Numerical Investigation of Convection Application of Chebyshev Integration

B. Cloutier ¹ H. Johnson ⁴ B. Muite ⁴ P. Rigge ² J. Whitehead³

¹Department of Physics University of Michigan

²Department of Computer Science University of Michigan

³Department of Mathematics University of Michigan

 $\Xi \rightarrow$

< □ > < □ > < □ > < □ > <

ъ

Overview

Equations of Motion

Assumptions

- Convection driven solely by internal heating infinite Pr (similar to the Earth's mantle)
- Start with dimensionless two dimensional Navier-Stokes equations with the Boussinesq approximation.
- Choose time-scale of h²/κ, length scale of h and temperature scale of Hh²/κ. Where h is height, κ is thermal diffusivity, and H is heating.

$$\Delta^2 \psi = RT_x \tag{1}$$

$$T_t + \psi_z T_x - \psi_x T_z = T_{xx} + T_{zz} + 1$$
(2)

$$\psi|_{z=-1,1} = 0 \quad \psi_z|_{z=-1,1} = 0$$
 (3)

$$T|_{z=-1,1} = 0$$
 (4)

• T(x,z) - Temperature. $\psi(x,z)$ - Streamfunction, u(x,z) = (u,w)

Equations of Motion

Biharmonic Equation

 Decompose biharmonic into two equations, one for the stream function and the other for the vorticity

$$\Delta^2 \psi = f(x, z)$$

 $\Delta \psi = \omega$ (5)
 $\Delta \omega = f(x, z)$ (6)

- Easy to do with free slip boundary conditions
- Four order problem with N nodes implies dividing by N⁴
- N=4096, $\frac{1}{N^4}\sim 3.5\times 10^{-15}, \frac{1}{N^2}\sim 6\times 10^{-8}$ (edge of double percision)

Solving Vorticy Equation Timestepping Scheme

Chebyshev polynomials

- Consider a problem on the interval [-1, 1]
- Space is discretized using Chebyshev polynomials

$$T_n(z) := \cos n \cos^{-1} z \tag{7}$$

with x evaluated at Chebyshev points

$$z_i := \cos \frac{\pi i}{N} \qquad i = 0, ..., N \tag{8}$$

 Discretization allows for the use of Fast Fourier Transform to calculate integrals and derivatives

Solving Vorticy Equation Timestepping Scheme

Fourier Space

FFT in the x-direction and rewriting derivatives ¹

$$(ik_x)^2\hat{\omega} + \hat{\omega}_{zz} = \widehat{f(x,z)}$$
(9)

ω(x, z) and f(x, z) are periodic functions on the interval [-1, 1].

¹Properties of FFT allow $\frac{\partial^n f(x)}{\partial x^n} = (ik)^n \hat{f(x)}$

Solving Vorticy Equation Timestepping Scheme

Chebyshev Integration

 Chebyshev integration matrix method amounts to solving for the highest order derivative by expanding as a summation of Chebyshev polynomials in z-direction.

$$((ik)^2 I_2 + I_0 + \widehat{LBC})\hat{\psi}_{zz} = \widehat{f(x,z)} + \widehat{RBC}$$
(10)

< □ > < □ > < □ > < □ > <

- \widehat{LBC} and \widehat{RBC} represent boundary conditions
- $\hat{\omega}_{zz}$ is a vector of the truncated series expansion for ω_{zz} .

Solving Vorticy Equation Timestepping Scheme

Finding Numerical Solution

- Given Boundary conditions, fix two coefficients from the indefinite integral of ω_{zz} .
- Lastly we can use IFFT to convert back to real space and find ω(x, z).

Solving Vorticy Equation Timestepping Scheme

Finding I_0 and I_2

 Suppose, where b_n are Chebyshev series expansion coefficients for f

$$\omega_{zz} = \sum_{n=1}^{\infty} b_n T_n(z) \tag{11}$$

• We use the following indefinite integral identities

(12)

$$\int T_0(z) = T_1(z), \quad \int T_1(z) = \frac{T_2(z)}{4}$$
$$\int T_n(z) = \frac{T_{n+1}(z)}{2(n+1)} - \frac{T_{n-1}(z)}{2(n-1)}$$

 We can use these integral identities in write integral matricies of ω_{zz}, ω_z, and ω

