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EDITOR'S NOTE

The primary contribution of this monograph is to place in
the literature a complete analysis of the actual calculations
employed by artist David Barr in constructing his global sculpture,
"The Four Corners Project." The physical positioning of this
sculpture is chronicled in the f£ilm, "In celebration: David Barr's
'Four Corners Project'," completed in July 1985 for The Smithsonian
Institution. ‘ _

Beyond that, this analysis reveals the central role that
classical mathematical geography played in this contemporary art

form. From map projection selection, to rotation matrices, to
spherical trighometry, all are accessible to the reader who is
well-trained in high school mathematics. Thus, this document may

also serve as an instructional tool in the application of mathematics
to solving empirically-oriented geographical gquestions.



PREFACE

"The Four Corners Project" is the construction of the world's
largest sculpture using the least amount of material. It consists
of an invisible tetrahedron spanning the inside of the earth with
the outer four corners just protruding from the crust of the earth.
These visible corners are located in Easter Island, South Africa,
New Guinea, and Greenland, with imaginary planes extending through
the earth from each corner to the other three. The corner is a
pinnacle of marble (a four inch tetrahedron) barely emerging from
the ground like a sprouting plant. The sculpture is a colorform
of such vastness that, like the planet itself, it is impossible
to perceive it as an entity. Its viability resides in its being
collectively constructed and collectively experienced. Its process
of construction and communication will be a cultural/geographic/
spiritual/esthetic metaphor.

This project, as an act of constructive creation, has at its
core a faith in humanity and a faith that when we are united by the
arts, the world community is most loving, most sane, and most human.
The structures that bind humans through interests, needs, relation-
ships, heritage, intellect, faith, and understanding, are an invisible
filigree of connective links, a filigree that embraces innumerable
people in the past, present, and future. When our spirit is enlarged,
enriched, and enjoyed through connection, it moves gquite naturally
toward the celebration of that reality. The culmination of connection
is celebration in its most transcendent form.

In 1976 I designed "The Four Corners Project," and constructed
an instrument to rotate a small globe model inside four equidistant
points to locate general coordinates for placement of a tetrahedron.
In 1981, T was able to begin the actual construction of the project,
and therefore I regquired two factors . . . verification that my
placement in an obviously approximate scale model would correspond
when actualized in world scale, and two, the precise coordinates
of that placement. John Nystuen supplied both, indeed offered
several choices within the original constraints and calculated the
precise coordinates. In January of 1985, after complex negotiations
with the Indonesian government, the final corner was implanted in
Irian Jaya. The sculpture was complete.

During this time, John Nystuen and Sandra Arlinghaus have
continued to explore the geo-graphy (-metry) and other implications
of the project. For their stimulating and crucial contributions,
their care, their insights, and their creativity, I am forever
grateful.

David Barr

Northville, Michigan
1985.
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1: INTRODUCTION

Fascination with the regular polyhedra (tetrahedron,
cube, octahedron, dodecahedron, and icosahedron) dates from
antiquity and emerges at various times in a wide range of
disciplines (Figure 1.1). The architecture of the ancient
Egyptians 1is often characterized by the pyramid (a half
octahedron), while some of the mathematics and philosophy of
ancient Greece was centered on the whole set of regular
polyhedra. Euclid's Elements, the great compendium of Greek
geometry, 1is thought by some to be a treatise devoted to
the development of theorems about these solids.? Plato,
in the dialogue "Timaeus," linked these polyhedra with the
basic components from which he believed the universe was
formed. The tetrahedron was to correspond to fire, the
cube to earth, the octahedron to air, the icosahedron to
water, and the dodecahedron to his idea of the universe as a
whole. Since he wused this correspondence as part of his
natural philosophy, the adjective "Platonic" is often
employed to describe this set of solids.?

Evidence that this particular classical idea went
through the resurrection characteristic of the
Renaissance in Western Europe is present in Dboth

'H. S. M. Coxeter, Reqular Polytopes, 2nd ed., (New
York and London: Macmillan, 1963), D 13. Hermann
Weyl, Symmetry, (Princeton: Princeton University Press,
1952), p. 74. According to Coxeter, Proclus was the first
to suggest such an idea. In the modern view of the history
of mathematics, Heath, according to Coxeter, does not
support this view of the _Elements (Heath, A History of
Greek Mathematics, Oxford, 1921), while according to Weyl,
A. Speiser does support it.

2Plato, "Timaeus." Also reference to this is made in
Weyl, Symmetry, p. 74, in H. S. M. Coxeter, Introduction to
Geometry, (New York: John Wiley and Sons, 1961), p. 4, and
in Coxeter, Polytopes, p. 13.




scientific and literary works of that time. Platonic solids
captured the imagination of the young Kepler (1571-1630),
who used them, and spheres inscribed in and circumscribed
about them, to try to describe the harmonious patterns of
symmetry he observed in the spacing of the planets about the
sun.? Literary reference to such ideas is present in the
works of William Shakespeare (1564-1616),

"The heavens themselves, the planets, and this
center

Observe degree, priority, and place,
Insisture, course, proportion, season, form
Office, and custom, in all line of order;"*

of Sir Thomas Browne (1605-1682, physician and author},
"For there is a music wherever there is a harmony,
order or proportion; and thus we may maintain
the music of the spheres; for those well ordered
motions, and regular paces, though they give no
sound unto the ear, yet to the understanding they
strike a note most full of harmony;"*®

and of John Milton (1608-1674),
"Yonder starry sphere
Of planets and of fixed in all her wheels
--mazes intricate
Eccentric, intervolved, yet regular
Then most, when most irregular they seem;

And in their motions harmony divine

*Weyl, Symmetry, p. 74; Johannes Kepler, Prodromus
Dissertationem Mathematicarum continens Mysterium
Cosmographicum, (Tubingen, 1596).

*William Shakespeare, Troilus and Cressida, AcE I,
Scene 1i1i.

Sir Thomas Browne, Religio Medici, 1643, part ii.




So smoothes her charming tones that God's own ear
Listens delighted."®

In the twentieth century, Platonic solids appear as
shapes useful in organizing the beginnings of one approach
to the spatial design of structural material in biology,
geophysics, and art. D'Arcy Thompson observes that while
only the tetrahedron, cube, and octahedron appear naturally
in the mineral world, all five Platonic solids are present
in the living world in the skeletal structure of (among
others) various Radiolarians.’ Further, a particular solid
may appear in the same type of substance that takes on
disparate forms; the tetrahedron lends its shape, at the
scale of the whole, to the entire diamond crystal, and its
symmetry of structure, at the molecular level, to the carbon

ring.

In the geophysics 1literature, Athelstan Spilhaus
inscribes a tetrahedron inside a cube in a dodecahedron, all
within the globe, and observes that "not only do the(se)
‘solids provide a framework for patterns that appear in
surface plates, but their own common vertices mark the
locations of greatest tectonic activity on the Earth's
surface."® Of the four common vertices, three are
coincident with tectonic hot-spots in the North Atlantic,

¢John Milton, Paradise Lost, book wv.

’Sir D'Arcy Wentworth Thompson, On Growth and Form,
(Abridged edition, edited by John Tyler Bonner), (Cambridge:
The University Press, 196l1), pp. 159-169, passim. The
diagrams of Radiolarians that appear here are based on
Haeckel's Monograph of the Challenger Radiolaria. Also of

interest, Arthur Lis Loeb, Space Structures: Their
Harmony and Counterpoint, Foreword by Cyril Stanley Smith-
(metallurgist), (Reading, Mass.: Addison-Wesley, 1976).
*Athelstan Spilhaus, "New look 1in maps brings out
patterns of plate tectonics,"” The Smithsonian, (Vol. 7,
No. 5, Aug. 1976), p. 60. Athelstan Spilhaus, "Geo-Art:

Tectonics and Platonic Solids," Transactions of the American
Geophysical Union, 56. No. 2, 1975.




the South Atlantic, and the Indian Ocean near Sumatra, and
so are fixed relative to underlying crustal plate
movement.® Then appropriate projection of an inscribed
icosahedron onto the globe produces curved faces that
approximate the shapes of the tectonic plates underlying the
surface of the earth, thereby revealing "regular patterns
(that) result from the harmony of dynamical laws."?!°®

In art, David Barr, a contemporary artist at Macomb
Community College in Michigan, is 1in the process of
constructing a global sculpture in the shape of a regular
tetrahedron entitled "Four Corners Project.™?*? The
sculpture will consist of four separate marble 'corners' of
a tetrahedron imbedded in the surface of the earth at
locations representing vertices of an abstract tetrahedron
inscribed within the earth. While i might seem
appropriate, for the sake of structural permanence over
geological time, to place these corners at Spilhaus's hot-
spots of tectonic activity, pragmatics forced Barr to seek
locations on land. Thus Barr's problem was to find
locations on the earth's land masses that were vertices of a
regular tetrahedron inscribed 1in a sphere. He specified
further that one vertex be on Easter Island, as the 'navel
of the earth' and the point of attachment for his sculpture
within the earth. These practical constraints, together
with Barr's recognition of the geographical character of
this problem and of the associated one of dealing with
the distribution of 1land masses across the surface of the
earth, led him to John Nystuen of the Department "of

*Spilhaus, "New look," p. 61.
1o Ilbid. p. &0,

*10thers apparently also share Barr's enthusiasm for
creating sculpture of this sort. Thomas Shannon of New York
claims to be constructing a complete set of Platonic solids
in the earth, 1in his project "Corners of the World," The
CoEvolution Quarterly, Spring 1982, p. 122.




Geography: at The University of Michigan. Nystuen's
algorithm for wverifying Barr's proposed solution for land-
based positions for each of the four corners 1is presented
below, and its use resulted in the selection of locations in
Easter Island, the Kalahari Desert, Greenland, and New
Guinea. This location set not only satisfies Barr's land-
based criterion and choice of Easter 1Island, but also
reflects a certain aesthetic quality in the placement of the
vertices in terms of the diversity of substance available on
earth: from the igneous rock deep within the earth below
Easter Island, to the diamond crystals at Kimberley, to the
ice fields of Greenland, and the mangrove swamps, composed
of carbon-rich organic material, of New Guinea.'’

The material that follows contains Nystuen's solution
to Barr's problem that was used in the actual positioning of
the sculpture in the earth, and Arlinghaus's solutions to
(i) the natural extension of Barr's problem for the
remaining Platonic solids, and (ii) questions surrounding
the wuniqueness of Barr's choice of a tetrahedron for his
sculpture. This is done with an eye to wviewing Barr's
sculpture as a monument linking the intellectual traditions
of man's past (from Egyptian architecture to Kepler's
cosmos), with the spherical surface man inhabits. Or, as
Barr himself puts it:

. !2pavid Barr--To emphasize that his sculpture
unifies these widely separated substances and locations,
Barr has put 1igneous rock from Easter 1Island into the
Kalahari Desert (along with the tetrahedral vertex), has
repeated this ceremony in Greenland, and will repeat it in
New Guinea with an accumulation of physical material from
the three other locations.



"Wwhen I think about space and time, my concepts of
them tend to coalesce, for one seems to be the
means of establishing my experience of the other.
. . . Time 1is the exhibitor of space. Space

demonstrates time,"!?

Tetrahedron Cube Octahedron

Icosahedroen

Dodecahedron

Figure 1.1

13pavid Barr, "Notes on Space/Time," The Structurist,
(No. 15/16, 1975/76), p. 42.




2: FOUR CORNER SITES FOR THE TETRAHEDRON SCULPTURE* *

David Barr's choice of a tetrahedron to be inscribed in
the earth fixes on a pleasingly symbolic sculpture. The
tetrahedron is the simplest of the Platonic solids and
possesses elegant symmetries which permit several different
approaches to the problem of finding the location of its
four corners on the earth. 1In one approach, Nystuen chose
to consider the tetrahedron to be defined by a set of
vectors issuing from an origin, O, such that the heads of
the vectors are on the surface of a sphere and where each
vector is as far from the others as possible. This
condition results in an equal spacing of points on the
sphere (Figure 2.1). One attribute of this view of the
tetrahedron is that the algebraic sum of vectors issuing
from the center of the solid (considered as the origin) is
zero, as will be shown below. (For this sort of view of
other solids, see Appendix A.l.) This symmetry provided
the key to Nystuen's solution of the theoretical portion of
Barr's problem.

