— S ——
PREAMBLE
The power of Thought — the magic of the Mind!

Byron, Corsair

Whe was the innovator who first wrote of spatial economeirics? Probably hidden
somewhere in the yellow-paged journals of yesieryear is a forgotten article, the first
to break this barrer; if il ezists, undoubledly its discovery will occur ai some fu-
ture daile. Certainly Paelinck was one of the first scholars to devote considerable
thought 1o complications that lie dormant in iraditional econometric analysis but be-
come problematic when analyzing geo—referenced data. Over the past fifieen years he
has repeatedly developed and/or modified economeiric technigues in order lo han-
dle these complezilies. As is characierisiic of his earlier work, here he presents
rationales, relevant properties, empirical ezamples, and possible eztensions of es-
timators. In doing so, he highlights the difficulties of specification, inierpretation,
and compulation. The purpose of this paper is to present the siz mew estimation
techniques colled simulianeous dynamic least squares, strictly positive conditional,
linear logistic, leasi spheres, non-numerical regression, and disiribution—free power.
Acknowledging the innovativeness of Paelinck’s work, Anselin emphasizes the focus
of the siz new estimators (i. e., problems of simulianeily in spatial modeling, data
limilations, and complezities atiributable to spatial interaction), as well as the tech-
nical issues of identifiability, disiributional properiies, and non-trivial implications
associated with various approzimations {o non-linear estimators. All in all, this pa-
per is as delightful an ezample of the spatial econometric viewpoint as can be found
in the hteraiure loday.

The Editor
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Some New Estimators in Spatial Econometrics
J. H. P. Paelinck

Department of Theoretical Spatial Economics, Erasmus University, P. O. B. 1738, 3000 DR
Rotterdam, The Netherlands

Overview:  The empirical study of spatial economic phenomena leads to a large
number of specifically different problem settings. Reliable quantitative study of these
problems often cannot proceed using standard econometric techniques, or approaches
that initially were developed for other purposes. Moreover, better solutions can
be obtained for these problems by modifying standard results in an appropriate
way, or improving the properties of methods that already have been proposed. A
number of new estimators are presented in this paper; it is believed that they will
prove illuminating when applied to those spatial economic cases for which they have
been developed. Without presenting an integrated body of econometric analysis—
like k—class estimators, for instance—these new estimators represent a sample of
spatial econometric estimation exercises that might usefully complement the body
of knowledge already in existence.

1. Introduction

One important aspect of spatial econometrics is the development of estimators appropriate to
given types of problems. In Paelinck and Klaassen (1979, Chapter 3) some special estimators,
based on previous work, already have been presented. These include

= estimators for a spatial income-generating model;

* estimators for the interregional attraction model: MOLS (Multiregional Ordinary
Least Squares), IOLS (Interregional Ordinary Least Squares), ISSML (Interre-
gional Semi-Separable Maximum Likelihood); and,

» estimation of threshold effects.
Estimators presented in Chapters 4 and 5 were original contributions at the time, and include
*» distribution-free testable spatial autocorrelation estimation;
» component parameter estimation [for a recent application of this procedure, see
Kuiper (1989)]; and,
» fuzzy multiple regime estimation.

In this paper more recent materials that resulted from research undertaken since the
publication of the aforementioned volume are presented. The organization of this presen-
tation is as follows: rationale for the estimator, its presentation with relevant properties,

an empirical example, and possible extensions. Additional aspects can be found in Ancot,
Paelinck and Prins (1986), Ancot and Paelinck (1987) and Paelinck (1989).
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2. Newcomers

2.1. Simultaneous Dynamic Least Squares (SDLS)

In Paelinck and Klaassen (1979, Chapter 7) it has been shown how SDLS estimation can
simultaneously comply with synchronic, diachronic, sectoral and spatial interdependences.
The model can indeed be written as

Ay + Bx = £, (2.1.1)

where matrix A represents the linkages between arbitrary endogenous variables y (spatial-
1sed or not, lagged or not), Bx the effects of exogenous shocks, and £ stochastic elements. !
The SDLS estimator is derived from the optimization problem of

