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PREAMBLE

True eloquence consists in saying all that is necessary,
and nothing but what is necessary.

La Rouchefoucauld

Any scholar who, like myself, has ezperienced pure mathematics will recognize in
this paper the ilumination of formal mathematics that so often is missing in applied
statistics—definitions, theorems, proofs, lemmas, and analytics. If you have never
encountered these constructions before in an advanced mathematics contezt, then
you may find this paper difficull reading; bui, it certainly is eloguent! The purpose
of this paper is twofold, namely to derive (1) those formulae needed to compute the
ezacl distribulions of the Moran and Geary spatial aulocorrelation indices under
an assumplion of normalty, and (2) ezpressions for their asymplotic mean and
variance under an assumplion of non-normality. Manrdia's reaction to the formalism
employed here is that the results are theoretically impressive, but not yet helpful to
practitioners. Perhaps Sen has been a bil too concise. On the other hand, Mardia
suggests that this paper should generate further research of an applied nature.

The Editor
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Distribution of Spatial Correlation Statistics
Ashish Sen*

School of Urban Planning and Policy and the Urban Transportation Center, University of
Illinois at Chicago, Chicago, IL 60680, U. §S. A.

Overview:  This paper contains a number of results on the distribution of Moran
and Geary statistics. Two key ones are (1) formulee to compute the exact distribu-
tions of these statistics when observations are normally distributed, and (2) expres-
sions for their asymptotic mean and variance, when the observations are not normal.
The results are sufficiently general that they may be applied to a wide range of sit-
uations. However, in order to be somewhat specific, the presentation assumes that
the spatial correlation statistics are being applied to linear least squares residuals.

1. Introduction

Two statistics that may be applied on regression residuals ey, ---. e, to test for the existence
of spatial correlation are of the form

c Zw;jﬁ,'e_j,-".sg (1)
1]
and
c E wijle; — e_.,-}zfsz (2)
17

where ¢ is a suitable constant, s* = (n —k —1)"13_% | €? is the usual unbiased estimate of
the vanance of the regression error term when there are k independent variables, and wi; 18
some measure of inverse distance. For example, we could have w;; = 1 when the ith and jth
observations are from contiguous zones and wi; = 0 otherwise; or wy; = d;z where d;; is
the distance between the locations where observations i and j were taken. The EXpressions
(1) and (2) are obvious generalizations of statistics previously given by Moran and Geary,
respectively (see CLff and Ord, 1981).

In Section 3 we present exact distributions for these statistics under the hypothesis of
no spatial correlation and under the assumption of normality of regression errors. While
the formulae are somewhat complicated and depend on the matrix of w;;’s, they can be
programmed so that for any given situation, relevant portions of tables can be obtained
from a computer. They also can be used to obtain exact tail probabilities to help identify
suitable approximate methods for obtaining such probabilities. In this context. it should be
mentioned that computations using these exact formulee are certainly less time consuming
than Monte Carlo methods.

If the errors are not normal, the only recourse available is to invoke large sample theory
and use the fact that under certain mild conditions (1} and (2) are asymptotically normal.

* 1 would like to thank Pref. Tony Smith, Regional Science Department, University of Pennsvlvania. Prof. Muni Srivastavn,

Statistics Department, University of Toronto, and the discussant for many valusble comments and Buggestions on an earlier
draft of this paper. I would also like to express my gratitude te Ms. Marilyn Engwall for the diagrams. {School of Urban
Flanning and Poliey and the Urban Transportation Center, University of linois =t Chicago. )
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However, we still need means and variances of the statistics, and the asymptotic expressions
for these (in, say Sen, 1976) are a bit too crude. In Section 4 we present formule for such
means and variances. It may be mentioned in passing that when the observations are non-
normal, and sample sizes small, the analyst may wish to use rank-test equivalents of (1) and
(2) — see Sen and Soot (1977) — or obtain critical points of (1) and (2) by permutation
methods (see Cliff and Ord, 1981).

The next section is devoted to some preliminaries and to notation. Although they are
known, for the sake of completeness, we also obtain means and variances of the statistics
under normality.

2. Preliminaries

Let €;,...,00, be n regions and assume that for each {); we have an observation y; on
a (dependent) variable and values z;;,...,2; of k independent variables. Then a linear
regression model is written in the form

y=X8 +¢ (3)
where ¥ = (y1,...,¥a)',
1 11 Ik
Xupl tm o
1 fnl ... Tk
€ =(€1,...,€y,) is the vector of the error terms, 8 = (By,...,8:)" is the vector of parame-

ters and a prime denotes matrix transpose. The least squares estimate b of 8 is (assuming
X 1s non-singular)
(boy- .., ba) = b = (X'X)"'X'y (1)

and the residuals are, therefore,
(e1,... en) =€ =y —Xb =y - X(X'X) X'y = My (5)

where M =1 — H and H = X(X'X)7'X'. It follows that e also could have been written
as e = MXB +Me = Me and, moreover, it may be verified that M and H are idempotent
(i. e, M* =M and H = H).