However, Barr's problem is
more than a theoretical
exercise. It has an empirical

------------- component that reqguires
______________ positions of the land-based
vertices described in terms of
earth-coordinates; thus the

entire project has even
Figure 2.1 greater scope. For ultimately

14+From material in, John D. Nystuen, "Notes on David
Barr's Four Corners of the Earth,”™ unpublished Exhibit
Notes, from Barr's museum exhibit, Meadowbrook Hall, Oakland
University, Michigan, November 1982.



Barr must move from thought to action and wvisit his four
corners of the earth. The logistics of this undertaking
call for great effort on his part and for help from many
others. The project takes on heroic proportions.

Barr specified that one vertex of his tetrahedron be
located on Easter Island, a very prescient choice since the
probability of locating the other three points on 1land are
enchanced. By his own work, Barr was fairly certain of
where the other three points lay. Nystuen's procedure of
1980, presented in this section and in Appendices A.l and
A.2, confirmed his analysis. This was the procedure
actually used in placing elements of the sculpture on the
earth.?*® More efficient means for determining suitable
locations were found later, and these are described
following Nystuen's original solution. This section
concludes with a discussion of the problems of precision in
location of earth-coordinates that result from assuming the

earth to be spherical.

LOCATION OF THE TETRAHEDRON IN A SPHERE

In the Unit Sphere

The first task was to find the size and 1location of
the small circle Sl' inscribed on the surface of the globe
created by rotating a tetrahedron about the axis passing
through Easter Island (Figure 2.2). Introduce a right-
handed (x,y,z)-coordinate system into the sphere in such a
way that the positive half of the z-axis passes through

15The complete procedure 1is explained below; Nystuen
explained this process briefly in a film about Barr's
sculpture, for the Archives of American Art, Smithsonian
Institution, September 1983.



Easter 1Island (e).

gfz The origin, O, of
this coordinate
system is the
center . of the

tetrahedron and of
the sphere it is

inscribed within.

> 7 The small circle S1

containing the other
T three vertices (as

s P T T S i o, unit sphere
o g T heads of vectors a,
b, and ¢g) will lie

in a plane parallel

I

lo
l

to the (xy)-plane
and in the
FAGRES 2.8 hemisphere opposite
from Easter Island

(Figure 2.2).

Determine the components of the vector a in the (yz)-
plane, issuing from the origin with head on the small circle
Sy (Figuri 2.2). From Appendix A.2, the z—compgnent, a,, of
a is a_=-3T; since r=1 in the unit sphere, a,=-3. Using the
Pythagorean theorem, the y-component ay is found as

(8]

ay2 + (—%)z = 1,0, so aY = 12

w

and the x-component, a, is obviously ax=0, since a lies in

the (yz)-plane. Thus a = [0, 2%2, -%] where the positive

direction is chosen for the y-component (Figure 2.2).

The components of the vectors b and ¢, which determine
the positions on 3§, for the remaining two vertices of the
tetrahedron, may be found in a similar way. Since a, b, and

c all lie on Sy and since the plane containing 5 is
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parallel to the (xy)-plane, the equation of this plane is
= l-' i _"‘i = = = —.].'-. 1 3

z=-3 since a,=-3. Thus az—bz c, 3 Since the triangle

described on S1 by these three vectors is equilateral, it

follows that

b = - d = .
y + cy ay an bY cy
Thus 2by = —2%3 (Figure 2.3), so by = cy =-K%.

Then use the Pythagorean Theorem to find bx and Cyt

(Figure 2.2) and the radius
of S, is 2%3.

Thus the set of vectors
determining the positions
for vertices of the
tetrahedron inscribed in the

4

unit sphere is:

e=[0,0,1]
a=10, 2!3@ —3:-,;-] [1]
v
(b) Polar view of (a) _ L‘g Q 1
Q-_[ 37 - 3’ ""3-]
Figure 2.3 c=[_@ _Q _;]



1l

To this point, only geometric properties of coordinate
systems and of various plane and solid figures have been
used; the power of adopting the vector approach to this
problem has not yet been exhibited. The remainder of the
analysis in this section will wuse results from linear
algebra; the reader unfamiliar with them is referred to
Appendix B for derivations. Vector notation reveals the
symmetry in structure that was exhibited visually in the
derivation of vector set [1] since the sum of the vectors in

that set is zero.

The vector set [1] may be used to determine the lengths
of the edges of the inscribed tetrahedron by viewing those
edges as vectors [e-al, [e-b], [e-c], [a-b], [a-c], and [b-
c]. Since the tetrahedron is regular, each of these vectors
has the same length. The length of a typical vector, [b-cl,

is
|[b-cl1| = ((31§—6)2)1/= - 3‘3/—6 = 1.632993162. 2]

The same set, [1], of vectors may also be used to
determine the angle # between any two vectors of [1]; then 6
may be used to measure the distance between vector heads on
the earth's surface since this distance is the arc length of
the central angle # measured on the sphere. Using the
symmetry of the tetrahedron, it is clear that the angles
between each pair of vectors in [1l] are the same size. The
angle 6 Dbetween two typical vectors e and a is found as
follows (where "+" denotes the dot product of vectors): ’

— a = . = ——
cos 6 = TETTET = e-a 3 (3]

since [a| = |p] = |g| = |el = 1.

Thus 6 = 109.4712206°, or converted to radian measure, the

angle contains L%%%l= 1.910633203 radians.
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In the Earth

Using R="the radius of the international sphere" for
Clarke's ellipsoid of 1866 as the radius of a sphere with
the same volume as the reference ellipsoid, R=6,370,997
meters, or R=3958.7461 miles.s® Then all of the
measurements found for the unit sphere may be calculated for
the earth.

The radius, g =g%gx§, of the small circle S,
containing the threelvertiCEs determined by a, b, and ¢, is
(from [11]),

_ /2 B ={6,006,633.576 meters
1 3 3732.3416 miles.
Using [2], the length of the edges of the tetrahedron within

the earth is,

2/6 . ={10,403,794.54 meters
3 6464 ,6053 miles

all of which would be underground. From [3], the distance
on the sphere between two vertices is the arc length,

X6 = = _(12,172,638.4 meters
Tgo * R = 1.910633203 x R ={ 7131.1358 miles.

o

These measurements are intended to give some appreciation
for the magnitude of this project.

1¢5imo H. Laurila, Electronic Surveying and Navigation
(N.Y.: John Wiley & Sons, 1976), p. 193.
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LOCATION OF THE TETRAHEDRON VERTICES IN EARTH-COORDINATES

Easter Island

Barr specified that one vertex of the tetrahedron be on
Easter Island, the "navel of the earth." Easter Island is
located between 109°16'30"W and 109°27'05"W and 27°03'00"S
and 27°11'00"S. A convenient spot for one vertex of the
sculpture might be at Tahae on the western shore of the
island. The name signifies "the place of the setting

san, ™7
The site proposed for the first element of the
sculpture is located at

-109.4305555°W

109°25'30"W an approximation t
PP aried L9 99 qp928fs,

27°06'20"s
A Dbetter approximation (but not the one used originally)

is given by
(27°06'33"S, 109°25"50"W) or (-27°06'33", =109°25'50"),

For more precision, but still not exactness, one can convert
the decimal approximation by partitioning seconds of
latitude/longitude into 60ths, and so on, to obtain earth

coordinates:

(-27°06'33"18"', -109°25'49"59m159(iV) (V) g(vily

It remains to calculate the earth—-coordinates
associated with vectors a, b, and ¢ whose heads lie on .Sy .
Professor Richard Taketa, formerly of the Department of

Geography of the University of Michigan, used computer

graphics to construct an azimuthal map projection centered

'!7’John Dos Passos, Easter Island, Island of Enigma,
Garden City, (New York: Doubleday & Co., 1971),
illustrations 9 and 10. Also, Carlos Charlia Ojeda, Geo-
etimologia de la Isla de Pascua, (Santiago, Chile: Instituto
Geografico Militar, 1947), pp. 190-191, and map facing
p. 208.
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on the point antipodal to Easter Island, (27°06',71°35'), in
the Thar Desert of 1India (based on a program of Waldo
Tobler). This map is the critical tool in solving the
empirical problem. Distances measured from the center of
an azimuthal projection are in true proportion to distances
on the sphere. Therefore a circle of radius rsl
centered on this point in India, drawn to scale on the map,
will contain the points sought. An equilateral triangle cut
from a piece of paper was used as an aid in locating the
collection of points which could serve as vertices of the
proposed sculpture (Map 2.1). By placing its corners on
the circle S, drawn on the azimuthal map, one can rotate the
triangle and discover the collection of points which satisfy
the condition +that they all £fall on dry 1land. This
procedure confirmed that Barr's own discovery of the
location set {Easter Island, Kalahari Desert, Greenland Ice
Cap, and New Guinea} was feasible., Keeping in mind Barr's
desire to have one of the vertices at the Kimberley diamond
mines, the following procedure was used to find earth-
coordinates for a, b, and ¢ on Sl’ and coordinates in R3 for
e, a, b, and c.

The actual calculation of the latitude and longitude of
the points sought proceeded in two broad parts. First the
relative location of the vertices was established by finding
vector positions on a unit sphere endowed with a right-
handed (x,y,z)-coordinate system. The second step was to
move a unit vector by rotation (a rigid motion preserving
length) to a position on Easter Island. This prodéss
simultaneously moved the three vectors from O to S1 in a
like manner. Three transformations were required; one 1in
azimuth (longitudinal shift), one in elevation (latitudinal
shift), and finally one rotation around the axis centered,

in the first step, on Easter Island.
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/ =7
&’ \ (27°06', 71°351)
& +

Map 2.1
AZIMUTHAL EQUIDISTANT PROJECTION
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Coordinate Transformations

We know the relative positions of the vertices of the
tetrahedron for an arbitrary unit sphere in the (x,y,z)-
coordinate system. We now relate this system to the earth
and rotate a unit vector to the location of Easter Island by
a shift in longitude followed by a shift in latitude. This
can be accomplished by multiplying each vector by a
transformation matrix which combines the two rotations.

Longitude Shift: Let rotation through angle a, about the

z-axls, be represented by the rotation matrix Ra’

cosa -sina 0
Ra = |sina cosa 0|to be applied to a column vector.
0 0 1

Latitude Shift: Let rotation through angle §, about the
x-axis, be represented by the rotation matrix RB,

Al 0 0
Rﬁ = |0 cosp -sinf|{ to be applied to a column vector.
0 sinf cosp

Product of +transformations: Since these two matrices are

conformable for multiplication their product

cosa -sinacosf sinasing

RaRB = Raﬁ= sina cosacosf -cosasing
0 sinp cosf
represents the product of two rotations, or rotation

through a, followed by rotation through g.

To execute the desired coordinate transformations, let
T be the tetrahedron determined by four vectors g, a, b, ¢,
with e on the positive half of the axis, with head at
longitude 0, latitude 0 (Figure 2.4). Here e is taken along
the y-axis to aid in earth-based wvisualization; previously
it was taken along the z-axis to facilitate visualization in
the right-handed (x, y, z)-coordinate
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system. To distinguish any
rotation of a vector in the
unit sphere from rotations
that lead to geographic

¥ coordinates of longitude and
latitude, symbols such as a,

B, v will represent
rotations of the former type
while the symbols A and ¢
will represent rotations of

Figure 2.4 the latter sort.

3 on the Unit Sphere

Find Coordinates of e, a, b, ¢ in R

Rotate T to center e=[0,1,0] on Easter Island at
e'=(-27.10833°, -109.43056°); or, in terms of coordinates

3 3%
in R°, at e' = |y'|(Fig. 2.5)
z'l

The vector e=[0,1,0] is to

be rotated through
$=-27.10833° 1in latitude in
e the negative direction;
'3 followed by A = -109.43056°
in longitude in the negative
direction; use Rk¢ applied
eytez?) to e to obtain e'. Thus:
Figure 2.5 3
=’ cosA -sinlcos¢ sinising 0 -sin\cose¢
e'={y'|=|sin\ cos\cos¢ -cosAsing|-|l|=| cosicos¢
2! 0 sing cos¢ 0 sing¢
Ecuating corresponding components,
X' = —-sinicose¢
y' = COSAcos¢ [4]

z' = sing
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Evaluating [x',y',2'] at A = -109.43056°, ¢ = -27.10833°,

gives

x' 0.83944859
e' = y'| = |-0.29611987
z' ~0.45567433

Similarly, use of the rotation matrix Rh¢ applied to a, b,

¢, will give coordinates in R3 for a', b', ' (Figure 2.5):

0
1| |-.6849612799
a'=R, x a =R 3 |=| .2416182677
8 R X 27 Xl 7]
o3| 76873467876
3
V6
.1 |-.328862384
b'=R, x b =R, .| -%| =|-.7427453601 [5]
S A = .5715105574
_y2
3
_V6
3| |.192375937
c'=R. x ¢ =R .| -=| =|.7972412609
s Al 3| |.5715105574
_v2
4

Note that 1if the vector e had been rotated from
position (0,r,0) within a sphere of radius r to position
e,', rather than in the unit sphere, it follows from [4]
that,
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xr' cos\ -sinicos¢ sinising]| |0
gr‘= yr' =|sinA coslAcos¢ —-cosAsing||r
zr' 0 sing cos¢ 0

~-r sinicosg¢
=| r coslAcos¢| producing a more general form of [5]

I sing
as
' = -r sin\cos¢
T
gr' = I COSACOS9
zr' = r sing
But to find latitude and longitude, we may assume r=1, for

latitude and longitude are the same on any sphere,

regardless of radius.