1&]1:]1;1{3' - A7'Bx)'(y - A"'Bx) (2.1.2)

and computed from the vector-matrix transformation of equation (2.1.1)
y =Xv + £, (2.1.3)

with y and X respectively being a vector and a matrix of observed variables (one should
note that vector x and matrix X are not the same), 4 the vector of A and B coefficients,
and (2.1.3) being in fact a so-called “normalised form” of equation (2.1.1). The estimator
15 given by

¢ = (X'X°)"X'y, (2.1.4)

where matrix X¢ contains estimated endogenous variables. Numerical work conducted on

this estimator has found that in practice convergence of a Gauss—Seidel nonlinear estimation
procedure does occur (Prins, 1985).

Some properties of the equation (2.1.4) estimator are:
» 1t 1s a generalized reduced form estimator;
» if £ ~N(0,0°I), then the estimator is a maximum likelihood (ML) one; and,
= ¢ is consistent, with pim 4 ¢ = ¢?(X'X)™!.
Some early applications of this estimator can be found in Ancot, Kuiper and Paelinck (1981).
It has been applied more recently to the estimation of discrete versions of the Lotka—Volterra

model (Bagchus a.o., 1985; Budding a.c., 1985; Dickmann and Spoorendonk, 1987; for the
model itself, one is referred to Peschel and Mende, 1986), the latter being then specified as

A'ln(z) = a + bzyq + cyi_1 (2.1.5a)
A'ln(ye) =d +ez4—1 + fyi (2.1.5b)

where the variable x represents population and y income per capita. Applied to the city
of Rotterdam over the period 1946-1978, this estimator has given those results appearing
in Table 1 (the computer program is discussed in Schueren, 1986). These tabulated values
have acceptable interpretations. Loo (1987) also has studied other dutch cities, the principal
problems encountered being that of the availability, the quality and the comparability over
time of income figures. One could consider introducing distributed lags into this model, too.
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TABLE 1
PARAMETERS OF A LOTKA-VOLTERRA MODEL
FOR THE CITY OF ROTTERDAM

Parameter Estimated Student’s
Value t-statistic

a —0.8798 —T7.68

b 0.0711 7.33

c (0.398E8 4.22

d 1.0870 0.49

e —0.8025 —B8.51

{ —0.5355 —5.67

a*® 0.0362 1.64

d*° 0.0538 2.43

® Optimisation parameters for the starting point of an endogenous simulation.

Simultaneous dynamic least squares also can be useful in studying spatial autocorrela-
tion. Consider the model

y = pCy +pi +, (2.1.6)
where C is a geographic contignity matrnx, and i is a vector of ones. The SDLS estimator
is generated by minimising w.r.t. p and g the expression

¥y = (I - pC)~Hil'ly — u(I - pC)71i]. (2.1.7)
Let us suppose that
PA(C)|max < 1, (2.1.8)

so that one can consider an approximation supplied by only the linear terms of the spatial
multiplier, (I + pC); equation (2.1.7) then can be rewritten as

y — (X + pCli]'ly — pu(I+pC)i], or (2.1.9)
y — (i + pn)]'ly — p(i + pn)), (2.1.10)

where the vector n results from summing over the rows of matrix C.
A first hypothesis can be that this summation gives a constant, v such that

n = ui, (2.1.11)

but differentiating equation (2.1.10) with respect to u and p gives one and the same equation.
This outcome is due to the non-discriminating effect of an infinite spatial structure.

If one defines

n=1in, and (2.1.12a)
n* =n'n, (2.1.12b)
then the two parameter estimates become
p=(y'n—pun)/(gn*), and (2.1.13a)
p=(i'y +py'n)/(r + 2on + p’n*), (2.1.13b)
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where 7 is the number of spatial units. In equation (2.1.13), then, the non-spatial mean,
i'y/r, is corrected for spatial autocorrelation.