In order to be assured that the linear cumbma,tmn £'b of b;’s is a best (i. e., mini-
mum variance) unbiased linear estimate of £'@, three conditions — called Gauss-Markov
conditions — must be met. These are

B(e) = 0 ®
E(e?) = o*(a constant) (7)
E(eie;) =0 (8)

for all 1 and j. In matrix notation, the Gauss—Markov conditions become
Ele)=0, E(e€')=a"l
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Distribution of spatial correlation statistics

If, in addition, € is normally distributed we write € ~ N(0,o2] ), . €., € is normally dis-
tributed with mean 0 and covariance matrix ¢?]. From (3) it follows that if € ~ N(0,e%I),
then y ~ N(X8,02I).

When (8) holds we shall also say (since the observations are taken over space) that the
€;’s are spatially uncorrelated. On the other hand, if (8) does not hold and particularly if
E(€;€e;) = pij, where [p;;| declines with the spatial separation between f; and {1;, we say
the €;’s are spatially correlated (see CLiff and Ord, 1981, for more on this subject). As is well
known, the presence of spatial correlation does not bias the estimate b, but the covariance

matrix of b and any quantity that depends on it (the t, the F and, indeed, most statistics
used for tests) are seriously affected.

The seriousness can be seen as follows. If € has covariance matrix o2Q, then the variance
of £'b is of the form o%c'Qc with ¢ = '(X'X)"1X'. This contains n(n — 1) terms
involving non—diagonal elements of 2. Therefore, even if each such element is small. their
combined effect can be considerable. Even worse is the fact that, when we use ordinary least
squares, computer packages typically compute estimates of variance under the assumption
that Gauss-Markov Conditions hold, i. e., = I. Therefore, unaccounted for non-diagonal
elements can substantially affect any inferences we reach.

As mentioned in Section 1, the statistics (1) and (2) may be used to test for the existence
of spatial correlation. To simplify matters we shall write both (1) and (2) in the form

ce'Ze/s? (9)

which is obviously appropriate since numerators of both are quadratic forms.

Since e = Me, it follows that e'Ze = €' M'ZMe = €'Be where B = M'ZM . Since the
matrix B is symmetric there exists an orthogonal matrix T' such that B = I'D,I" where
D, = diag(Ay,...,An) and A;’s are the eigenvalues of B. Therefore, writing Te = u, we
have 2

e'Ze = €'Be = ¢TDI"e =u'Dyu = Zkiuf- (10)
=]
Now consider the denominator of (9):

2

5 r-p_l

e'e
where p =n —k — 1. Since e = Me and M is idempotent we may write 52 as
ple'M'Me = p~le'Me.

Obviously BM = MB and hence the same matrix I' that diagonalized B also diagonalizes
M (see Bellman, 1960, p. 56). Hence

B=TD,I', and M =TDI" (11)

where D¢ = diag(,,...,£,). Since M is idempotent, its eigenvalues £; are either one or zero
and since the rank of M is p =n —k — 1, exactly p of the eigenvalues are ones. Therefore,
we may write

n P
I - SRR f =1 gt &t o Bk
ce Ze/s“ = ce Be/p Eﬂff_ci.lluifp Zu = eP, (12)

i
=1 =1
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where P=U/V, U =YY", Au?and V =p~ 130 6l

It 1s a property of normal distributions (see Rao, 1973; Srivastava and Khatri, 1979) that
if € ~N(0,0%I), then u ~ N(0,62]). From (11), and the fact that the £;’s are either one
or zero (and therefore DE = D¢), we get

¢'Me = e TDI"e = u'Deu = u'DDgu.

Also, because Dy is dmgnna] with elements either 0 or 1, p of the components of Deu = u*
are 1dent1cal to those in u and the remainder are zeros. Now

¢€Be=€e€MZMe=€TDI'ZTDI'e = u'DI'ZTDgu
=u*(I"ZT)u" = (u*)'Z*u*
where Z* = I'"ZT', showing that the same p u;’s are in the numerator of (12) as are in
its denominator. Because of this and because u is normal, it follows that P and V' are
independent (ClLiff and Ord, 1981, p.43, Theorem 1, Pitman, 1937; the original result is due
to K. A. Fisher). An important consequence of this is that
E(P)E(V") =E(U") (13)
Theorem 2.1,
When € ~ N(0,0%I), i. €., when y ~ N(X3,¢2I), the mean and variance of (9) are
E(e'Ze/s®) = tr|B] (14)
and
var(e'Ze/s®) = 2(n —k + 1) {(n — k — 1)tr[ B?] — (t2[B))?} (15)
where var( -) stands for the ‘the variance of’, and B = M'ZM .