Find the Earth-Coordinates of a'

-sinicosg¢ -.6849612799
From [5], a' = cosAcos¢|=| .2416182677
sing -.6873467876

Equating like components,

sing = -.6873467876, ¢ = —43.4204490°,
cos¢ = .72632941.
and sin\ = —X_ - +6849612799 94304494, so

cos¢  .72632941
A = 70.569368° or A = 160.569368°,

_ _*y' _ .2416182677 _
and cos\A = cosd - 72632941 = .,33265658, so
A = 70.569901° or A = -70.569901°
Thus A = 70.569°.

Therefore, when e is rotated to €', a in the (yz)-plane Iis
forced to a'= (-43.42044934°, 70.569°) which is in the South
Indian Ocean (Map 2.2).
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Rotate a' to Kimberley

Find the angle 4 through which to rotate a' (-43.4°,
70.6°) to approximately the location of the Kimberley
diamond mine in South Africa a" (-28.8°, 24.8°). Here
A=24.8°, ¢=-28.8°.

e -sinicos¢ -.3675686618
Therefore, a"=|y"|=| cosAcos¢|=| .7954914684
z" sing -.4817536741

To find v, use [3], so

a' - a" -.6849612799 -.3675686618
cosy= =g' « a"=| ,2416182677| -+| .7954914684
EXMELa -.6873467876 -.4817536741

=(-.6849612799)x(-.3675686618)+(.2416182677)x(.7954914684)
+(-.6873467876)x(~-.4817536741)=.77510741189.

Using inverse functions, 7=i39.185228°. To: shift &' to
South Africa requires choosing the negative sign (Map. 2.2).
In the original calculation Nystuen used 7=i40° as an
approximation, because it appeared to be easier to work
with.

Rotate a', b', c¢' through y=-40°
about the Easter Island Axis

The rotation matrix R_, representing rotation about the
Easter Island axis through (-40°) is :

cosy 0 -siny .7660444431 0 .6427876097
R=l 0 1 o0 |= 0 1 0
7 |siny 0 cosy -.6427876097 0 .7660444431

Use this, together with Rk¢' to determine the rotation
matrix Rk¢7 , representing rotation through A, followed by
rotation through ¢ and then through +:
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-.3326641738 .8394485865 .4297215587
-.9430453581 -.2961198717 -.1515865234

R, . =R, R =
Aoy “AGy 0 -.4556743268 .8901465654

.7660444431 0 .6427876097
. 0 i 0
-.6427876097 0 .766044431

-.53105652353 .8394485865 .115353403

-|-.624976717 -.2961198717 -.722299855
~.57221751831 -.455674368 ~-.68189183
0
1 ~.3885721403
Thus 2" = R,, X a = Ry, | "3 [= | .7796973856
ay3| |--4910023404
3
3
% ~.6590425792
p" = R . x b =R Ll w |+ 7520802813
APy L] .006159253
Y2
3

(See Map 2.2)

Convert a" and b", as Expressed Above,
to Latitude and Longitude

a": From [5], equating corresponding components,

sing = -.4910023404, so ¢=-29.406484°
(or ¢ = -119.406484°)
cos¢ = .87115825
26.489949°
and sini = '3882;§i403 = .44604082, so A= { or
: 116.489949°
26.489986°
and cosh = =1726973856 _ 89501233, so A = { or

e -26.489986°
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Thus the earth-coordinates of a" are (-29.406484°,
26.489°)

b": From [5], equating corresponding components,

sing = .006159253, so ¢ = 0.35290121°
cos¢ = .99998103
41,227847°
and sinn = =8230825792 65905507, so A= or
d 138.77215°
_ 138.77214°
and cos\ = '7522202613 = -.75209453, so A= { or
@ —138,777214"

Thus earth-coordinates of b" are (0.35290121°, 138.7721°)

The a" 1location falls in the Kalahari Desert, and the
b" location is close to the equator, about 5° north of New

Guinea (Map 2.2).

Make a Small Adjustment in y to Fix Site in New Guinea

Since the value y=-40° produced a value for b" that was
about 5° north of New Guinea, use 9=-45° to obtain a wvalue
for b" on New Guinea. Here,

cos(-45°) 0 -sin(-45°)

o 1 0
sin(-45°) 0 cos(-45°)

By s (v=—25°) = BxaPla=-15"] = Bpg”

-.3326641738 .8394485865 .4297215587
=|-.9430453581 -.2961198717 -.1515865234
0 -.4556743268 .8901465654

.70710678 0 .70710678
. 0 i 0
-.70710678 0 .70710678
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-.5390881213 .8394485865 .068629935
= |-.559645909 -,2961198717 -.7740216263
-.6294708468 -.4556743268 .6254249829

V6
3
" L ° _..]_'
Thus. DE=Ry sl maiggt) * Byt 450} 3
V2
3
.81649658 -.,68762734
=R o wpany | —wd3I33I3IF = -.72311963
A (y=-45") 1 "35720a52 06535557
Convert to latitude and longitude:
sing = -.06535557, so ¢ = -3.,7472692°
cos¢ = .99786204
136.44131°
and cos\ = "'7§gé1963 = -.72466894, so A = { or
-136.44131°

So, coordinates for b" are (-3.7472692°, 136.44131°). Since
this point is in the interior of New Guinea, on a high
plateau that is relatively inaccessible, coastal sites to
the north and south of this were sought; on the north when 7y
= -43° and on the south when y =-46°,

If v = -43°: Here,

.7313537016 0 .6819983601| -

B, 1o S o B, 8 0 1 0
Ap(y=-43%) "¢ (7y=-43") "Xé|_ 819983601 0 .7313537016

-.5363645732 .8394485866 .0874929316
=|=.5863179531 =.296119817 <=.7540197527
-.6070784979 -.4556743268 .6510119856

Thus, under the condition that y=-43°,
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V6
31 - ,6765543228
DU=Ryg(y=-43°) * 2L = Rag(y=-a30)| T3|7|1- 735467828
V2
L 3

Convert to latitude and longitude:

sing = -.0368960825, so ¢ = —-2,114469738
cos¢ = 99931911
and cos\ = "732§2;8289 = -.73596893, so A = 137.3891542°
So, coordinates for b" when y = -43°
are (-2.114469738°, 137.3891542°),
I1f v = -46° :Here,

6946583705 0 .7193398003
R o o =R R o o =R 0 0
Ap(y=-46%) "X (y=-46") "X¢ |_ 7193398003 0 .6946583705

‘_l

-.5402037731 .8394485866 .0592110974
=|-.5460521323 -.2961198717 -.7836709069
-.6403178526 -.4556743268 .6183477626

Thus, under the condition that y = -46°,
V6
3| |--6929783502
b" = R ey X D' =R ., _ . ov| -=|=|-.7165690834
g (y=-46°) Aly=-46")| 31| _"079433964
~y.2
3
Convert to latitude and longitude:
sing = -.079433964, so ¢ = -4.556030743°
cos¢ = .99684013
and cosk = —==lL65630B31 _ _ s9684052, so A = 135.9588349°
) cos¢
So coordinates for b" when y = -46°

are (-4.556030743, 135.9588349°),
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Barr chose the position on New Guinea associated with
y=-43°; it remains to determine values for a", and ¢", given

this choice of b".

0
& = 32T 185211
a"=R x a' =R o 3 |=| .8096023215
S="Ap(y=-43°) * = A (y=-43°) |
3 .4618885439
3
_/6
i 1993253574
c"=R .oy X C' =R . .oy| -=|= |.2219853791
N (y=-43°) Ao (y=-43%)1 3| |'954458933
V2
3
Convert to latitude and longitude:
For a":
sing = —-.4618885439, so ¢ = —-27.509039°
cos¢ = .88693798
and cosx = ~809602315 _ 5915806, so A = 24.103953°
cos¢

So, coordinates for a" when y=-43°
are (-27.509039°, 24.103953°).
For o
sing .954458933, so ¢ = 72.641933
cos¢ = .29834234

.2219853791
cos¢

= ,74406257, so A = 41.921356

[}

and cosA

So, coordinates for c¢" when y=-43°
are (72.64193326°, 41.921356°).
Converting approximations of two significant figures when

y=-43°,
a" = (27°30"36"s, 24706" E) Kalahari Desert
" = { 2906 36™s, 137°23724"E) New Guinea
g* = {72°38"24"N, 41°55Y1Z2"E) Greenland
e" = (27°06'20"S, 109°25'30"W) Easter Island
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Checking the Placement of the Vertices

On the Unit Sphere

The distances between the pairs of vectors a", b", ¢
e" are given as follows:
|[e"-a"]|= 1.632991083

| [e"-b"1]|= 1.632992981 Range:0.000005093
|[e"-c"]|= 1.632992981 Mean: 1.632991519
|[a™-b"]|= 1.632989906 "Correct" distance:
|[a"-c"]1|= 1.632994999 1.632993162

| [b"-c"]|= 1.632993162 established by [2].

Variation 1in 1lengths 1is due to approximation in numerical

evaluation of trigometric functions.

MORE EFFICIENT USE OF THIS APPROACH TO BARR'S PROBLEM

Using the values for e, a, b, ¢ found in [1] and the
locations e¢' (-27.10833°, -109.43056°) for Easter Island and
a'(-43.42044934°, 70.569°) in the South 1Indian Ocean,
together with the azimuthal map, values for a", b", c¢" may
be found more efficiently and precisely than in the
preceding material, as follows (Barr's interest in Kimberley
will still be addressed).

Map all intervals on S, which satisfy Barr's conditions

(Map 2.3). This results inltwo disjoint interwvals, I, and
12, for each of the locations for the heads of a", b", c¢".
Choose, as the head of a", the point in I1 closest"to
Kimberley. This forces the sites for the heads of b", and

c". The length of all intervals designated I1 is determined.
by the length of the shortest interval that satisfies Barr's
land-basing criterion; in this case, the New Guinea interwval
I, determines the length of Iy in Africa and I in
Greenland. [The 1length of I, is determined by the I, EGr

erls

To complete the problem, find earth-based coordinates
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for the heads of a", b", c". To do this, use suitable

rotation matrices as 1illustrated 1in Nystuen's procedure

above.

DETERMINATION OF ALL OTHER TETRAHEDRA
WITH ONE VERTEX AT EASTER ISLAND

There are an infinite number of tetrahedra 00010203
that could have satisfied Barr's conditions; however, the
positions for their vertices are within tightly bounded
intervals leading to tetrahedra 'close' to each other within
the sphere. Let 0O denote Easter Island. Use an
equilateral triangle within the circle on Map 2.3 to
determine intervals for positions of the vertices 01, 02,
05.
single interval, since the choice of any single point, Al,

Since there are an infinite number of points in any

within such an interval forces the positions of the
remaining two points, Az, A3, and since the choice of a
different single point, Al', would force two different
points Az’, AB', it follows that there are an infinite
number of tetrahedra available that satisfy Barr's
conditions. (Sample positions for the equilateral triangles
AjAsA and Al‘AZ'AS' are exhibited in Map 2.3. The reader
wishing to verify this, should cut out an equilateral
triangle this size and rotate it within this circle). Each
of these triangles would serve as a base for a tetrahedron

with apex at Easter Island.