From equations (2.1.13a) and (2.1.13b),

p = (ni'y —ry'n)/(ny'n —n*'y), and (2.1.14a)
p=(ny'n —n*i'y)/(n® —n*r). (2.1.14b)

These two expressions can be rewritten as

p = —(r/m)(W* /™) — U/[(*/4") - (a*/n)(n/r)) and  (2.1.15a)
b = w*ln/r)W* ) —n*/n))/ (fr —n*/n), (2.1.15)

with
* 8 1'y/r, and (2.1.16a)
u* 2 n'y/n. (2.1.16b)

From equation (2.1.15a) one finds that if y4® = u”, then p would be zero; the spatially
corrected average does not add any information. Hence from equations (2.1.3b) or (2.1.15b)
then, p = p*.

Study with respect to the critical values for p, namely 1 and —1, can proceed as follows.
I (n*/n)(n/r) —1 =1, then p = —r/n > —1, so r/n is a damping factor. Positive
autocorrelation is to be expected with “skew” spatial structures defined as

(n*/n)(n/r)"! > p*/p* > 1. (2.1.17)

In the case of a constant number of first~order autoregressive links, v, the expression for p
becomes

p=(1/v)(p"/u—1). (2.1.18)

Supposing p* > 0 and g > 0, negative autocorrelation occurs for p*/p < 1, but will never
be less than —1. Positive autocorrelation can only exceed +1 (e. g¢., a non-stationary
geographic process is operating) if (p*/u — 1) > v, which is a possibility for which the
probability is unknown.

2.2. Strictly Positive Conditional Estimation (SPCE)

Ancot and Paelinck (1981} have drawn attention to the conceptual necessity of obtaining
strictly positive values for certain parameters resulting from an a priori spatial theory. They
have investigated the approach outlined here in the ensuing discussion. Let 8 be a parameter
of the equation

& 2 yi— Bz, (2.2.1)
the probability of observing jointly £; and 8 being written as
p(&i,B) = p(&:l8)p(B), (2.2.2)

where p(£;|3) 1s given by equation (2.2.1) and p(#3) is a prior density for parameter 4. One
estimates J under the hypothesis that over the observation period (or the observed regional
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TABLE 2
FLEUR SECTOR NUMBER 28, PERIOD 1950-1960¢

Var- With Ehmination
ia-  of Parameters With All Parameters 95% SPCE Bounds
bles the Wrong Sign

Bols Student’s t Bols Student’s t Bspce lower upper
X 0.647 34.93 0.647 35.20 0.647 0.618 0.675
Xo 0.832 5.31 0.799 5.10 0.802 0.530 1.034
Xg 0.243 1.43 0.196 1.14 0.196 0.101 0.336
Xy 0.759 4.75 0.705 4.34 0.706 0.444 0.941
Xs 0.873 4.04 0.783 3.52 0.782 0.417 1.087
N 0.215 6.06 0.216 6.15 —0.100 -0.120 —0.084
X7 0.388 11.42 0.403 11.50 0.403 0.360 0.452
Xg 0.434 20.52 0.424 19.41 0.424 0.396 0.452
Xg EEEE *EEEF —0.034 —1.52 0.100 0.091 0.110
Xio 0.119 1.76 0.110 1.64 0.110 0.083 0.144
A1 0.063 0.81 (0.G88 0.89 0.079 0.049 0.095
XNia —0.121 —1.16 —(.158 —1.49 —0.158 -0.283 -0.095
X3 0.510 6.35 0.497 6.19 0.496 0.387 0.607
A1 0.330 B.03 0.331 B.11 0.331 0.287 0.376
Xis (0.303 7.65 0.301 7.68 0.301 0.262 0.343
Xig 0.134 3.53 0.129 3.39 0.1286 0.110 0.150
Xt 0.103 3.64 0.104 3.70 0.104 0.092 0.117

R*=0.974 R?=00975
MSE?=1542 MSE =1.493 MSE = 10.340
“price” of SPCE = 6.927

“ On the FLEUR model, see Ancot and Paelinck (1983).
b MSE is the residual variance.

system) 8 has been constant. This estimation has been investigated for £ ~ N(0,2I) and
B ~T(B"), where T represents a Tanner distribution having estimates 8*. The estimated
value, B°, is

- - =1
B=B(B, B")+2me(X'X)B") i, (2.2.3)
where fl is the ordinary least squares (OLS) estimator, and n is the number of observations.
One should note that

» equation (2.2.3) has indeed a strictly positive (or strictly negative, if required )
value in 8°; and,

* up to second-order o?, VAR(8°) equals the OLS expression.