As mentioned earlier, this result is known, e.g., see Ripley (1981, p. 100) or Brandsma
and Ketellapper (1979).

Proof of Theorem 2.1:
From (10)

E(e'Ze) = E{i Aiul) = o? i‘]“' = oltz[D,] = ot1| B] (16)

=1 i=]

since tr|B] = tr[[''D,I'| = trf[D,I'T'] = tr[D,]. Also, since u;’s are independent normal with
mean ( and variance 2,

E(e'Ze)’ = Z Aul)?

=-1

Zﬂuw Z Xidjudu?

=1 1,5=1 {1T]
i# ]
n n
=#4ZAE+|‘I4 Z Al
=1 i=1
=3
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Distribution of spatial correlation statistics
where g = E{u‘*] = 3o, Hence

var(e'Ze) = E(e'Ze)? — [E(e'Ze))?

= pq i"‘f +o i Ak — ”i(ilff’

=1 l-;.'ll‘=1 1=1
7]
and since
n n n
QoA =D+ D 2
i=1 i=1 ig=1
i# 3
it follows that
n n
var(e'Ze) = (g —o?) Z A% = 25421? = 20%:[B?). (18)
t=] =1
From (18) and (16), we have, alternatively
E(e'Ze)? = 20*tz|B?] + o'tx[B])% (19)
Now replacing B by M in (15) and (19) we get
E(s*)=p 'E(e'Me) = p~letr|M] = o* (20)
and
E(s*)? = p?E(e'Me)? = p~2 {20 t1[M] + o*(ts[M])?} = o4(2p~) + 1). (21)

It 1s now simple to verify that (14) follows from (13), (16) and (20). To verify (15),
notice that from (13), (19) and (21)
E(P?) = (2tr[ B + (1[B])?)/ (1 + 2p71).
Therefore, from (14)

var(P) = E(P?) - (E(P))?
=2(1+ 27" t[B? + ([ B])2(1 + 2p7Y)"2 = 1)
= 2(p + 2) 7 {ptz[ B?] — (tx[B])*}.
This proves the theorem.

3. Exact Distribution of P under Normality

Since P is a ratio of quadratic forms of normal variables, there are several methods available
for computing its distribution function (cdf) under the hypothesis of no spatial correlation,
although perhaps not as many as one would expect. In this section we describe versions of
the two key ones. Sections 3.1 and 3.2 deal with the case where the A;’s are distinct, while
Section 3.3 is concerned with the A;’s having common values. Section 3.1 is devoted to the
proof of a theorem on the distribution of I/, which then is used in Section 3.2 to provide
formulee for the cdf of P. Notice that without loss of generality we can set ¢ = 1 and
assume that u ~ N(Q, T).
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3.1. Distribution of [ when A;’s are distinct

Theorem 3.1

Without loss of generality we can ignore zero valued A;’s. Let p; > ... > Ln, be the
negative valued A;’s (if any) and v; < ... < v,, be the positive valued A’s with n = ny +no.
Define

[(na+1)/2) w1

j _ Z [_1}k+1/”‘

il

(+) k=1 Yak-1

and

|[(mq+1)/2] -1

[ =) e [

(=) k=1 F'[5--.i:-—1

where || is the integer part of ¥, pp, 413 = —oc and Vpy+1 = 00. Further define

o -1/2
D()) = {-u [Ta —,u.-}] .

1=:1
Then if the u ~ N(0,7), the cdf F(z) of U 1is

P 1 -7 f[+}.l'lﬂ{l Jexp(—=Az/2)dX forz >0
(2) = = f{&}l'lﬂ{l)exp[ —Az/2)dA for z < 0. (22)
Notice that J‘I.'+] and [(—) depend on ni, n2 and the A;’s. However, no confusion need
occur if we note that whenever these symbols arise, we simply act as if they were exactly
equivalent to their definitions above. This theorem is similar to one in Smirnov (1937) and
also may be obtained from Plackett (1960, pp. 20-22). However, Smirnov made a mistake
in signs which carried over into several subsequent papers (some of which did not refer io
Smirnov!). The mistake is pointed out in the proof of the theorem which is given after the
following lemma.

Lemma 3.1
The absolute value of each of the integrals that comprise either fi+} A~1D(A)dA or
J(=)A7'D(X)dX is less than a constant M > 0.