PROBLEMS IN LOCATIONAL PRECISION ARISING FROM
THE ASSUMED SPHERICITY OF THE EARTH

Replication of Nystuen's procedure to locate positions
on the earth can lead to varying amounts of accumulated
error based on

1) problems associated with assuming the earth to be a

perfect sphere, and

2) problems associated with assuming all locations to
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be at the same level on the earth's surface.

Consequently, use of this tool as a locational guide should

take into account

1)

2)

the amount the curvature of the earth at a given
location deviates locally from the curvature of a
sphere, and

the amount the elevation at a given 1location
deviates above or below global mean sea level if
extremely precise locational criteria are

necessary.
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3: EXTENSION OF BARR'S PROBLEM TO THE SET OF PLATONIC SOLIDS

General procedure for determining the location of
circles that contain the vertices of a Platonic solid
inscribed in an arbitrary sphere will be developed below.
To do this, it will be necessary to determine the dihedral
angles of these solids.!® Means for calculating dihedral
angles is available in the mathematics literature; Coxeter's
derivation for the measure of the dihedral angle of a
Platonic solid, expressed only in terms of the number of
edges in a face (denoted p) and the number of edges incident
with a wvertex of that solid (denoted g), is included in
Appendix A.*'° Steps from that derivation used in the
material Dbelow, will be referenced by bracketed number to
appropriate statements in Appendix A.

The material in this Chapter, together with the
antipodal landmass map (Terrae Antipodum), will form the
foundation for the proofs of Arlinghaus’'s unigueness
theorems in the next Chapter. As in Chapter 2, the
calculations that follow assume the earth to have a radius
of 3958.7461 miles; they will be made compatible for use
with a standard 12-inch globe, and will be summarized in
table form at the end of the chapter.

Both the procedure to be exhibited below, and Nystuen's
procedure of Chapter 2, contain error resulting from using
approximations in the numerical evaluation of trigonometric

e dihedral angle in a polyhedron is an angle between
planes containing adjacent faces of the solid. Coxeter,
Introduction, p. 150.

t*The Schlafli symbol for a Platonic solid, {p,ql},
denotes a regular polyhedron with p edges  in a face and g
edges incident with a vertex. Hence {3,3} denotes a
tetrahedron, {4,3} a cube, {3,4} an octahedron, {5,3} a
dodecahedron, and {3,5} an icosahedron.
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functions. To give some idea of its extent, we will Dbegin
with analysis of the tetrahedron and compare the two

answers.

THE TETRAHEDRON: {p,q}={3,3}

Suppose a tetrahedron is inscribed in a sphere as shown

in Figure 3.1.

Find : (i) the radius r(Sl) of the small circle S,
containing three vertices of one face of the
tetrahedron

(ii) the latitude ¢(S;) of S, relative to the
equator of this sphere.

(iii) the length of a side of the tetrahedron

(iv) procedure for determining latitude and
longitude, relative to the earth, for vertices

of the tetrahedron on Sl'

In this case, p=3, g=3, and the dihedral angle is 70.6°.
(i) Find r(Sl)-OOOZ; refer to Figure 3.1.
By Appendix A, [4],

2

N k =sin2(§)—cos2 (L)

p
cain® (Z)-cosi(E)==

Thus k=.7071. Therefore,
sinp=k x csc(%)a.slsé, from

Appendix A, E51s Thus
p=54.7°. From [6al,
0003=l cscp and since
0003=radius of
earth=3958.7461, it
follows, from equating

left-hand sides of these
equations, that

1=3958.7461 x .B81l64

= 3231.9203.

From Appendix &, [0], <wc=<020103=(dihedral angle)/2=35.3°.

Figure 3.1
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But from [6b], coswc=(0102)/(0103)=(0102)/(l cotp).

Therefore, 0102=l cotpcoswc=1867.5898. Then, by the
pythagorean Theorem, (0002)2=(0002)2 + 12 = 13,933,200.
Therefore, r(Sl)= 0,0,= 3732.7202 and the unit is 'miles'

since that was the wunit wused in the measurement of the
radius of the sphere.

(ii) Find ¢(Sl); refer to Figure 3.2

Within the right triangle
(000203).
3732, 7202
Therefore, using inverse
functions,
‘ ¢(Sl)sl9.454776° (or
% 3732.7202 G2 19°27717").

Nystuen's answer of 109.47128°
for <0003N produces a value of
109.47128° -90° = 19.47128° (or
19°28'16") for ¢(Sl).

These two answers are indistinguishable on the globe, but

Figure 3.2

not on the earth.

(1iii) The length of a side of the

tetrahedron is 21=6463.8406 miles.
The difference between this answer, and that in Chapter 2,
is .7647 miles which is negligible for all but very small
scale problems.

(iv) Procedure

The following procedure provides a quick, Lat crude,
approximation of latitude and longitude for the vertices of
the tetrahedron on Sl' Cut out an annulus, £from rigid
cardboard, with inner radius 3732.7202 miles, scaled to a
12-inch globe; thus, the inner radius, x, of the annulus 1is
found from the ratio
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3732.7202 _ %
3958.7461 6

Place the annulus over the globe so that it follows a small

so x = 5.657428 inches.

circle on the globe that is parallel to the equator. Stick
a pin in the North Pole and join the pin to the annulus via
three evenly spaced strings tied to the pin and the annulus.
Now remove the pin-annulus-string structure and replace it
on the globe with the pin stuck into the point in the Thar
Desert that 1is antipodal to Easter Island. Now sets of
points that are simultaneously land-based maybe marked off
on the annulus, since it is in the position of Sl’ and their
earth-coordinates, in 1latitude and longitude, may be read

from the globe.

This procedure is not very accurate; Nystuen's
procedure is much more precise though more tedious. For
Barr's purposes the added precision was wvital; for the
theoretical arguments that follow, it is not.

THE CUBE: {p,gq}={4,3}

Suppose a cube 1is inscribed in a sphere as shown in
Figure 3.3. Finds:

(i) the radius I(Sl) of the small circle S;
containing four vertices of one face of the
cube.

(ii) the latitude ¢(Sl) of Sq relative to the equator
of this sphere

{(iii) the length of a side of the cube. ‘

(iv) procedure for determining latitude 'énd
longitude, relative to the earth for the
vertices of the cube on S, -

(i) Find r(51)=000 refer to Figure 3.3.
By Appendix A, [4],

2 b 27 _ . 2T 2m_1
=SLWT—EOSToS  BiATS-EeS 5=,

a9 r

k

1
Thus, k=§ .

Therefore,
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(idii)

(iv)
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sinp=kx csc 3=.57735027, from
[5]. Thus p=35.26439°. From
[eal, 0003=l cscp and since
0003 = 3958.7461, it follows
that 1 = 3958.7461 x sin p =
2285,5831. From Appendix A,
[0], <¢c= (dihedral angle)/2 =

45°, But, from [6b], cos ¢c =

o g S

0103 Icotp

Therefore,

0102 = 1 cot i) coswc =

2285.5831. Then, by the

Pythagorean Theorem, (0002)2=
Figure 3.3 (0102)2 + 1% = 10,447,780

miles. Therefore, r(Sl) = 0002
= 3232.3026 miles.

Find ¢(sl); refer to Figure 3.4
) ol

——————————— 3
P(s,) Within the right triangle
_ 3232.3026
o8 (0g0,04), coslels;)) = 355577461
(_2‘ 2 .
;ﬁ{?<c\ =,81649658. Therefore, using
S, )
o 3232.3026 2 inverse functions, ¢(Sl)

Figure 3.4 = 35,26439°
The length of a side of the cube is 21
= 4571,1662 miles (Figure 3.1).
The inner radius in inches, x, of an annulus
suitable for approximating latitude and 1longitude,
on a 12-inch globe, of vertices of the cube on S1 is

; 3232.3026 :
given by 3958. 7461 26;“ so x = 4.8989794 inches.

the annulus through Easter Island, 00, and determine

coordinates of three other land-based positions on Sl; do

the same for Sl'.
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THE OCTAHEDRON: {p,q} = {3,4}

Suppose an octahedron is inscribed in a sphere as in

Figure 3.5 Find

(iv)

(1) the radius r(sl)

(ii) ¢(Sl)

(iii) the length of a side

(iv) inner radius of an
annulus suitable for
determining earth-based
positions.

(1) Since S; is the equator,

I(Sl) = 3958.7461
(id) For the same reason,

¢(s;) = 0°

p (iii) To find 1, first find k
PR 45 gbeve: k* = sinzg
- coszg =%. Thus k = %.
Then sinp = k csc %
= ,70710678, so p = 45

Since 0003 = 1 gsc p, 4
= 2799.2562, so the
length of a side of the
octahedron is 21 =
5598.5124 miles.

The radius of an annulus suitable for locating
vertices of the octahedron on Sl is 6 1inches. ‘Then
follow the procedure outlined in step (iv) for the
tetrahedron using four evenly-spaced strings.
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THE DODECAHEDRON: {p,g} = {5,3}

Suppose a dodecahedron is
inscribed in a sphere as
in Figure 3.6. Find

(i) the radius r(Sl)

(ii) ¢(Sl)

(iii) the length, 21, of a
side of the
dodecahedron.

(iv) the 1inner radius of

an annulus for
locating earth-
coordinates for

vertices on Sl'
(v) the radius r(SZ)
(vi) ¢(Sz)
(vii) inner radius of an

Figure 3.6

annulus for locating
earth-coordinates
for vertices on 52.

Find r(Sl) = 0,0,; refer to Figure 3.6. By Appendix A,

. 2 "
[4], kz = sin g - coszg = sin % - cosZ% = ,0854915,
Thus k = .30901699. Therefore, sinp = k csc%

= .35682208 from[5]. Thus p = 20.905157°. From [6a],

0403 = 1 csc p and since 0,0, = 3958.7461, it follows
that 1 = 3958.7461 x sinp = 1412.,568. From [O],.<\JJc =
<0,0,0, = dihedral andie . 5g 3°. But, from [6b],
0.0 0,0
cos wc = b2 . ———l—g—. Therefore, Olo2
0103 4 Ccot p
1l cot p cos wc = 1943.2736. Then, by the Pythagorean
Theorem, (0002)2 = (0102)2 + 12 = 5771660.8. Therefore

r(Sl) = 0002 = 2402.4281 miles.
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Find ¢(Sl); refer to Figure 3.7.

Within the right triangle (040,03),

_ 2402.4281 _
cos(¢(S5;)) = 3355.7461 ~

Therefore, using inverse functions,

.60686592,

-0 24024281 - ¢(Sl) = 52.6367680.

The length of a side of the dodecahedron is
21=2825.136 miles.

The inner radius in inches, x, of an annulus suitable
for approximating latitude and longitude, on a 12-
inch globe, of vertices of the dodecahedron on S, is
2402.4281 _ X o, , - 3,64119552 inches

3958.7461 6 * :
Pass the annulus through Easter Island, at 00, and
determine coordinates for four other land-based
positions on Sl(Sl').

given by

Find r(Sz) = 0002'; refer to Figure 3.8.

N From (i) above, 1 = 1412.568.
To find 0.0,', first find
o, 072
; 02" - Using triangle
| O z ]
ogEHV%Bﬁ (0gzz'), sin 54° gl
Ay Thus Oyz' = 21 sin 54°
0o’ o%ﬂ@f‘— %o = 2285.583. Using trigng}e
z
! T (0,0,'2'), sin 36° = 9 .
| 072 '
: ag0y
| Thus r(Sz) = 0002' = ——79—*-
i sin 36°
= 3888.4661 miles.

Figure 3.8

(vi)

(vii)

Find ¢(52); refer to Figure 3.9.

Within the right triangle (0002'03), cos(¢(S,))
= %%%%f%%%% = ,98224651. Therefore wusing inverse
functions, ¢(52) = 10, 812329°,

The inner radius in inches, x, of an annulus
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suitable for approximating
latitude and longitude, on a
12-inch globe, of vertices of

the dodecahedron on 82, is

: 3888.4661
given by 3gegijaer 5 SO ¥
B

= 5,.,8934814 1inches. ass the

o annulus through Easter Island,
2 3668 .4661 & i

at OO' and determine

coordinates for four other

Figure 3.9 land-based positions on

5,(5," 1

THE ICOSAHEDRON: {p,g} = {3,5}
Suppose an icosahedron is inscribed

in a sphere as in Figure 3.10. Find

(i) the radius r(Sl)

(ii) ¢(Sl)

(iii) the 1length, 21, of a side of
the icosahedron

(iv) the inner radius of an annulus
for locating earth-coordinates

for vertices on Sl'

(i) Find r(Sl) = 0002; refer to
Figure 3.10. By [41, k2
= sinzg - coszg = sinzg -
cos?Z = .0954915.  Thus X

.30901699. Therefore, sin p

k csc% = ,52573111 from [5].