Table 2 summarizes an individual result borrowed from Enhus (1986) based upon this
estimator.
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TABLE 3
SYNTHESIS OF RESULTS OBTAINED BY ENHUS, 1986
FLEUR Sector Penod Number of “Price”
Replaced Coefficients

19 1960-1970 2 6.337
28 1950-1960 2 6.927
37 1950-1960 2 7.059
19 19501960 . 8.912
a3 1950-1960 2 14.643
28 1960-1970 1 17.168
37 1960-1970 2 a4.603
7 1950-1960 3 220.399
7 1960-1970 3 566.485

Following Ancot and Paelinck (1981, p. 360, Property 3) the confidence intervals for
the SPCEs have been assumed to be log-normal. The interpretation of the tabular results

reported in Table 2 is obvious; the “price” to be paid for SPCE 1s the ratio of the residual
variance SPCE/OLS (all parameters).

Table 3 presents an overview of those results obtained by Enhus (1986).

2.3. Linear Logistic Estimation (LLE)

In spatial analysis the presence of binary 0 — 1 indicator variables that are to be predicted
or statistically explained (presence or absence of certain elements) is frequent. Suppose the
probability p;j: for a firm of type i (I charactenstics of a “plant profile”) of exporting
product j (J characteristics of a “product profile”) to country k (K characteristics of an
“export profile”) to be logistic. The three profiles are represented by a vector x, with “more”
of a characteristic increasing the probability of exporting according to the function

Pisk = [1 + exp( —a'x}]_l, (2.3.1)
with
a >0, (2.3.2)

and with the observations being 0 (no exports) or 1 (exports). Let two variables be defined,
one for exporters as

di; 21 - [1 + exp(—a'x;)] ™", (2.3.3a)

and one for non-exporters as
dai £ [1 + exp(—a'x;)] 7, (2.3.3b)

Thus one can easily compute
a'xy;=In(d;} = 1) 2 63,> 0, and (2.3.4a)
—a'xy; = In(d;} — 1) 2 65> 0. (2.3.4b)
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Maximising 3" ,(61; + 83;), under a norm restriction, one obtains

a®= A" X'X)"'X"i, and (2.3.5a)

VAR(a®) = A~3(X'X)?, (2.3.5b)

which means that the ratio af/e(a}) is independent of A, so that the null hypothesis a = 0
can be tested.

The numerical example presented in Table 4 has been explored here. Using those data,
Table 5 compares the results from a classical “probit” analysis with that of LLE.

TABLE 4
DATA FOR L. L. E.
Vanables
Values of 1 Y A3 X
1 1.0 6.0 4.0
2 1.0 8.0 2.0
3 1.0 4.0 3.0
4 1.0 7.0 0.0
5 1.0 9.0 1.0
il 0.0 2.0 6.0
7 0.0 3.0 9.0
R 0.0 1.0 4.0
9 0.0 0.0 8.0
10 0.0 1.0 7.0
TABLE 5
PROBIT AND L. L. E.
Parameter Probit Student’s t LLE Student’s t
of X, 3.40 0.20%10-92 0.20 1.18
of X5 =172 —0.90%107093 —0.13 —0.70
Constant —2.54 —0.23%10-08 —0.26 —0.18

One can see from these tabulated results that the signs as well as (for the parameters of
x; and Xz ) the ratios are consistent. The t statistics for the LLE estimators, however, are
much less non-significant than are those for the probit estimators, the data obviously being
ll-conditioned.