Proof:
Let a be a number between p:.!_k]—l and #{kl. For “".?_kl-q <A <a,

n
AT =A<

i=1
i%£2k—1

for some M = (). Hence

- a
/_1 A7'D(A)dA «::Ml]_ 1 = Aapash|= 2
v 1

2k-1 2k—1
= Eﬂﬂ}n;;ﬁ{a - A.ﬁ_]jl’m < Mgy(say).
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Distribution of spatial correlation statistics

-1
Similarly it can be shown that if 2k <ny, [“2x A=1D(A)dA is finite. When 2 =ny +1, i.

e., when s = oo, let a — L-"Ezl = ¢ and

oo bt o
/ l*lﬂ[}l}d:\ < (]:[At—lfﬂ) f m_l:“f2+1}dlf
a i=1 .
which also is finite. Similarly, each of the components of JE_}A_I.D[A}dA may be shown to
be less than some number M .

Proof of Theorem 3.1

Since each u; ~ N(0,1), it follows that uf has a chi-square distribution with 1 degree
of freedom. Hence (Rao, 1973, p.167), its characteristic function is (1 — 2u¢)~'/2 where
1 = y/=1. Therefore, the characteristic function of diu? is (1 - i) ;)12 (Rao, 1973, p.
100). Since the u;’s are independent, the characteristic function of U = Yoy Aiu? is (Rao,
1973, p. 104)

n

dy(t) = [J(1 — 2t2;) 2 (23)
1=1
The distribution function F(z) of U can be found from (23). From the general inversion
theorem for characteristic functions (Wilks, 1962, p. 252), we have

F(z) = F(0) = (2m)~ f ) Sy (t)[1 — exp(atz)](at) ™ dt
s (24)
= (2r)? ATID(A)1 — exp(—Az/2)] dA

bl 1 =}

on making the substitution A = 2it. Hence for two different values z and 2',
| Ta w]
F(z)-F(z") = {Er}'}f }n_lﬂ[}n}[exp{-h';‘?}-ﬁxp{—lzfﬁ}}d}n. (25)
=0

Consider first the case where z and z' are non-negative. Call the integrand in (25)
g and consider the non-negative half plane of A, 1. e., the half plane containing complex
values of A with non-negative real parts. On this half plane [D(X)]~! can take zero values
only on the positive real half axis. Therefore, g is analytic over the entire half plane from
which the slits 5; (see Exhibits 1.a and 1.b) have been removed and by Cauchy’s Theorem
(see, for example, Nehari, 1961 or Hille, 1959),

/cy+¥/ﬂshy= (26)

where the integral [. is taken over the contour C illustrated in Exhibits 1.a and 1.b, and
[ 85, is the integral over the boundary 85 of the slit S;. When R — oc, the integral of g
goes to zero over the part of C that is semicircular with radius R. Hence,

1= =5

him g = g.

R—HJE ':'_'_' —1o0
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Exhibit 1. a, left; b, right.
Contour C and slits S}.

Therefore, from (26),

/mg==2f g. (27)

For any branch of D(A), as A moves from the lower boundary of any of the slits 5,
around the point u.;kl_l to the upper boundary, arg(l — ves_1A) changes by 2r while all
other arg(l — viA)’s remain the same. Hence arg[D(A)] changes by =, and consequently
D(A) and g change sign. Moreover, if A follows the path I (see Exhibit 2) from the upper
boundary of S, around the points l.-";kl and vgi4q to the upper boundary of S;.,. both
arg(l —vzpA) and arg(l —v9p1A) change by =, while other arg(1 —»;A)’s remain the same.
Hence, again d()A) changes sign (this is the discussion Smirnov missed. I found the mistake
when 1 used Smirnov’s formula and obtained values of a distribution function which were
greater than one). The value of g over the semicircular ends of the narrow slits S, of width
2r is of the order »~1/2. Therefore, the integral of g over one of these semicircles goes to (
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Distribution of spatial correlation statistics

as * — (. Consequently, as r — 0,

F(z)-F(z') = +x~! f ATID(X)[exp(=Az'/2) — exp(—Az/2)] d). (28)
(+)
Exhibit 2.
Path «.
i1

As z' — o0, F(z') = 1 and [ _A7'D(A)exp(—Az'/2) — 0. Therefore
F(z)=1+7"" f A~1D(A)exp(—Az/2) dA. (29)
(+)

We choose that branch of D(A) which replaces ‘%’ by ‘—’ because, as we now show,
Sy AT D(A)exp(~Az/2)dA > 0.
For ny < 2, f[_i_jg is obviously positive. If ns > 3, then by Lemma 3.1

/{ ke exp[—z/(2v2) f j ATID(A)dA — (na/2)Mexp|(—z/(2v3)]

which is positive when z is large enough. Since _,f{ )9 1s obviously continuous, if it were

negative for some value of z, it would be zero for some other value, z" < oc. Then for either
branch of D(A), F(2") would be 1, which is impossible.

This proves the part of (22) for z > 0. The proof for z < 0 is quite similar; only now we
would consider a mirror image (in the imaginary axis) of the contour C and slits 57,53, ...
enclosing pairs of points p;'. This proves the theorem.