Thus p = 31.717474° (where »p

<000301). From [6al, 0003 =

1 csc o and since 0003

Figure 3.1p

3958.7461, it follows that 1



40

3958.7461 X sin P

2081.236. Use 1 to find

[

0.0, from triangle (000102):

072
P o o L
. sing = sin 36° = 0002 so 0002
9 3540.4102 _ 1 K £ LE. )
—W. Therefore Ir 1
Figure 3.11 = 0002 = 3540.8102,
(ii) Find ¢(S;); refer to Figure 3.11. Within the right
triangle  (040,03), cos (¢(S;)) = ggég.gigi

= ,894427189. Therefore, using inverse functions,

¢(Sl) = 26.565051°.

(iii) The length of a side of the icosahedron is 21
= 4162.472 miles.

{iv) The inner radius in inches, x, of an annulus suitable
for approximating latitude and longitude, on a 12—
inch globe,sgiovgiggces ;f the icosahedren on S, is
given by §§§§f7I§I =% so x = 5.3665632 inches.
Using this, repeat the procedure in Step (iv) for the
tetrahedron, using five, instead of three, evenly-

spaced strings.

The table that follows (Table 3.1) summarizes the
computations of this chapter, and includes (in addition) a
section that contains values for the same measures scaled to
the azimuthal projection of Chapter 2. The latter section
will be of use, in addition to the others, in Chapter 4.
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4: TUNIQUENESS QUESTIONS

Beyond utilizing the Platonic association of
'tetrahehdron' with ‘'fire' to claim some sort of unique
natural correspondence of this tetrahedral sculpture within
the earth to the fiery core within the earth, it seems
appropriate to ask

(a) about natural generalizations of Barr's problem

(b) if the tetrahedron is the only Platonic solid that
could have fulfilled Barr's conditions

(i) that all vertices be land-based

(ii) that one of the vertices be at Easter Island.

GENERALIZATION OF BARR'S PROBLEM

Condition (i) is easy to generalize; all vertices must
lie on 1land, no matter how many there are, in order to
retain the character of Barr's original problem. Condition
(ii), however, leads to ambiguity in generalization, as will
be seen.

Lemma 1: The tetrahedron 1is the only Platonic solid in
which the points antipodal to each of its vertices are not
also vertices of that solid (e.g., Easter Island is a vertex
of the tetrahedron but 1its antipodal point in the Thar
Desert is not).

Proof: Proof is by examination of each Platonic solid
(Figure 4.1).

On the sphere P0 and PO‘, Pl and Pl', P2 and P2 . P3

and P3' are antipodal, but only P Py, Py, Py lie on the

0 r
tetrahedron; for all other Platonic solids PO and PO' are

antipodal on the sphere and are both vertices of the
Platonic solid as well (and so also for for P p.',

i 1
etc.). Q.E.D.
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Each Platonic solid exhibits bilateral symmetry with
respect to two axes, Al and A2, as follows:
Ap: with respect to an axis of the sphere which passes
through a vertex of the solid.
A,z with respect to an axis of the sphere which passes
through the center of a face of the solid.

P, P,

[ 2

[

I

l I

B _|_Js
4

JFll
Figure 4.1
Lemma 2: The tetrahedron 1is the only Platonic solid in

which the axes of symmetry, Al and AZ' coincide.
Proof: This is a direct consequence of Lemma 1 (Figure
4.2) and reflects the fact that the graph of
the tetrahedron is self-dual.?®**®* Q.E.D. .
Using Lemma 2, generalize condition (ii) which states "one
of the vertices is at Easter Island”™ to "the axis of the
solid passes through Easter Island.” There are accordingly
two distinct positions, for each of the remaining Platonic

solids, relative to Easter Island, depending on whether Al

*°Harary, Graph Theory, (Reading, Mass.:Addison-Wesley,
1969)
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Figure 4.2

or A, passes through it. Since Barr's problem is stated for
the simplest, self-dual, case, its full structure 1is not
unfolded and hence there is ambiguity in generalization to
cases whose graphical duals are not themselves (the cube and
octahedron are graphical duals, as are the dodecahedron and
icosahedron) ®?

UNIQUENESS THEOREMS
Uniqueness Theorem 1 (Arlinghaus)

Barr's choice of a tetrahedron for his sculpture,
relative to the axis Ay, and the land basing criterion (i),
is unique within the set of Platonic solids.

Proof: Proof will be by exhaustion of all

21Magnus J. Wenninger, Spherical Tesselations, Cambridge
University Press, 1979, and Coxeter, Introduction to
Geometry and Harary, Graph Theory.
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possibilities, and will rely on the earlier
construction for the tetrahedron.

Cube: Within a cube with vertices PO' Pl' Py, P3 on

one face (top) and antipodal vertices Pgy', P;',
Pz', P3' on the opposite face (bottom), the
points Py, Pl', P,, P3‘ will form one regular
tetrahedron while the vertices PO', Pl' PZ', P3
will form another (Figure 4.3, a, b).

F

Figure 4.3

Thus Pl'P2P3‘ will lie on a small circle at 19°25'50" South
Latitude on a wunit sphere where P, is the north pole. 1In
the case when P is taken to be Easter Island, the axis Al
is POPO', and the intervals of possible location, satisfying
condition (i), are near the Arctic for Py, in New Guinea/
Australia for P,, and in South Africa for P3(Map a.1). So
four of the eight vertices may be based on land; use the
antipodal land mass map to determine if the points antipﬁdal
to the ones determined are also land-based. The New Guinea/
Australia intervals that contain P, have intervals antipodal
to them that are not land-based (as seen from the map of
antipodal 1land masses). Thus P,' cannot be land-based, and
so there is no cube that can be ;nscribed in the earth with
one vertex at Easter Island.
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Map 4.1

AZIMUTHAL EQUIDISTANT PROJECTION
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Octahedron

Using Figure 4.1 (c), the equatorial circle, S, must
contain the four vertices Py, Pl’, Py, P2' when P, is Easter
Island, and PyP,' 1is the axis 4, (Figure 4.2(c)). The
radius of S, is 3.0755302 on Map 4.2. Since Sq is a great
circle in this case, points that are diametrically opposed
on S, are antipodal on the sphere. Taking advantage of
this, Map 4.2 can be used to try to determine positions for
Pyy Poty Pyly By
Examine all possible positions for P, that are land-based,

which are all 1land based as follows.

by rotating it along S, until Py’ is reached, (clockwise).
Land-based intervals of candidates for P, are the intervals
[c',;B'], and [A‘,Pz‘]. Intervals for candidates for Pl',
antipodal to Py, may be found by determining intervals [C,B]
and [A,Pz], diametrically opposed to those for P. Within
the intervals [C,B] and [A,P2], only the points 1in the
interval [D,E] are land-based; thus Pl' must fall in [D,E].

This narrows the set of candidates for P, to those points in

the interval [D',E']. Then rotating 1[D,E] through 90°
clockwise and counterclockwise produces the intervals
[D''",B''"'] and [D'',E''] as intervals of points that are
candidates for the location of P, and P2' respectively.
Since no points in [D'',E''] or in [D''',E'''] are land-
based, no octahedron with symmetry with respect to A, and

one vertex at Easter Island can be inscribed in the sphere.

Dodecahedron

Within a dodecahedron (with 20 vertices, Figure 4.1(d))
a sequence of five positions of a tetrahedron (PDP1P2P3) may
be used to locate the vertices by moving the positions of Py
as follows (Figure 4.4a). A dodecahedron is formed from two
bowls with scalloped edges; let PO occupy each 'low' point

in the edge of the left bowl (as P +, B, P TNE PR

0 0 0 0
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successively) (Figure
a.4b). The associated
tetrahedron will cover
the remaining vertices
(as Py
in the bottom of the
left bowl; P2 covers one

covers one vertex

vertex 1in the bottom of
the right bowl; and P3
B covers one ‘'high' point

on the edge of the Dbowl
Figure 4.4 (Figures 4.4 a and b).

Place the dodecahedron in the globe so that P0 is
coincident with Easter Island, and PO' is coincident with
the point antipodal to Easter Island in the Thar Desert, on
axis Al. The points Pl’ PZ' P3, forming the base of a
tetrahedron with apex Py lie on small circle Sl. To base
these vertices on land, P, must be in the intervals near the
Arctic, P, in the New Guinea/Australia intervals, and Py in
the South Africa intervals (Map 4.3). But since the points
Pl‘, Pz’, P3‘, antipodal to these, also lie on the solid (by
Lemma 1), they must be land-based (condition (i}). Using
the map of antipodal land masses, it is clear that none of
the points antipodal to the New Guinea/Australia intervals
are land-based, and so P2' cannot be land-based. Thus a
dodecahedron cannot be inscribed in the earth wunder the
given conditions. '

Icosahedron

Using Map 4.4, the small circle S, (Figure 4.le) must
contain five vertices Py, Py, Pgy Py, P5 of the icosahedron
with P, at Easter Island and POPO' determining axis A;. An
inscribed pentagon rotated in S1 cannot produce any

positions for P P, P4, P5 that are simultaneously

1 Far
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AZIMUTHAL EQUIDISTANT PROJECTION
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land-based since one end of one edge (PP, in Map 4.4)
necessarily falls in the Indian Ocean. Thus no land-based
icosahedron with one vertex at Easter Island can be
inscribed in the spherical earth. Q.E.D.

Uniqueness Theorem 2 (Arlinghaus)

Barr's choice of a tetrahedron for his sculpture,

relative to axis A, and the land-basing criterion, is unique

2
within the set of Platonic solids.
Proof: Proof Swill be by exhaustion of all
possibilities.

Cube: Using Figure 4.2(a & b), the small circle Sl
must contain the four vertices PO’ Pl’ P2, P3 of
the cube when Easter Island and its antipodal

point form an axis in position A, relative to

the cube (Figure 4.2b). An inscribed square
rotated in S, cannot produce any positions for
PO' Pl' P2, P3 that are simultaneously land-

based since one end of one edge (PyP; in Map
4.5) necessarily falls in the Indian Ocean. No
cube can be inscribed in the earth satisfying
the given conditions.

Octahedron

Position an octahedron in the globe in such a way that
axis Ay, determined by Easter Island and its antipodal
point, pierces faces (POPl'P2) and (PO'Ple') (Figures 4.1c
and 4.2c). Then the azimuthal projection will be wused to
determine whether simultaneous land-basing of three of these
six wvertices, (POPl' P2) lying on small circle 554 is
possible (Figure 4.5).
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Map 4.3

AZIMUTHAL EQUIDISTANT PROJECTION
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Map 4.4

AZIMUTHAL EQUIDISTANT PROJECTION
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Map 4.5

AZIMUTHAL EQUIDISTANT PROJECTION
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Calculate the Radius I, of S,
In the triangle (POQR) (Figure 4.5), the segment P40 has
length

T, while PyR has 1length 1 =
£;§£%§§§2 = 2,1747795 (from Table
3.1). Further <POQR = 60° since

APOQPl' is 1isosceles and since

- _ o gl T2
POQPl = 120°. Thus = = —, so I,
V3 2
= 2L - 2.511219
Figure 4.5 V3

Determine Land-based Positions for Py, Pl', P,

Construct a circle of radius r, as shown in Map 4.6.
Rotate an inscribed triangle (PUPl'Pz) within 5, so that P,
slides along S, to position Pl'. As P slides along this
arc, P2 is forced clockwise to Pg,. The only land-based
positions possible for P, along this arc are in the interval
[PZ,A]. This restricts the intervals for possible land-
basing of Py to [PO,A'], and of P;' to the interval
[Pl',A"]. But the interval [Pl', A''] contains no land,
hence an octahedron cannot be inscribed in the earth under

the given conditions (Map 4.6).