Recently this estimator has been extended to 0 — z; cases, where the z; are possibly
all different real numbers. For the latter observations the vector i in equation (2.3.5a) 1s
extended by Af, with vector

€ 2 In(2 — 2k77) — In{(24k: — 1)exp(a’x;) + 1}, (2.3.6)

which reduces to the binary 0 — 1 case for a choice of A — 0 (very small “distances”
required) or z;k' — 1, Wi (a perfect fit, which is the equivalent result). The k;s are
variable asymptotes; for a specification of the form

ki = exp(b'y;), (2.3.7)
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straightforward OLS (with an extra parameter for the z; = 0 observations) allows the
estimating of b.

2.4. Least Spheres Estimation (LSE)

In some cases of spatial analysis, the presence of potentials (sums) can lead to multicollinear-
ity; in such a case, another estimator, LSE, can bring relief, its objective function being

n

_[ZZ (ai; — y13+ZZz” z7:)%)/2, (2.4.1)

=1 =] =1 =1

where the a; and z;; are the endogenous variables to be estimated, and the starred variables
y{ and z7; are being observed (the number of degrees of freedom will remain n — k in this

case). More specifically, one minimises the sum of squares of the radii of the hyperspheres
with centres (y7, zf;), i, that are tangent to the hyperplane y; = E;—l ajrij, Vi.

The estimators for a = la;] are
i = {Kt'xr —E_EI:}}:*‘yt,

the stars indicating exogenous variables, which is a curious rejoinder to ridge regression.
As the ajs are not inversely invariant with the measurement units of the z;;s, ¢ should
be maximised, and to guarantee positive definiteness, its sign reversed (the mathematical
Justification for this approach appears in Paelinck and Klaassen, 1979, pp. 54-55). Table
6 reproduces the results for this estimator applied to a tourist model of Swiss data for
the “canton du Valais” (Bailly and Paelinck, 1988). Significance tests for the estimated

parameters are available, and their results are reported in Table 6.

2.5. Non—numerical Regression (QUALIREG)

Suppose one wants to explain a phenomenon on which only qualitative observations are
available (for example a vector of ranked items y' = [+ + +, —, 0, ++, ...]), with the same
situation prevailing for the matrix of explanatory variables, X:

+ —
++ 0 :
X=| = ++ - - - (2.5.1)

Suppose matrix X is of order n-by-k (n observations on k explanatory variables). Such a
situation is frequently encountered in spatial econometric analysis. The following programme
gives a solution for the problem: find a vector of coefficients 8° maximising

(¥, ¥°), (2.5.2)

where 7 is Kendall’s rank correlation coefficient ? and y*® the vector of estimated ranks of
y. A normalisation of B° is necessary, which leads to the mathematical programme

max = maxﬁ r 2.5.3
g B° s
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TABLE 6
PARAMETERS OF A TOURIST MODEL
AFPPLIED TO A “CANTON"” IN SWITZERLAND

Types of Villages
Valley Locations

Mountain Locations

Parameters French German French German
Speaking Speaking Speaking Speaking

Self-inducation /breaking —0.074*  —0.760 -0.722  —-0.236*

Locations Potential:

French Speaking Valley 0.003* 0.109* 0.061* 0.078*

German Speaking Valley —0.069* 0.111% 0.006* —0.002*

French Speaking Mountain —0.056* 0.111* 0.016* 0.013*

German Speaking Mountain —0.010* 0.112* —0.019% —0.038%

Optimised starting point 0.377* —0.012* 0.290 0.421*
of endogenous dynamics

Autonomous growth/ 0.004* 0.109* 0.062* 0.080%
decline rate

Pseudo-R ? 0.241*  0.563 0.460 0.416*

NOTE: * denotes significance at the 95% confidence level using chi square and F test statis-
tics.

subject to:
-i < f8°%<i (2.5.4)
where 7 is the vector of Kendall 7's corresponding to the permutations of columns of X

producing y*®. “Multiple correlation” and B¢ tests are available, as Table 7 shows.

This method has been applied to an explanatory relation of water discharge per province
in the Netherlands (see Davelaar a. o., 1983). Table 7 gives the results of a comparative

exercise with OLS-estimation; more elaborate commentary on these results appears in Ancot
and Paelinck, forthcoming.