If the reader is at all disturbed by the prospect of discontinuity of F(z) at z = 0, he
needs to notice the following: consider a region in the ) plane, enclosed by a large circular
contour of radius R, from which slits S, and S} have been removed as has been a small
circular hole of radius r around A = 0 (to account for the A~ in g). By the residue theorem
(see Nehari, 1961, or Hille, 1959) the integral around the small hole is 272 limy_gAg = 1.
Notice also that as we move from the upper boundary of S| around the upper part of the
crcumference of the small eircular hole to the upper boundary of S, arg(g) changes first
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by =/2, then by = and finally by 7/2 for a total of 2r. Therefore, [s5 and f&sl have the
1
same sign. Hence it may be shown that

/ A*ID(A]::IA+I{+]JA'1D(A].:£A —1=0 (30)
(=)

which establishes continuity.

3.2. Distribution of P when )\;’s are Distinct

In order to get the distribution of P from Theorem 3.1, we can proceed in at least two
different ways. One is the approach taken by Imhoff (1961). Let G(z) be the distribution
of P. Then

G(z)=Pr(P <:z)=Pr(U <2V)=Pr(U -2V <0) = Pr{Z[JLi — zJu <0)
=1

Thus, for each z, G(z) is the same as F'(0) where F(z) is as in Theorem 3.1 with the
difference that A;’s are replaced by [A; — z]. One computational advantage of this approach
is that exp[—zA|, the repeated computation of which can be quite time consuming, becomes
1. Several alternative expressions and approximations also have been found for such F(0)’s
— see Koertz and Abrahamse (1969, Ch. 5), Imhoff (1961), L'Esperance et al. (1976),
White (1978).
Another approach is more classical. We present it as a theorem:

Theorem 3.2

Define ;
wiz?;\}z{l—lz when 0 < Az <1

0 otherwise.
Then, in the same notation as in Theorem 3.1, the distribution G(z) of P is

1 —x"1 f{+]l_lﬂ[i}[ﬁ[z,lfp}}”_ld}t for z 20
G(z) = {*rr_lf{_:l.l'lﬂ{l}[iﬂ[z,kfp]]""ldl for z < 0, (31)

where 2v = p and » is not necessarily an integer.

Before using (31) in numerical computations, it is desirable to plot the function (2, A/p)
for some representative values of the arguments. This would help in determining time saving
limits of integration. In this context, it might also be mentioned that since numerical integra-
tion 15 equivalent to computing the dot-product of (rather long) vectors, modern compilers
can perform the operation rather efficiently.

Notice that as p — oo, (31) becomes (22), as indeed should have been expected. Koop-
mans (1942, see also von Neumann, 1942, and Plackett, 1960) obtained the density function
corresponding to (31) in terms of a complex integral from which (31) can be derived in a
manner analogous to the proof of Theorem 3.1. Mulholland (1970) also has obtained a result
similar to Theorem 3.2.
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Proof of Theorem 3.2:

The density function (p.df) of U can easily be obtained from (22) by differentiation
with respect to z. It is

-1 (=Az)dd for z >0
f(z) = 7
-1 j:[ Adexp(—Az)dA. for z < 0.

Therefore, the sth moment of [l is
E(U*) = (2x)"! ’f [ D{X)z"exp(—Az)dAdz
0 J(+)

0
—/ / D(A)z"exp(—Az)dAdz. (32)
—oe J(-)
The Gamma function T'(s + 1) is defined as fumz'txp{ —z)dz . Therefore,

/mz’exp[—lzfﬂ}d.t = (2/A)**T(s + 1).
0

The integrability of the relevant functions in (32) is easily established. Hence we can use
Fubini’s theorem to exchange the order of integration. Therefore, the first integral within
square brackets in (32) can be written as

T'(s+1) f( ﬂD{A][E;‘A}’*‘ d).

After carrying out a similar exercise with the second integral we get

E(U*) = (2r) (s +1) - ’L}D{A](zm'ﬂﬂ+{—1}~'/ D{A]{ﬂfl}'”dl}_

where fl:__] is obtained from f[-] by replacing each v by —v[".
Since pV’ has a chi-square distribution with p degrees of freedom, it can be shown that
E[(pV)"] = 2°I(s +v)/T(v)
Hence, by (13), it follows that
E[(pP)"] == ~'[[(s + 1)I(»)/T(v + 8)]
(

D(AM)A~""1d) + (~1)'/ D(.x}r-'-*d.:.‘. (33)
+) (-)