Dodecahedron

Position a dodecahedron within the earth so that axis
A,, through Easter Island and its antipodal point, pierces
faces (POP1P2P3P4) and (PO‘Pl'Pz'P3'P4') (Figure 4.1d).
Small circle S1 contains PO’ Pyy P2, P3, P,. An inscribed
pentagon rotated in S1 shows no positions that are
simultaneously land-based for P,, Py, P,, Py, P, (Map 4.7).
One end of one edge (P2P3 in Map 4.7) necessarily falls in
the Indian Ocean. No dodecahedron can be constructed wunder

the given conditions.
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Map 4.6
AZIMUTHAL EQUIDISTANT PROJECTION
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M

Map 4.7

AZIMUTHAL EQUIDISTANT PROJECTION
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Map 4.8

AZIMUTHAL EQUIDISTANT PROJECTION
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Map 4.9

AZIMUTHAL EQUIDISTANT PROJECTION
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Icosahedron

Position an icosahedron in the earth in such a way that
axis 4,, determined by Easter Island and its antipodal
point, pierces faces (P0P2P3) and (POPz'PB') (Figures 4.le
and 4.2e). Then the azimuthal projection will be wused to
determine whether simultaneous land-basing of the three
vertices Py, Py, P3, oON circle S,, is possible (Figure 4.6).

Calculate the radius I, of S,

In the triangle: (POQR) (Figure
4.6), the segment P,Q has length

I, while PyR has length 1 =

o 1.61694 (from Table
3.1). Further, <P0QR = 60° since
APOQP3 is 1isosceles and since
" ° = 21 _
Figure 4.6 _<PUQP3 = 120 .. Thus, = /3
1.8670815.

Determine Land-based Positions for PO' P2' P3

Construct a circle of radius I, as in Map 4.8. Rotate
an 1inscribed triangle (P0P2P3) within S, so that P, slides
along S, to position P,. The arcs [P3,A], [Pz,A'}, and
[PO,A"] give land based intervals suitable for the
simultaneous location of P;, P,, Py respectively (Map 4.8).

Land-based Positions for PO', P,', P3'

Use of the map of antipodal land masses suggests that
B
Antarctic, Pz' on an island in the Pacific, and P,' in South

3
America. Thus 6 of the twelve vertices may be land-based.

0', Pz', P3' may also be based on 1land; PO' in the

It remains to determine if the rest can be so based.

5+ Py’ Pg'

The vertices PIPSPI'PS' lie on the egquator of the

Determine Land-based Positions for Pl’ P
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sphere with axis A, (Figures 4.le and 4.6). That this is so
may be seen as follows: any three of these four points
determine a circle, 33. By the symmetry of the solid, the
center of this circle 33 will be on the polar axis of the
solid. Also by symmetry the fourth point, antipodal toc one
of the three already on the circle, S5 will also lie on S3.
That S, is a great circle follows from the fact that the
intersection point of PlPl' with PSPE' is the center of S3
and 1is also the center O of the sphere with radius R
=3.0755302 inches on the azimuthal map. Angle (PlPOPS) will
be found; then using the azimuthal projection, simultaneous

land-basing of P Pg, Pi', Pg' will be attempted (Figure

ll’

4.7)
Calculate <P10P5
Use the Law of Cosines to
find 6: OP1 = OP5 = R
A Y 5 = 3,0755302, and PPy = 21
=3.23388 (Table 3.1). Thus (oP;)2 = (P;2.) +(0pg) 2

- 2(P1P5)(0P5)coss

9 2 2
(PlPS) +(OP5) —(OPl) P_P 21

Therefore cosé —2L1 5 . 5257435,
2(P1P5)(OP5) 2(0?5) 2R
Thus 6 = 58.281691° and so <P 0Py = 180 °-26 = 63.436618°.

Then, wusing a rectangle, of approximate dimensions,
rotated within 53 determine land-based positions for Py
Slide P, along S, to position Pg. As with the octahedron,
use the fact that S3 is a great circle and so is centered on
0 (Map ¢.9). The intervals {Pl,A] and [B,Ps] contain
possible locations for Pl' Since S3 is a great circle, the
intervals antipodal to these, [Pl',A'] and [B',PS'], contain
the only possible locations for Pyt Within those
intervals, only [PS',C'] contains land-based locations, so
the set of candidates for the location of Py is narrowed to
[C,PSJ. This forces Pg to be located in [Pl’,c"] andéd P_'

5
to be located in [Pl,C"']. But [Pl,C"'] contains no land.



61

Thus an icosahedron cannot be inscribed in the spherical
earth under the given conditions. (Map 4.9) Q.E.D.

The proofs of theorems 1 and 2 suggest the following
algorithm for earth-basing of Platonic solids.

Corollary: Algorithm for basing an inscribed Platonic solid
in earth-coordinates:

1) Choose one location on which to center an azimuthal
map (so far only the point antipodal to Easter
Island has been used as this location)

2) Use this map to show the content of one hemisphere
of the globe.

3) Using a circle (or circles) of approximate radius
and position, determine intervals of possible
locations for land-based positions for vertices of
the solid.

4) Using the antipodal landmass map, determine
intervals of possible 1land-based locations for
vertices antipodal to those in step (3).

5) If steps (3) and (4) produce locations which are
all land-based, find the earth coordinates of these
locations
a) using Nystuen's procedure, for a relatively
precise answer.

b) using coordinates read from the globe, via an
annulus of proper radius, for an approximate
answer. .
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APPENDIX A: SOME SOLID GEOMETRY

1: SOLIDS IN A SPHERE®?

The tetrahedron may be considered as one element in a
series of objects defined by sets of vectors issuing from
the origin O of the coordinate system (and center of a
sphere) such that the heads of the vectors are on the
surface of the sphere and where each vector is as 'far’
from the others as possible. This results in distributing
the heads of the vectors across the surface of the sphere;
the pattern of linking these vertices, to enclose a volume
inscribed in the sphere, produces a variety of solids. The
simplest cases are shown below: the Platonic solids will
emerge as a subset of several sequences of solids. Other
solids that are not Platonic solids, but that are generated
below, will be referred to in A.3.

Let n denote the number of vectors issuing from O.

Figure A.l

n=0: The trivial case of the sphere O (a)
and its center, O, is generated

n=1l: A single vector emerges from 1 (b)
the center, O.

n=2: Vectors issuing from O have ()
heads at antipodal points. (;;EE?) 2.

n=3: Three vecto. s 1issuing from (d)
O determine a plane whose
intersection with the sphere 3
is a great circle containing

an inscribed equilateral triangle

22From Nystuen, "Notes," p. 2., expanded form.
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n=4: Four vectors issuing from (e)

O generate a volume which s
is tetrahedral

For larger values of n, the spacing of points is
difficult to visualize, but when n=6 an octahedron is
generated, when n=8 a cube emerges, when n=12 an
icosahedron is generated, and when n=20 a dodecahedron
arises. Whether or not the solids generated by this
process are unique representations for a given value of n
is beyond the scope of this work, as are existence
conditions for higher values of n.

A related (but not identical) procedure, when applied
to the hemisphere, produces a set of p-gonal pyramids (a
pyramid with apex at the pole and base a polygon with P
sides inscribed in the equatorial plane. (Figure A.2 shows
vertices of a 6-gonal pyramid)). Thus an Egyptian
pyramid is a 4-gonal pyramid (a half-octahedron). Gluing
two of these hemispheres together, along the base of the
p-gonal pyramid, produces a set of p-gonal crystals (for a
given value of p, the equatorial cross-section of the
crystal is a regular polygon of p sides). The octahedron
is a 4-gonal crystal (Figure A.3).

Use of p-gonal pyramids shows that the octahed;on,
the cube, the icosahedron, and the dodecahedron are
members of the first sequence of solids in an entire sphere
for n=6, n=8, n=12, and n=20 respectively. For, the
dodecahedron inscribed in sphere centered at O may. be
decomposed into 10 distinct 5-gonal congruent pyramids
that, pairwise, share a common face. Join O to the
vertices of one face, PO' Pl' P2, P3, P4, producing a 5-
gonal pyramid. Since the dodecahedron is regular, all such
S5-gonal pyramids are identical; there are 10 faces and so
the desired result follows (Figure A.4)-
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Py Similarly, an octahedron
¥ 4 ‘b‘._ may be decomposed into
| eight 3-gonal congruent
pyramids, a cube into six
4-gonal congruent
pyramids, and an

icosahedron into twenty

e 3-gonal congruent
Bigune A2 pyramids. (A tetrahedron
may be decomposed into
four 3-gonal congruent

pyramids).

Figure A.4
2: VECTOR APPROACH TO FINDING THE LENGTH
OF A SIDE OF THE TETRAHEDRON??

The goal here is to determine the z-components a,, bz,

c, of the vectors a, s c whose heads are three
vertices of a tetrahedron opposite the apex, which is the
head of vector €. While it is not
necessary to use vector notation
to achieve this, it will be
useful to do so to make the
approach compatible with the

approach in Chapter 2.

In Figure A.4, the vec:tors
a, b, and ¢ 1lie 1in a plane
parallel to the (xy)-plane. Let

231bid,. s P 17-18.
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h denote the height of ¢ above the base, 1let v denote the
angle between the polar axis and an edge of the tetrahedron,
and let g

denote the length of the altitude of the isosceles trianglé
determined by vectors a and b in the base of the tetrahedron
(thus the vertex angle of this triangle is 120°).

Calculate g

By the Pythagorean Theoren, yz = 92 + 12 (the

altitude g 1is the perpendicular bisector of side of the
tetrahedron, of length 21). Since the vertex angle of that
isosceles triangle is 120°, half of it is 60°, so

sin 60° = y3/2 = % and cos 60° = % = % (Figure A.5)
Solving for y and g respectively, U=2%r g = "2%.
V3 2y

Calculate h

Using the Pythagorean Theorem applied to the right
triangle with one leg, of length h, along the polar axis,

2 2 2
B2 = (21)2 _ y2 - (21)2 _ (211 _2 §2l) - 8%
V3
Thus h = 2/21
V3
Calculate v
2y21
Using the material above, cos vy = 5% = —%%~ = E, and
V3
b
sin y = 5% =8 - 1 Thus y = 35.26435968°,
V3

Calculate =z

Let r denote the radius of the sphere in which the
tetrahedron is inscribed. Referring to Figure A.6, a =
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tetrahedron 1is inscribed. Referring to Figure A.6, a =
180-2y since a 1is the vertex angle of an isosceles
triangle; the angle 6 is supplementary to a, e+ = 180°.
The 1length A may be partitioned into two pieces; the
vector e, of length r, and the length from the {2e27)—
plane to the plane containing the base of the
tetrahedron (this length is measured by the z-component of
z

any of a, b, ¢). Thus -z = r cos§, or cos 6 = -7.

Since 6 = 180 - a
= 180 - (180-2v) = 2+, it

¥ follows from the double-
angle formula that
T_—— cosf = cos2ly = c0527 - sin27
2 1 e -
= | =l = o=
% 1 24 5 - 3 = 3. Equating the two
- ) values for coséd, it follows
=) Y that -£ = i, or z = —lr,
-z |[© F I 3 3
1*L} giving a means of expressing

the z-component of any of a,
b, or ¢ in terms of the

Figure A.6 .
radius, F, of the

circumscribed sphere.

Calculate 21

Since cosy = 5%, and A = r-z, then
IT+FT o
cos v = rzi = 23 . Also, cosy = K%. Thus, equating
V'3
s 3 7.
the two expressions for cosy, K% = %T or (21)2 = §§_' SO
V3
that 21 = 2I_2. This gives a formula for the length 21 of
V3

the side of a tetrahedron, inscribed in a sphere of radius
r, expressed in terms of that radius.
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3: THE CALCULATION OF DIHEDRAL ANGLES OF PLATONIC SOLIDS?**

Definition: A dihedral angle of a solid is the angle
between planes containing two adjacent faces of
the solid (a "space" angle).

Notation: Schafli symbol: {p,g} p: # of edges in a face

g: # of edges incident

with a vertex.

{3,3}: Tetrahedron
{4,3}: Cube

{3,4}: Octahedron
{5,3}: Dodecahedron
{3,5}: Icosahedron

Figure A.

The solid may be constructed from p-gonal congruent pyramids
of suitable altitude with common apex at 03. Further, O3 is
the center of the circumsphere passing through all vertices;
of the midsphere touching all edges at their midpoints; and
of the sphere touching all faces at their centers (Figure
A.7). Thus:

0003 is a circumradius
030110001, 000110102

Olo3 is a midradius -

030210102, 030210002
0203 is an inradius

One such p-gonal pyramid is 00010203.

Let 1 denote 0,0, = 0100'

0~1
- T . i 4 -
Now ¥OOOZO1 = = since A000200 is isosceles and
i ¢ oo 2K .