Solving Vorticy Equation Timestepping Scheme

Using Indefinite Integral Identities

Truncated to N+3 modes

$$U_{x} = e_{1} + (b_{0} - \frac{b_{2}}{2})T_{1}(x) + \sum_{n=2}^{N+3} (\frac{b_{n-1} - b_{n+1}}{2n}T_{n}(x)$$
$$U = e_{0} + (e_{1} - \frac{b_{1}}{8} + \frac{b_{3}}{8})T_{1}(x) + (\frac{b_{0}}{4} - \frac{b_{2}}{6} + \frac{b_{4}}{24})T_{2}(x) + \dots$$
$$+ \sum_{n=3}^{N+3} \left(\frac{b_{n-2}}{4n(n-1)} - \frac{b_{n}}{2(n-1)(n+1)} + \frac{b_{n+2}}{4n(n+1)}\right)T_{n}(x)$$

▲口▶▲圖▶▲臣▶▲臣▶ 臣 のQで

Solving Vorticy Equation Timestepping Scheme

Integration Matricies Explicitly

Resulting system of equations are

$$((ik)^2 I_2 + I_0 + LBC + \widehat{LBC})\hat{\psi}_{zzzz} = \widehat{f(x,z)} + \widehat{RBC} \quad (13)$$

$$(ik)^2 b_0 + e_0 = f_0 \tag{14}$$

$$(ik)^2b_1 + (e_1 - \frac{b_1}{8} + \frac{b_3}{8}) = f_1$$
 (15)

$$(ik)^2 b_2 + \left(\frac{b_0}{4} - \frac{b_2}{6} + \frac{b_4}{24}\right) = f_2$$
 (16)

• And for $2 < n \le N$, use formula were $b_n = 0$ for n > N and f_n are Cheby expansion coefficients

Solving Vorticy Equation Timestepping Scheme

Impose Boundary Conditions

- All that is left is to impose the two boundary that will fix the last 2 coefficients
- Using the following boundary conditions, ω(±1) we have,

$$\omega(\pm 1) = e_0 \pm (e_1 - \frac{b_1}{8} + \frac{b_3}{8}) + (\frac{b_0}{4} - \frac{b_2}{6} \pm \frac{b_4}{24} + \dots$$
(17)

$$+\sum_{n=3}^{\infty} (\pm 1)^n \left(\frac{b_{n-2}}{4n(n-1)} - \frac{b_n}{2(n-1)(n+1)} + \frac{b_{n+2}}{4n(n+1)} \right) T_n(x)$$
(18)

$$\omega_{x}(\pm 1) = e_{1} \pm (b_{0} - \frac{b_{2}}{2}) + \sum_{n=2}^{\infty} (\pm 1)^{n} (\frac{b_{n-1} - b_{n+1}}{2n} T_{n}(x)$$
(19)

$$\omega_{XX}(\pm 1) = \sum_{n=1}^{N} (\pm 1)^n b_n$$
 (20)

▲口▶▲圖▶▲≣▶▲≣▶ ▲国▶ ④ € の € 0

Solving Vorticy Equation Timestepping Scheme

Timestepping: Implicit Midpoint Rule

Fixed point iteration we solve

$$\frac{T^{n+1} - T^n}{dt} + \frac{1}{2}u^{n+1} \cdot \nabla T^{n+1} + \frac{1}{2}u^n \cdot \nabla T^n = \frac{1}{2}(\Delta T^{n+1} + \Delta T^n)$$
$$\Delta^2 \psi^{n+1} = f(x, z)^{n+1}$$
$$\Delta \omega^{n+1} = f(x, z)^{n+1}$$
$$\Delta \psi^{n+1} = \omega^{n+1}$$

Initial conditions: perturbation of conductive solution

$$T(x,z) = \frac{1}{2}(1-z^2) + .1\sin\left(\frac{2\pi x}{x_{max}}\right)\sin(.5\pi(1+z))$$

Scaling

Parrallel code run Trestles and Lonestar. Thanks to Teragrid/Xsede resources supported by award TG-CTS1100010.

Aspect Ratio: 8, Rayleigh number:10⁵, top is temperature field and bottom is the streamfunction.

Aspect Ratio: 4, Rayleigh number:10⁵, top is temperature field and bottom is the streamfunction.

Video

Acknowledgments

- We would like to University of Michigan Undergraduate Research Opportunities Program and APS.
- This work was performed on Teragrid/Xsede resources supported by award TG-CTS1100010

イロト イポト イヨト イヨト

D.J. Tritton,

Physical Fluid Dynamics, Oxford, (1988).

J.P. Whitehead and C.R. Doering, Internal heating driven convection at infinite Prandtl number, JMP, (2011).

L.N. Trefethen,

Spectral Methods in Matlab, SIAM, (2000).

B.K Muite

A numerical comparison of Chebyshev methods for solving fourth order semilinear initial boundary value problems, JCAM, (2009).

ヘロト 人間 ト ヘヨト ヘヨト