L

Now consider the function

h(z,A) =77 (v = 1)D(A)¥(z,2)]" >
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Since it can easily be verified that 2"h(z,A) is integrable over the appropriate region, we can
use Fubini’s theorem to invert order of integration and get

oo
5 —17_1 v — *F(1 y=2 -
A : j;ﬂh{z,l]d,hdz— ( 1]_[“}1}{.1}/0 (1 = Az)*~2 dzd)
1
. T —r—1 51 — Az)¥1
Y 1}ft+}ﬂ(m Lua) (1= Az)*~1 d(Az)d)

="'l + DIW)/Tw +8) [ DO a (34)

+)

on noting that f;:“'i{l —2)*1dz is the beta-function I'(a)l'(b)/T'(a+b) (see Wilks, 1962,
p. 174). Therefore, (34) is the first term on the right side of (33). A similar result can be
derived for the second term. Hence,

E[(pP)"] = A o f{ﬂh{z,l}dhd: - ] g h(z,A)dAdz. (35)

—oo  J(-)

Therefore, by the uniqueness theorem for moments of bounded random variables, it follows
that the p.d.f of pP is ‘f[ﬂ h(z,A)dA when z > 0, and when z < 0 it is _f{_}h[z,l]di. A
straightforward change of vanable yields the p.d.f of P as

+(2mv )" v — 1) Jr("':l DN W(z,A/p))"2d) for z > 0 ah

—(2m) v -1) _,"{__J DN (z,A/p)]*~2d) for z < 0. (36)

To complete the theorem and obtain the distribution function all we need do is integrate

the density function (36) from 0 to z. When z < 0, it is easy to see that this integral [which

15 simply the integral of the lower expression in (36)] is the lower expression in (31). When

z 2 0, integration of the upper expression in (36) from 0 to z, followed by the use of (30),
vields the upper part of (31) as the required distribution function.

3.3. Distribution of P when Values of );’s are Repeated

In most practical applications the A;’s are distinct, particularly when the regions considered
are irregular — as census tracts, states and Zip-code zones usually are. If a pair (or two)
of the A;’s become alike, there is perhaps not much lost by adding a small number to one
and subtracting it from the other in order to make them distinct. However, this recourse is
not too satisfying if a large number of pairs of A;’s are the same. This can happen when
observations are taken over a regular lattice or over regions bounded by a uniform grid (e.g.,
quarter sections). In this section we first consider the case when

U=Y Y xul, (37)

A;’s are distinet and n = 2m is necessarily even. Then we shall consider the case when some
Ai’s are singletons while others come in pairs. Finally, we shall briefly examine the general
case when A;’s may be repeated arbitranly often.
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As before, let py,...,pum, be the negative A;’s and let vy, ... s Vm, be the positive A;'s.
Let

m ny

By, = [T = mifve)™ [J( —vifwy)™
= Zk
™ "2

By = ]:_[(1 — pif i)™ 1:[1{1 —vilpr)
iZk ik

Then, for z > 0, considering the same semicircular contour C that we did in the proof of
Theorem 3.1, and for z < 0, considering the mirror image of C in the imaginary axis, and
applying the residue theorem, it may be shown that the distribution function of U is

F(z) = {I_E::E"h]m{_zykfz} forz 20

E:l Bk[_jﬂxp{—zphfﬂ] for z < 0. {38}

The result is very well known, having been given by several authors (see Box, 1954).

Using (38) and following steps similar to those in the proof of Theorem 3.2, it may be
shown that the distribution of P, when U has the form (37), is

F(z) = { 1-3 Bz, (pra)~'])*"!  for 2 >0
Y3 By)(¥lz, (pra) ™) for z < 0

where ¢ 1s the same function we defined in Theorem 3.2. Obviously, since no integration is
involved, (38) is easier to use than Theorem 3.1.

(39)

When some A;'s are singletons while others come in pairs, we can write U/ = [/; + U 7,
where

q
Ur =3 digyu? (40)
=1

with distinct A;;y’s and Uy is as in (37). The p.df. f; of U; can be found from Theorem
3.1, and f», the p.df of Uy, can be found from (38). The p.df f(z) of U can then be
found by convolution:

f(z) = f_mmz —y)faly)dy.

Since z enters both fi(z) and f3(z) only as an argument of the exponential function, such
a convolution is easy to obtain analytically and is roughly of the same form as F(z) in
Theorem 3.1. The distribution of the corresponding P can be found using the same means
as in the proof of Theorem 3.2, and is numerically no more difficult to compute than (31).

It is unlikely that, in practice, we would encounter values of A; repeated more than three
times, and, therefore, the discussion above should cover most practical situations. However,
for completeness, we briefly outline a treatment for the most general case where U = Uy +U5,
with Uy as in (40) and Uy containing coefficients the values of which are repeated an even
number of times. The distribution of Us can be obtained using the residue theorem. It will
have the same general form as (38), but B,’s will now be polynomials and not constants.
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The distnibution of U again can be found analytically by convolution, although now it
will contain I'-functions (because B} are polynomials). That of P can be obtained using
the same method as in the proof of Theorem 3.2, but because of the I'—functions in the
convolution, it would contain 8 -functions.