2.6. Distribution—Free Power Estimator (DFPE)

Relations in spatial econometrics are often of a highly non-linear nature (see Paelinck and
Klaassen, 1979, pp. 6-9). Power parameter specifications can be useful to model such
behaviour; an early application of this perspective to a so—called “multiple gap” investment
model, using other solution methods, is reported on in Ancot e. a. (1978).

Generalised Box-Cox transformations (see Box and Cox, 1964) will be discussed next,
together with a proposed procedure for nonparametric estimation. This latter procedure—
for generalised Box—Cox transformations—can proceed in the following manner. Suppose a
non-linear relation exists and may be specified as

k

e __ o P3 3
¥, = E :ﬂ':.rz-:'j"-'fl

i=1

(2.6.1)
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TABLE 7
COMPARISON OF THE RESULTS OBTAINED BY QUALIREG AND BY QLS
Coeflicients
by Kendall’s bs  Kendall's by Kendall's Multiple
tau tau tau Correlation
QUALIREG
0.5 0.24* -0.4 0.31 —-0.3 0.16 0.636¢
1.0 0.24 -0.8  0.31 —0.56 0.18
0.8 0.24 —-0.6 0.27 -0.4 0.27 (0.600
1.0 0.20 -0.6 0.35 -0.8 0.09
Coefficients
by S-1 by St bs S-1 bs S-t  Multiple
Determination
OLS

3635.02 165 —-150 -1.26 0.17 302 -10335 -—1.33 O0.875
“S—t” 15 short for “Student’s t”

“ Significant at the 5% level, in accordance with Kendall's tau, implies a value of 0.2385 or
more,

Note: ° denotes significance at the 5% level, using Kendall’s tau (critical region is —0.385
or less).

one of the z;;s being equal to unity if necessary (the regression constant). The typical
“normal” equations for this situation are as follows (from minimising 37 §;* = ¥): 3

Eh& Z ajz;dlyfin(y;) = (2.6.2a)
J—l
0w
e anz” In(z;j) = 0 (2.6.2b)
PJ = 1
E_FZLF': Zﬂjm ]'ml.jl —n {EEEE]
=1 _';l-]
Equations (2.6.2a) and (2.6.2b) can be expressed in vector-matrix form as
yi(p) =Xi(p)a, (2.6.3a)
and similarly for equations (2.6.2c),
y2(p) = Xap)a, (2.6.3b)

where equation (2.6.3b) is a generalisation of the OLS normal equations.
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This finding means that vector a can be eliminated by combining equations (2.6.3a) and
(2.6.3b), yielding

yi(e) = Xa(p)X3 ' (p)y2(p), (2.6.4)

where the inverse term X, ' exists except in the presence of perfect multicollinearity or for
p = 0. At least in principle, systems like equation (2.6.4) could be solved by Gauss—Seidel
methods (see Hughes Hallett, 1984).

The specifications explored here are the following identical iterative equations, with [
denoting the iteration step, derived from equation (2.6.4):

p1= BT (P)X1(P)X 5 ()ys (o)1, (2.6.5a)
a multiplicative identity, and
pr=pPi-1+ [Xi(p)X ,—1(p)ys(p) — ¥1(p)i-1, (2.6.5b)

an additive identity.

The first estimation results obtained were disappointing. * Either different answers were
converged upon, or no convergence occurred at all. A next step was to proceed directly with
equations (2.6.2a) and (2.6.2b) in their identical additive form, the advantage being that they
are mono-parametrical. This strategy rendered poor results, too. Hence the differential form
of the latter equations, 1. e.

n
Zemf[ﬂ*]n{yi] + 1)ldy; = 0, (2.6.2a*)
tam]
and
n
Y e ilpjin(z;j) + 1)dzi; =0, (2.6.2b*)

1=1]

has not been investigated.

Inspection of the objective function ¥ shows that, given ¥, j, y; and z;; > 1, this
function tends to zero for ¢ and p; — —oc. At best a local minimum can be found within
given bounds. Perhaps the unit hypercube [—i, +i] should be used as these bounds, given
that it covers the interesting extreme cases, to wit linear regression (o,p j = 1), double
logarithmic regression (o,p; — 0), and inverse linear regression (o,p; = —1). Then a global
local optimum could be searched for by appropriate methods, e. g. simulated annealing
(Laarhoven, 1988); other methods presently are being investigated.

