 

the problem of data collection. It is no coincidence that this particular problem is closely linked with the 

table contraction-expansion problem in an FDT. It is only when an FDT is specified and estimated in its 

expanded form (i.e. at the individual decision rule level) that valuable estimation results can be obtained. 

To a certain extent, this problem restricts the application of our approach in that the multidimensional 

fuzzification of large FDTs is rather problematic. Working with expanded FDTs has an effect on the data 

that are needed to estimate the model; these data should be collected at the individual decision rule level. 

Hence, the more condition and action states in the FDT, the larger the set of fuzzy decision rules, and thus 

the more difficult the task will be for the participating respondents. 
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