4. Asymptotic Mean and Variance

If we do not assume that € is normal, then in general we cannot say much about u. Conse-
quently we must proceed differently and indeed the exact mean and variance of (9) are not
available. However, we can obtain the mean and variance of the numerator of (9) and obtain
asymptotic results by letting the denominator 52 — ¢?. These results will be sharper than
the ones in Sen (1976).

To obtain the mean of the numerator ce'Ze we can proceed directly. As before we can
write e'Ze = e'MZMe = €'Be, and, since we are interested in the distribution under the
hypothesis, E(e) = 0 and cov(€) = o?]. Hence

E(e'Be) = E(tr[€'Be]) = E(ir[Bee']) = tr|E(Bee')]
= tr[BE(ee')] = tr[B(c*I)] = o%tr[B] (41)
as before. Hence E(ce'Ze) = eo’ir(B) and E(P) = tr(B).
In order to obtain the variance, we first compute
E(e'Be)* = E(¢'Bee'Be) = E(tr|eBee'Be]) = E(tr]Bee'Bee']) = tr| BC) (42)

where
C = E(ee'Bee’). (43)

To compute (43) we note that
E(e})=ps and E(ele?) =" wheni #j, (44)

and all other expectations of the products of four €;’s are zero, 1. e.,

E(e, 3;) = E(ei)E(ej) = 0 for i # j,

E(eieier) = 0 for i # j,i # k, (45)

Eleiejerey) = 0 for i # j,k, L.
Now set €€'B = A = (a;¢) (ie, A is the matrix with elements a_). Obviously a £ =
€; ) k= €kbyg - Since the (£,7)th element of €' is € €, if we set C = (c;;),

m

cij = ) _cgli,i) where cp(i,5) = Elei(Y_ €3b,q)e €]
£ k=1
From (45) we see that the terms of ¢y (i,j) are zeros unless
i=jandk =2 (46)
i=Land k =j (47)

270



Distribution of spatial correlation statistics

i=kand £ =3 (48)

First consider © = j. Then the only non-zero term in cg(i,1) occurs when k = £. Therefore,
if i £4, cgft,i) = byo®, and if i = £, ci(t,1) = bipg. It follows that

T
Cii = Z buyo® + bii(ps — o) = n"ltri.B} + bii(pg — %)
=1

I i # 7, then cg(i,7) # 0 only if either ¢t = £ or j = £. In the former case eifi,j) = o*b;;
and in the latter case c;j(1,7) = c*b;;. Since B is symmetric, this yields

Cij = Eg*b,-j.
S tr[B] %12 ... 2bia
O — ot zb:zl 1'-1‘[.3] 2'5'211
%n %ny ... tr[B]

+ (p4 — o*) diag(b11,b22, ..., bun)
=20"B + (ps — 30*) diag(b11,b22, ..., bnn) + o (tr[B])]..
From (41) and (42)

var(e'Ze) = tr[BC| — o(tr[B])? = 20*tr|B?] + (u4 — 30?) iaf:i_ (49)
=]

It has been shown (Sen, 1976) that e'Ze = €'Be is asymptotically normal when by — 0
and some other mild conditions mentioned in that paper are met. In most practical situations
where a small set of observations are not unduly influential these conditions will always be
met. Then, of course, (us — 3¢*) — 0. Since s — &? almost surely, the asymptotic
normality of e¢'Ze/s? follows from Slutsky’s Theorem (see Rao, 1971, p. 122). Hence the
asymptotic variance of P is 2tr[B?].

5. References

Bellman, R. A. (1962) Introduction to Matrix Analysis, McGraw-Hill, New York.

Box, G. E. P. (1954) Some Theorems on Quadratic Forms Applied in the Study of Variance
Problems, 1. Effect of Inequality of Variance in the one-way Classification, Annals of
Mathematical Statistics, 26 464-477.

Brandsma, A. S. and R. H. Ketellapper (1979) Further Evidence on Alternative Procedures
for Testing Spatial Correlation Amongst Regression Disturbances, in Exploratory and
Explanatory Statistical Analysis of Spatial Data, C.P.A. Bartels and R.H. Ketellaper,
Eds. Martinus Nijhoff, Boston, 113-136.

CLff, A. D. and J. K. Ord. (1981) Spatial Processes, Pion, London.
Hille, E. (1959) Analvtic Function Theory, Vol. 1, Ginn and Co., Boston.

Imhoff, J. P. (1961) Computing the Distribution of Quadratic Forms in Normal Variables,
Biometrka 48 419-426,

271



Ashish Sen

Koertz, J. and A. P. J. Abrahamse (1969) On the Theory and Applications of the General
Linear Model, Rotterdam University Press.