*sprom. Coxeter, Introduction,; pp. 155-157; 413.
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Let p = ¥090301, Y = ¥010302.
Therefore E—w = ¥030102 since
A010203 is a right triangle
(Figure A.7). Since 05 is the

center of the pyramid,

¥050,0, = 37V = 3<05' 010, (0)

(Figure A.8) But #oo"oloz is

the dihedral angle of the

polyhedron. Therefore %— = %

dihedral angle. Therefore
Figure A.8 dihedral angle = 7-2y.

It remains to determine ¢ in terms of known quantities, such
as p and q.

Definition: The vertex figures of {p,g} at vertex Q4 is the

polygon formed by the midpoints of the g edges incident to
Oq- E.g., the triangle olol'ol" is the vertex figure of
{3,3} at 0, (Figure A.9)
1 s v s

0200101 ,' since 40,'0,0, is
isosceles, and 02 is the center
of the base so 0200 bisects the
vertex angle of the isosceles
triangle. 0201'10001' since
0201' is a midradius and 0001'

is tangent to the midsphere at

o 2 B b, 2% . £ AOC.0.'0, =~ AO '
o — g erefore 2071 9 2201
| since both contain ¥000201'
Figure A.9 whose measure g (Figure A.10)
0.05" 0.2 20"
Therefore 21 . 2 = L ((01'00 = 1)
[} L}
0,0, 059 95 "Qy
022
Therefore ol'z =1 - = ] cos =X,
v b
0201



(1)

(2)
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Therefore 0101' = 21 cos g or, the length of a side

of the vertex figure = 21 cos %. (Figure A.9)

The plane 0101'01" of at the vertex figure is
perpendicular to 0003, and the center of 0101'01" is
0, the foot of the perpendicular from O1 to 0003
(Figure A.11l).

& A0603Q - AOUO3O&. Therefore
d 01 3 QO1 O3
= = — Therefore
o 0003 1 0103
o, 2 O, 0103
; 0.Q = 1+ ——= =1 + cosp.
+ 0.0
0-3
Figure A.1l0
Therefore OIQ = 1 cosp Use OlQ = 1 cosp to £find

alternate expression for 0,Q.

. 1 _ 27
Since ¥ 0,''Q0; = g’ therefore

Therefore sin i

z'Qo, = I,
¥z2'Q 1 q g

lcos1
= _ETEE‘ Therefore
1 T 5k
019 = 1 cos—= - =
n.—n
si q

= 1 cosg csc g. (Figure A.12).

Figure A.1l1l
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(3) Therefore |cos p = cos % (=1 o] g
. . . 4
Summarizing: 0003 = ] csc p since sin p = 555;
; £
Q — = e—
LeonTh, 0,05 = 1 cot p since tan p 5,0,
. by (1)
i (0,0,)02 = (0,0,)2 - (I cot %)2
o - o | 173 D
v % 1 T My ¢
Lo 0 L% _ ; 1 (0,05)
by () since tan 5 = ——, cosyYy = ——.
(0102) (0103)
Figure A.1l2
() To find a value for ¢, introduce the following
notation: let k2 = sin21 - cosZE = l—coszﬁ - (l—sinz-"'£
" 5 q b b
s T T
= sin“= - cos“—=.
p g
lcosX
. - 1[: = !Z .
Therefore since 51nq Tcosp (use figure), we have
coszg % 1
k2 = sinZE cos21 = = c052£ = cosz—( 5 1)
" g 5 P cos’p p cos p
-cos“p sin“p
= COSZE(—Z_) = coszz( 5 )
P cos J’] cos“p
T . T
cos— sinpcos—=
(5) Therefore k = sinp - B - P - sinpsinZX.
gase cosZ g
P
= T
sin=
g
Therefore |sinpg = k csc g "

(6a) Therefore 0,0

073

=lCSCp=%Sin§ (summary and (5)).
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1 cosZcscX

lcosp P I(summary (3)(5)) = Loost
Sinp keseX p
g

(6b) 0,0, =Icotp

1

2 . 2. my 2
(0203) = (0103) (1 cotp)

2 cos21 12c032£
1 2% .2 or o B
= —cos 5—1 (summary & (6b)) = ———(sin E—k )
k sin?Z k%sin?Z
P
_chosz-"rE
_ p 2w
= — . cos“= (from (4)).
kzsin2£ d
D
I PP R,
(6c) Therefore 0203 = kcotpcosq.
L otTeos® u s s
0,0, Ecotpcosq cosp cosq cosq
cosy= . (by 6b,6c)
O103 %cosg sin% cosg sing
cosg BEaT
Since cos Yy = sin(% - y) = " % -y = sin'l(—-—g)
sinZ sinZ
D D
m
cos—
, =¥ g . )
or T - 2y = 2 sin ~( )|, the dihedral angle in
sinX
P

terms of p and gq.

Evaluate: {p,q}:

- COS% oo ] % =l
{3,3}: 2sin”"(——) = 2sin”"—= =2sin""(.5773)= 70°36'
sinz Y3
2
T 1
. COS= = — =
{8,3¥: Zsin 1(———%) = Jsin 1—% = 2 sin"1(.7071)= 90°
SZ'LDE ==
V2



i

™
cos—
4) = 2sin l(

1
+ T
51n-§

{3,4}: 2sin )

h)wlﬁh‘w

=2 sin_lﬁg = sin_l(.8164) = 108°24"',

< = 2
V3
_j cos %
{5,3}: 2 sin ~( ﬂ) = 116°36"
sin=
5
-
{3,5}: 2 sin ~( w) = 138°912°
sin§

are the dihedral angles of the Platonic solids.
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APPENDIX B: SOME LINEAR ALGEBRA®*®

ADDITION OF VECTORS

Given two vectors, u and v, issuing from O(Figure B.1l); the
sum, u + v, of these vectors represents the displacement of
O along u, followed by v; thus u + v is the vector that is
the diagonal of the parallelogram determined by u and v.

SUBTRACTION OF VECTORS

Given two vectors, u and ¥,
issuing from O (Figure B.2}; the

difference, u - v = u + (-v), is

represented by the diagonal of

the parallelogram that 1is not

Figure B.1l Figure B.2 u + v.

DOT PRODUCT OF TWO VECTORS
The following procedure for finding the ’'product' of

two vectors will produce an answer that is a scalar

(real number). This product is referred to as the

'scalar product' or 'dot product’' or 'inner product.’
Definition: The 'dot product, ' u-v of two

vectors, u = (ul, Ugr o o« s un) and
v = (Vs Vor o o o s vn), with all components real numbers,
is the scalar

3
Thus in three-dimensional space, u*v = I u.,v..

:spor more detailed treatment the reader is referred to
texts on linear algebra; a classic algebra text is
Garret Birkhoff and Saunders Mac Lane, A Survey of
Modern Algebra, (New York: Macmillan, revised 1953).
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Property: (u+y) * w = u-w + v-w; apply the distributive law

to the definition.

LENGTH OF A VECTOR IN R3

The dot product will be wused to associate a single
positive scalar, that represents vector length, with a
non-trivial vector u # (0,0,0). From the definition of

dot product, it follows that g-g=u12+u22+u32>0.

Definition: The length of a vector u, denoted |la] and
sometimes called the 'absolute value' or the 'norm' of u, is

- . _ 2 2 2.1/2
la] = (u-u) = (u;” + u,” + u, ) :

ANGLE BETWEEN TWO VECTORS IN R3

Suppose u and v are two
3

vectors in R” issuing from O.

Use the law of cosines on the

triangle formed by the
vectors u, v, v-u.
Figure B.3 i}
(Figure B.3)
2 . 2 2 2
Thus |v=ul|® = |z|“+|ul® - 2|zl|lzlcosy. But, |z-u|

(v-u) -(v=u) (by definition of length) and (y-u)-(¥z-u)

v+ (y-u)-u-(y-u) (by a property of dot products)

[}
<
<

|
<
=

1
[
g
+
[
=
g
m

'g
~

o]

o)
o

H
r*-

<

= yev+u-u-2(u-y) (multiplication in B> is commutative)
lzl? + |ul? - 2(z-p)
2+|212-2(g-z)=|zl2+|gi2-2IzlIglcosv-

Thus |z-u|®=|z]
Therefore, -2(u-v)=-2|u||z|cosy or,

u-=v

LINEAR TRANSFORMATIONS IN R3

3 3 3

of R~ to R
is such that (au + bv)T = a(uT) + b(yT), for u, ¥ vectors

Definition: A linear transformation T:R3 + R

in R3 and a, b, scalars in R3.
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Theorem: There 1s a one-to-one correspondence between
the set of 1linear transformations T:R ° R3 and the 3 x 3

matrices with real numbers as entries.

ROTATION MATRICES

Suppose T is a linear transformation, T:R3 - R3, that

rotates a vector in the (xy)-plane, through an angle of 6 in
the (xy)-plane, about the z-axis (Figure B.&). &4 is
linear since it is a rigid motion.)

% 2
4
{0,6,)
jl L (oll'l-)
L. P s
o7 =m0, 08 0,0)
ol (o, l.,o} Y o /@f

o A

(01‘10\ =
G195 (e £ %Y
X P (La:Q.s:-- 8,0)
Figure B.4
Under this transformation, the unit vectors
(1,0,0),(0,1,0), and (0,0,1) are carried to the wvectors
(cosf, siné, 0), (-sin@, cosé, 0), and (0,0,1)

respectively. Viewing these row vectors as matrix rows,

cosd sind 0
-sinf cosé 0

T
. 0 0 1

0
0
il

oo+
oo

The matrix on the right is a rotation matrix through angle
@ about the z-axis, to be applied to row-vectors.

Viewing the unit vectors as column vectors

1 {cosa 0 -siné 0 0
0l=»!sing|,|2|=| ccs8|,|{0{|0
o|_00011

So viewing these column vectors as matrix columns, the

identity matrix is carried to a rotation matrix, to be
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applied to column vectors, as

0 cos8d -sind O
0 3 siné cosé 0
nj 0 0 1

oo+
OO

Similar procedure leads to rotation matrices through &

about the x-axis or the y-axis.
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APPENDIX C

TERRAE ANTIPODUM:
ANTIPODAL LANDMASS MAP?°®

The antipodal landmass map, Map C.1l, 1is «critical in
determing whether or not a particular solid may be land-

based.

2éFor map construction, see S. Arlinghaus, "Terrae
Antipodum”, Preprint, March 1984, Ann Arbor, Michigan.
The base map is a Peters' projection, as indicated by the
symbol in the lower left-hand corner of the map. This
is an equal area projection constructed by Arno Peters,
displayed as a "World Map," distributed by Christian Aid,
P.0. Box 1, London SW9 8BH England.

ADDENDUM
[Tobler noted that Fisher and Miller (among others), in
World Maps and Globes (1944), discuss some advantages and dis-

advantages associated with using the various Platonic solids

as "globe-forming maps."]
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“Imagination is more important than knowledge”
A. FEinstein

MONOGRAPH SERIES

Exclusive of shipping and handling; prices listed and payable in U.S. funds on a U.S. bank, only.

1. Sandra L. Arlinghaus and John D. Nystuen. Mathematical Geography and Global Art: the Mathe-
matics of David Barr’s “Four Corners Project,” 198G.

This monograph contains Nystuen’s calculations, actually used by Barr to position his abstract tetrahe-
dral sculpture within the earth. Placement of the sculpture vertices in Easter Island, South Africa, Greenland,
and Indonesia was chronicled in film by The Archives of American Art for The Smithsonian Institution. In
addition to the archival material, this monograph also contains Arlinghaus’s solutions to broader theoretical
questions—was Barr’s choice of a tetrahedron unique within his initial constraints, and, within the set of
Platonic solids?

2. Sandra L. Arlinghaus. Down the Mail Tubes: the Pressured Postal Erva, 1853-1964, 1986.

The history of the pneumatic post, in Europe and in the United States, is examined for the lessons it
might offer to the technological scenes of the late twentieth century. As Sylvia L. Thrupp, Alice Freeman
Palmer Professor Emeritus of History, The University of Michigan, commented in her review of this work
“Such brief comment does far less than justice to the intelligence and the stimulating quality of the author’s
writing, or to the breadth of her reading. The detail of her accounts of the interest of American private
enterprise, in New York and other large cities on this continent, in pushing for construction of large tubes in
svstems to be leased to the government, brings out contrast between American and European views of how
the new technology should be managed. This and many other sections of the monograph will set readers on
new tracks of thought.”