3. Conclusions

Econometric estimation remains a difficult exercise. The first difficulty resides in specifying
an approach that may lead to operational results, starting with the stated aim of an exer-
cise. Common aims include better simulation, more precise estimations, the obtaining of
parameter estimates with specific properties, exploitation of poor quality data, or handling
non-linear or interdependent relationships. Econometric wisdom is useful, for attaining some
of these objectives, but should be complemented by ingenious inventiveness to generate the
mathematical entities that correspond to given requirements.
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A second point of difficulty worth mentioning is that parameters to be estimated are not
to be assumed as being independently given, from outside of the problem, but rather have
to be viewed relative to the use that is to be made of their estimated values. Typical uses
include prediction (again in a relative sense, and in terms of a specific purpose), simulation
(again as specified with regard to its aims, such as analyzing system stability and sensitivity,
or exploring consequences of either policy measures or exogenous shocks), hypothesis testing

here sometimes absolute parameter values are irrelevant, as can be seen in the foregoin
: g
discussion of QUALIREG and LLE).

A third, and final, difficulty acknowledged here concerns the computation of parameter
values. A desirable specification renders simple, robust estimation procedures that produce
achievable results. This extremely useful property should be welcomed, as well as sought in
a chosen procedure.

Consequently, the spatial econometric findings reported in this paper, especially when
couched in terms of the three difficulties outlined in this conclusion, illustrate the enormous
possibilities that still remain for contributing to this subfield. The most beneficial contri-
butions will combine spatial economic theory, general econometric wisdom, and numerical

analysis, with each of these three fields continuing to hold immense potential for research
and discovery.
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NOTES

1. Column-vectors are systematically represented by lower case bold letters, matrices by
upper case bold letters except for diagonal matrices identified by a cap, and ! denotes matrix
transposition.

2.7 =1-4Q/In(n —1)], where Q is the number of so—called elementary permutations
of y (see Kendall, 1962).

3. For small £;, second order conditions for a minimum in & and p; will be satisfied for
given a;s.

4. Computer computations by Niek Mares are gratefully acknowledged.

5. Computations have shown the existence of various singular points satisfying equations
(2.6.2); also see Footnote 3.
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DISCUSSION

“Some new estimators in spatial econometrics™
by J. H. P. Paelinck

In his chapter, Professor Paelinck presents six econometric estimators geared to problems en-
countered in spatial economics. They are the following: simultaneous dynamic least squares
(SDLS), strictly positive conditional estimation (SPCE), linear logistic estimation (LLE),
least spheres estimation (LSE), non-numerical regression (Qualireg), and distribution—free
power estimation (DFPE). The latter is new, while the others are extensions and general-
1zations of earlier work, most notably in Ancot, Paelinck and Prins (1986), and Paelinck
(1987).

Before I formulate some technical comments on the approaches suggested by Professor
Paelinck, I would like to outline a more general organization of the six estimators based

on three distinct perspectives or emphases, similar to the taxonomies suggested in my own
chapter and in Anselin (1988a).

A first overall category is that of the particular perspective or paradigm represented in
each method. Three distinct approaches are reflected in the six estimators. The classical
perspective 1s taken for SDLS, LSE and LLE, which are examples of a maximum likelihood
or pseudo—(quasi-)maximum likelihood (e. g., Gourieroux et al, 1984; White, 1984). The
properties of these techniques are based upon asymptotic results, and hence they are alter-
native ways to solve estimation issues as problems of optimization (or best fit). A second
approach is that reflected in the SPCE technique, where use is made of extraneous informa-
tion to restrict the estimation, similar to Bayesian or Stein-like procedures (e. g., Judge and
Yancey, 1986). The crucial issue is how to derive the proper mix of data and prior informa-
tion, which naturally leads to a concept of price associated with the imposed constraints.
The third perspective is that of the nonparametric (robust) Qualireg and DFPE techniques,
where limiting or otherwise unrealistic distributional assumptions are avoided.