Koopmans, T. C. (1942) Serial Correlation and Normal Quadratic Forms in Normal Vari-
ables, Annals of Mathematical Statistics, 13 14-33.

L’Esperance, W. L., D. Chall and D. Taylor (1976) An Algorithm for Determining the
Distribution Function of the Durbin-Watson Statistic, Econometrica, 44 1325-1346.

Mullholland, H. P. (1970) On Singularities of Sampling Distributions, and Particular for
Ratios of Quadratic Forms, Biometrika, 57 155-174.

Nehari, Z. (1961) Complex Analysis, Allyn and Bacon, Boston.

Pitman, E. J. G. (1937) The ‘Closest’ Estimates of Statistical Parameters, Proceedings,
Cambridge Philosophical Society, 33 212.

Plackett, R. L. (1960) Principles of Regression Analysis, Clarendon Press, Oxford.

Rao, C. R. (1973) Linear Statistical Inference and its Applications, Wiley.

Ripley, B. D. (1981) Spatial Statistics, Wiley.

Sen, A. (1976) Large Sample-Size Distribution of Statistics Used in Testing for Spatial
Correlation, Geographical Analysis, 9 175-184.

Sen, A. and S. Soot. {(1977) Rank Tests for Spatial Correlation, Environment and Planning
A, 9 BIT-903.

Smirnov, N. V. (1937) O Raspredelenie w? kriteriia Mizesa, Matematicheskii Shornik, 2 44
973-993. A French summary is given in Smirnoff, N. V. (1936) Sur la Distribution de w?
(Criterium de M. R. v. Mises), Com. Rend. Acad. Sci. (Paris) 202 449-452.

Srivastava, M. S. and C. G. Khatri (1979) An Introduction to Multivariate Statistics, North-
Holland.

Von Neumann, J. (1941) Distribution of the Ratio of the Mean Square Successive Difference
to the Variance, Annals of Mathematical Statistics, 12 367-395.

White, K. J. (1978) A General Computer Program for Econometric Models — SHAZAM,
Econometrica, 46 151-159.

Wilks, 5. S. (1962) Mathematical Statistics, Wiley.

272



Discussion

DISCUSSION

“Distribution of spatial correlation statistics”
by Ashish Sen

The paper looks into the difficult problem of obtaining the exact distribution of
spatial correlation statistics P for normal residuals under the null hypothesis of spa-
tial independence. Also, the first two moments of P are obtained together with the
first two asymptotic moments for non-normal variables. Theoretically the results
are impressive, but I believe that substantial further work is required to make them
applicable in practice. My main comments are as follows:

(1) How will the actual formulae for the distribution function help with numerical
examples? Cannot the same work be achieved in practice by simulating the per-

centage points under the null hypothesis? [I am not clear of the precise overlap
of Theorem 3.2 with Mulholland (1970)].

(ii) The mean and variance of the statistic P under the normality assumption are
given in Section 2. How will these help in approximating the distribution func-
tion? Should one take higher moments and use a Beta distribution, for example?
The work of Jones (1987) and the references therein are relevant to obtain the
moments.

(iii) The asymptotic variance in Section 4 also must depend on cov(e'Ze,s?). This
value can be obtained in the same way as var(e'Ze) in Section 4. Using the
asymptotic varniance for the ratio through Taylor series expansion one can obtain
an improved approximation to the variance of P for random samples from non-
normal vanables. The use of the permutation approach of Box and Watson (1962)
and Mardia (1970) will be a step forward. Note that for b;; — ( asymptotically,
the variance of P under the normal and non-normal cases is equivalent. Thus, at
least for the first two moments, the effect of non-normality seems to be minimal!
Does this result require the assumption that the kurtosis is negligible? A few
simulation studies should prove useful.

Now coming to a point of detail, I might mention that Theorem 2.1 follows trivially
from a well-known result (see Mardia, Kent and Bibby, 1979, p. 95, Exercise 3.4.21) that if
X ~N(p,Z), then

var(X'AX) = 2tr(AE)?,
cov(X'AX, X'BX) = 2tr(AEBE).
Here e ~ N (0, M) where M is idempotent so that
cov(e'Ze, e'e) = 20%t1(ZM) = 20'tz(M'ZM) = 20*tr(B)
var(e'Ze) = 2tr(ZM)? = 20%tr(B)?,
var(e'e) = 20%p.

Further, P = e'Ze/e'e and V' = e'Ze, are independent under normality of e because P is
a scale free quantity. Hence var(P) can be written down.

In conclusion, I am sure that Dr. Sen’s paper will generate further research work with
the aim of some specific recommendations for the practitioners.
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