3. Sandra L. Arlinghaus. Essays on Mathematical Geography, 1986.

A collection of essays intended to show the range of power in applying pure mathematics to human
svstems. There are two types of essay: those which employ traditional mathematical proof, and those which
do not. As mathematical proof may itself be regarded as art, the former style of essay might represent
“traditional” art, and the latter, “surrealist” art. Essay titles are: “The well-tempered map projection,”
“Antipodal graphs,” “Analogue clocks,” “Steiner transformations,” “Concavity and urban settlement pat-
terns,” “Measuring the vertical city,” “Fad and permanence in human systems,” “Topological exploration in
seography,” “A space for thought,” and “Chaos in human systems-the Heine-Borel Theorem.”

4. Robert F. Austin, 4 Historical Gazetteer of Southeast Asia, 1986.

Dr. Austin’s Gazetteer draws geographic coordinates of Southeast Asian place-names together with
references to these place-names as they have appeared in historical and literary documents. This book
is of obvious use to historians and to historical geographers specializing in Southeast Asia. At a deeper
level, it might serve as a valuable source in establishing place-name linkages which have remained previously
unnoticed, in documents describing trade or other communications connections, because of variation in
place-name nomenclature.

5. Sandra L. Arlinghaus, Essays on Mathematical Geography-II, 1987.

Written in the same format as IMaGe Monograph #3, that seeks to use “pure” mathematics in real-world
settings, this volume contains the following material: “Frontispiece-the Atlantic Drainage Tree,” “Getting
a Handel on Water-Graphs,” “Terror in Transit: A Graph Theoretic Approach to the Passive Defense of
Urban Networks,” “Terrae Antipodum,” “Urban Inversion,” “Fractals: Constructions, Speculations, and
Concepts,” “Solar Woks,” “A Pneumatic Postal Plan: The Chambered Interchange and ZIPPR Code,”
“Endpiece.”



6. Pierre Hanjoul, Hubert Beguin, and Jean-Claude Thill, Theoretical Market Areas Under Euclidean
Distance, 1988. (English language text; Abstracts written in French and in English.)

Though already initiated by Rau in 1841, the economic theory of the shape of two-dimensional market
areas has long remained concerned with a representation of transportation costs as linear in distance. In
the general gravity model, to which the theory also applies, this corresponds to a decreasing exponential
function of distance deterrence. Qther transportation cost and distance deterrence functions also appear in
the literature, however. They have not always been considered from the viewpeint of the shape of the market
areas they generate, and their disparity asks the question whether other types of functions would not be
worth being investigated. There is thus a need for a general theory of market areas: the present work aims
at filling this gap, in the case of a duopoly competing inside the Euclidean plane endowed with Euclidean
distance.

(Bien qu’ébauchée par Rau dés 1841, la théorie économique de la forme des aires de marché planaires
s’est longtemps contentée de ’hypothése de cofits de transport proportionnels a la distance. Dans le modele
gravitaire généralisé, auquel on peut étendre cette théorie, ceci correspond au choix d’une exponentielle
décroissante comme fonction de dissnasion de la distance. D’autres fonctions de coiit de transport ou de
dissuasion de la distance apparaissent cependant dans la littérature. La forme des aires de marché qu’elles
engendrent n’a pas toujours été étudiée ; par ailleurs, leur variété améne a se demander si d’autres fonctions
encore ne meériteraient pas d’étre examinées. Il parait donc utile de disposer d’une théorie générale des aires
de marché : ce & quoi s’attache ce travail en cas de duopole, dans le cadre du plan euclidien muni d’une
distance euclidienne.)

7. Keith J. Tinkler, Editor, Nystuen—Dacey Nodal Analysis, 1988.

Professor Tinkler’s volume displays the use of this graph theoretical tool in geography, from the original
Nystuen—Dacey article, to a bibliography of uses, to original uses by Tinkler. Some reprinted material
is included, but by far the larger part is of previously unpublished material. (Unless otherwise noted, all
itemns listed below are previously unpublished.) Contents: “ ‘Foreward’ ” by Nystuen, 1988; “Preface” by
Tinkler, 1988; “Statistics for Nystuen—Dacey Nodal Analysis,” by Tinkler, 1979; Review of Nodal Analysis
literature by Tinkler (pre-1979, reprinted with permission; post—1979, new as of 1988); FORTRAN program
listing for Nodal Analysis by Tinkler; “A graph theory interpretation of nodal regions™ by John D. Nystuen
and Michael F. Dacey, reprinted with permission, 1961; Nystuen—Dacey data concerning telephone flows
in Washington and Missouri, 1958, 1959 with comment by Nystuen, 1988; “The expected distribution of
nodality in random (p, g) graphs and multigraphs,” by Tinkler, 1976.

8. James W. Fonseca, The Urban Rank-size Hierarchy: A Mathematical Inierprelation, 1989.

The urban rank-size hierarchy can be characterized as an equiangular spiral of the form r = ae? cote,

An equiangular spiral can also be constructed from a Fibonacci sequence. The urban rank-size hierarchy is
thus shown to mirror the properties derived from Fibonacci characteristics such as rank-additive properties.
A new method of structuring the urban rank-size hierarchy is explored which essentially parallels that of the
traditional rank-size hierarchy below rank 11. Above rank 11 this method may help explain the frequently
noted concavity of the rank-size distribution at the upper levels. The research suggests that the simple
rank-size rule with the exponent equal to 1 is not merely a special case, but rather a theoretically justified
norm against which deviant cases may be measured. The spiral distribution model allows conceptualization
of a new view of the urban rank-size hierarchy in which the three largest cities share functions in a Fibonacci
hierarchy.

9. Sandra L. Arlinghaus, An Atlas of Steiner Networks, 1989.

A Steiner network is a tree of minimum total length joining a prescribed, finite, number of locations;
often new locations are introduced into the prescribed set to determine the minimum tree. This Atlas explains
the mathematical detail behind the Steiner construction for prescribed sets of n locations and displays the
steps, visually, in a series of Figures. The proof of the Steiner construction is by mathematical induction, and
enough steps in the early part of the induction are displayed completely that the reader who is well-trained
in Euclidean geometry, and familiar with concepts from graph theory and elementary number theory, should
be able to replicate the constructions for full as well as for degenerate Steiner trees.



10. Daniel A. Griffith, Simuleting K = 3 Christaller Ceniral Place Structures: An Algorithm Using A
Constant Elasticity of Substitution Consumption Function, 1980.

An algorithm is presented that uses BASICA or GWBASIC on IBM compatible machines. This algo-
rithm simulates Christaller K = 3 central place structures, for a four-level hierarchy. It is based upon earlier
published work by the author. A description of the spatial theory, mathematics, and sample output runs
appears in the monograph. A digital version is available from the author, free of charge, upon request; this
request must be accompanied by a 5.5-inch formatted diskette. This algorithm has been developed for use
in Social Science classroom laboratory situations, and is designed to (a) cultivate a deeper understanding of
central place theory, (b) allow parameters of a central place system to be altered and then graphic and tab-
ular results attributable to these changes viewed, without experiencing the tedium of massive calculations,
and (c) help promote a better comprehension of the complex role distance plays in the space—economy. The
algorithm also should facilitate intensive numerical research on central place structures; it is expecied that
even the sample simulation results will reveal interesting insights into abstract central place theory.

The background spatial theory concerns demand and competition in the space-economy; both linear
and non-linear spatial demand functions are discussed. The mathematics is concerned with (a) integration of
non-linear spatial demand cones on a continuous demand surface, using a constant elasticity of substitution
consumption function, (b) solving for roots of polynomials, (c) numerical approximations to integration and
root extraction, and (d) multinomial discriminant function classification of commodities into central place
hierarchy levels. Sample output is presented for contrived data sets, constructed from artificial and empirical
information, with the wide range of all possible central place structures being generated. These examples
should facilitate implementation testing. Students are able to vary single or multiple parameters of the
problem, permitting a study of how certain changes manifest themselves within the context of a theoretical
central place structure. Hierarchical classification criteria may be changed, demand elasticities may or may
not vary and can take on a wide range of non-negative values, the uniform transport cost may be set at
any positive level, assorted fixed costs and variable costs may be introduced, again within a rich range of
non-negative possibilities, and the number of commodities can be altered. Directions for algorithm execution
are summarized. An ASCII version of the algorithm, written directly from GWBASIC, is included in an
appendix; hence, it is free of typing errors.

11. Sandra L. Arlinghaus and John D. Nystuen, Environmental Effects on Bus Durability, 1990.

This monograph draws on the authors’ previous publications on “Climatic” and “Terrain” effects on
bus durability. Material on these two topics is selected, and reprinted, from three published papers that
appeared in the Transportation Research Record and in the Geographical Review. New material concerning
“congestion” effects is examined at the national level, to determine “dense,” “intermediate,” and “sparse”
classes of congestion, and at the local level of congestion in Ann Arbor (as suggestive of how one might use
local data). This material is drawn together in a single volume, along with a summary of the consequences of
all three effects simultaneously, in order to suggest direction for more highly automated studies that should

follow naturally with the release of the 1990 U. S. Census data.

12. Daniel A. Griffith, Editor. Spatial Statistics: Past, Present, and Future, 1990.

Proceedings of a Symposium of the same name held at Syracuse University in Summer, 1989. Content
includes a Preface by Griffith and the following papers:

Brian Ripley, “Gibbsian interaction models”;
J. Keith Ord, “Statistical methods for point pattern data”;
Luc Anselin, “What is special about spatial data”;
Robert P. Haining, “Models in human geography:
problems in specifying, estimating, and validating models for spatial data”;
R. J. Martin, “The role of spatial statistics in geographic modelling”;
Daniel Wartenberg, “Exploratory spatial analyses: outliers, leverage points, and influence functions”;
J. H. P. Paelinck, “Some new estimators in spatial econometrics”;
Daniel A. Griffith, “A numerical simplification for estimating parameters of spatial autoregressive models”;
Kanti V. Mardia “Maximum likelihood estimation for spatial models”;
Ashish Sen, “Distribution of spatial correlation statistics”;



Sylvia Richardson, “Some remarks on the festing of association between spatial processes”;

Graham J. G. Upton, “Information from regional data”;
Patrick Doreian, “Network autocorrelation models: problems and prospects.”
Each chapter is preceded by an “Editor’s Preface” and followed by a Discussion and, in some

an author’s Rejoinder to the Discussion.

cases, by
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MICMG DISCUSSION PAPERS, JOHN D. NYSTUEN, EDITOR

The collected work of the Michigan Interuniversity Community of Mathematical Geogra-
phers is reprinted in a single essay format (as they were originally reproduced). Royalties from
sales will be deposited in the “MICMG?” fund for the development of projects in mathematical
geography, administered by IMaGe, and disposed of by Nystuen, in collaboration with IMaGe.

Consider ordering one number as reading supplementary to texts in an upper division
course. The dates of original release and titles of the individual numbers are listed below.
Prices are current as of 1988.

1. Arthur Getis, “Tempora! land use pattern analysis with the use of nearest neighbor
and quadrat methods.” [Re-typed and maps re-drawn.] July, 1963. $1.50

2. Mare Anderson, “A working bibliography of mathematical geography.” September,
1963. $3.50

3. Williamm Bunge, “Patterns of location.” February, 1964. $2.50
4. Michael F, Dacey, “Imperfections in the uniform piane.” June, 1964. $2.50

5. Robert S. Yuill, “A simulation study of barrier effects in spatial diffusion problems.”
April, 1965. $3.00

6. William Warntz, “A note on surfaces and paths and applications to geographical prob-
lems.” May, 1965. $2.00

7. Stig Nordbeck, “The law of allometric growth.” June, 1965. $2.50

8. Waldo R. Tobler, “Numerical map generalization;” and “Notes on the enalysis of
geographical distributions.” $3.00

9. Peter R. Gould, “On mental maps.” September, 1966. $3.50
10. John D. Nystuen, “Effects of boundary shape and the concept of local convexity;” Ju-
lian Perkal, “On the length of empirical curves;” and, Julian Perkal, “An attempt at objective

generalization.” December, 1966. $4.50

11. E. Casetti and . K. Semple, “A method for the stepwise separation of spatial trends.”
April, 1968. $2.50

12. W. Bunge, R. Guyot, A. Karlin, R. Martin, W. Pattison, W. Tobler, S. Toulmin, and
W. Warntz, “The philosophy of maps.” June, 1968. $4.50
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