A second important category of estimators involves the way in which specification is-
sues particular to spatial modeling are taken into account. Foremost among these are the
issues of spatial and space-time dependence as well as the various non-linearities associated
with spatial interaction models (e. g., distance decay functions, potentials). These topics
are specifically addressed by SDLS, LSE and DFPE. A final category addresses the data
limitations encountered in spatial analysis, namely problems of measurement (Qualireg) and
positivity (SPCE).

In sum, the vanous new estimators suggested by Professor Paelinck focus on problems
of simultaneity in spatial modeling, on data limitations encountered in spatial analysis, and
on special complexities associated with spatial interaction. They compare to other recently
advocated new directions, such as various shrinkage estimators (and the treatment of out-

liers), spatial adaptive filtering, and a spatial bootstrap estimator (for a review, see Anselin,
1988a).

From a technical standpoint, there are a number of issues raised by these new methods
that mert closer scrutiny. First, the simultaneity expressed in most of the formulations (but
especially for SDLS) raises questions of identifiability. In particular, the spatial structure
inherent in the system under consideration somehow needs to be expressed in formal terms.
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Whereas the SDLS approach is the most flexible one in this respect, as it avoids the familiar
problem of assuming a weights matrix, it is conditional upon the availability of sufficient ob-
servations over space or space-time to allow for the identification of the structure of spatial
interaction. In this respect, the re-introduction of a spatial weights matrix in the application
of this technique to problems of spatial autocorrelation seems to be a step backward. Also,
all six methods, to the extent that they deal with spatial dependence, presume spatial ho-
mogeneity, whereas spatial heterogeneity has been shown to be just as important a problem
in empirical regional science (Anselin and Griffith, 1988).

The distributional properties of the various estimators are unclear. Based on asymptotic
considerations, one may reasonably expect normality in most cases, but this is not necessar-
ily reflected in the finite samples encountered in practice. The general issues involved in the
trade—off between asymptotic normality and finite sample robustness are well-known, but
the exact costs associated with each approach in practical empirical situations are less well
understood. In addition, there is no unambiguous standard by which to compare the per-
formance of the various new estimators in actual applications. Since most of the approaches
are non-linear and do not necessarily result in residuals with a zero mean, the interpretation
of the standard R? is not clear (Anselin, 1988b). The larger question is how to adequately
summarize spatially differentiated or spatially dependent indicators of model accuracy. Un-
less this issue is addressed, there is really no standard by which to judge the superiority of
these “new” approaches. Similarly, as yet there is no satisfactory way to assess the informa-
tional content of methods in which quantitative and qualitative measures are combined (as
in Qualireg). Although the higher degree of realism expressed in the qualitative judgments
m the data matrix is attractive, the degree of precision associated with the guantitative
estimates remains unclear.

Finally, it may be interesting to compare some results for the spatial autoregressive model
(2.1.6) between the SDLS approach and the more traditional regression approach. Using the
notation of Paelinck, such a specification would be as follows:

Yy =pCy +pi+¢

where C is the spatial weights matrix. With the simplifying condition (2.1.11), expression
(2.1.18) finds the relation between p and p as:

p=(1/v)(p'/u—-1).
As shown in Anselin (1988a), a conditional least squares estimate for p is:
p= (1)1 - pC)y

or, with i'i = r, and a symmetric matrix C, (Ci)' =i'C = (vi)',

p = (1/r)(i'y — pi'Cy),
p=(1-pv)iy/r)

or, in Paelinck’s notation, with i'y/r = u™:

p=(1-pvjp* and
p=(1/v)(1-u/u")
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This result is not the same as expression (2.1.18), except for the uninteresting case where
p = p* and thus p = 0. This simple derivation illustrates that the various approximations
implied by the non-linear estimators are not trivial, and may have significant consequences
for the ultimate results. The exact nature of these consequences needs to be investigated in
further detail. The innovative methods suggested by Professor Paelinck provide a challenge
to other researchers in spatial statistics to pursue this more extensively, both from a formal
as well as from an empirical viewpoint.
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