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1 Idealized test cases for 3D dynamical cores
This document describes the idealized dynamical core test cases that are proposed for the NCAR
ASP Summer Colloquium in June 2008. All test cases are dry and adiabatic. No physical pa-
rameterizations or vertical diffusion are applied. All dynamical cores should be run in their
operational configurations which includes the typical diffusion mechanisms and coefficients,
filters, time steps and other tunable parameters. In addition, the runs should utilizes their stan-
dard a posteriori fixers like mass or energy fixers if applicable. These standard runs serve as
control simulations. All parameters and fixers need to be documented to foster model compar-
isons. In addition, the documentation needs to list the prognostic variables, the equation set
(e.g. shallow-atmosphere hydrostatic, or shallow-atmosphere nonhydrostatic), the horizontal
grid staggering, time stepping approach, vertical coordinate, and horizontal and vertical resolu-
tions.

The modeling groups are also invited to test their models in non-operational configurations
that, for example, use less explicit diffusion. In particular, Rayleigh friction at the model top
should be avoided if applied. These non-standard configurations are often viable for idealized
test cases as considered here, but note that they might not be applicable in real weather or
climate simulations. Therefore, any conclusions need to be carefully drawn and are not neces-
sarily valid for models with physics parameterizations. More details are provided in section 2.
The parameter p0 in models with hybrid η coordinates in the vertical direction needs be set to
p0 = 1000 hPa which might not be the standard choice.

Table 1 lists all test case that are proposed for the NCAR ASP summer program. We suggest
using the unique multiple-digit test case number F − x − y from column 3 to distinguish the
model runs. The first digit identifies the test case family F . The second digit x indicates a
variation of the initial conditions such as a different rotation angle or background velocity. The
x choices for selected rotation angles are listed in Table 2. The optional third digit y denotes
a specific tracer distribution if applicable. An overview of the tracer distributions y is given
in table 3. It is encouraged to transport all tracers during a single model run. Then the tracer
numbers y can be concatenated to form a longer identifier, such as 2-0-1234 which denotes
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Family Test case Test case Test case Parameter
F F -x-y variant choices

1-0-y no rotation α = 0
1 Steady-state 1-3-y midlatitudinal flow α = π/4

1-6-y flow over the poles α = π/2

2-0-y no rotation α = 0
2 Baroclinic wave 2-3-y midlatitudinal flow α = π/4

2-6-y flow over the poles α = π/2

3-0-y no rotation α = 0
3

Advection test
3-3-y midlatitudinal flow α = π/4solid body rotation
3-6-y flow over the poles α = π/2

3D Rossby-Haurwitz4 wave 4-0-0

Mountain-induced5 Rossby wave 5-0-0 wind amplitude u0 = 20 m/s

6-0-0 N = 0.01 s−1, u0 = 0 m/s
6

Pure gravity
6-1-0

Ω = 0 s−1

isotherm, u0 = 0 m/swave (non-rotating)
6-2-0

λc, ϕc = (π, 0)
isotherm, u0 = 40 m/s

6 Inertio-gravity wave 6-3-0 Earth’s rotation isotherm, u0 = 0 m/s

Table 1: Overview of the test case families F with their specifications F -x-y. The symbol x
identifies the test case variant. Selected choices for the rotation angles are listed in table 2. The
symbol y is a placeholder for different tracer distributions as listed in table 3. The parameter α
denotes the flow orientation angle, u0 a maximum background wind speed, N symbolizes the
Brunt-Väisälä frequency and (λc, ϕc) points to a grid point position in spherical coordinates.
More details are provided in the section for each test case.

a baroclinic wave run without rotation and advected tracers q1, q2, q3 and q4. The y numbers
might also be used to the distinguish the tracer distributions in graphical depictions of the model
runs. Note that multiple resolutions can be selected for each test case. We recommend noting
the lat × lon resolutions as part of the output file names, such as 181x360L26 for 181 latitudes
including the poles, 360 longitudes (starting at the zero meridian) and 26 vertical levels.

1.1 Steady-state initial conditions
The idealized steady-state and baroclinic instability (section 1.2) test cases were suggested by
Jablonowski (2004) and recently applied to four very different dynamical cores by Jablonowski
and Williamson (2006a,b). Among them were the three dynamical cores that are part of the
NCAR CAM3.1 modeling framework. These are the spectral transform Eulerian (EUL) and
semi-Lagrangian (SLD) models (Collins et al. 2004, 2006) as well as the Finite Volume (FV)
dynamical core developed by Lin (2004). In addition, the icosahedral finite-difference model
GME of the German Weather Service (DWD) was tested (Majewski et al. 2002). These hy-
drostatic dynamical cores represent a broad range of numerical approaches and, at very high
resolutions, provide independent reference solutions. These are used to assess whether new
model runs fall within the uncertainty range of the reference solutions. In addition, the steady-
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x Rotation angle Flow orientation
0 α = 0 0◦: no rotation, flow parallel to the equator
1 α = π/12 15◦: flow confined to the tropics
2 α = π/6 30◦: subtropical flow
3 α = π/4 45◦: midlatitudinal flow
4 α = π/3 60◦: flow in the mid- to high latitudes
5 α = 5π/12 75◦: flow reaches high latitudes
6 α = π/2 90◦: flow straight over the poles

Table 2: List of the placeholder x that symbolizes selected rotation angles for test case families
1-3.

y Tracer field Test case family (F )
0 no tracer (1), (4), (5), (6)
1 q1
2 q2 steady-state (1), optional
3 q3 baroclinic wave (2)
4 q4

5 q5
6 q6

solid body rotation (3)

Table 3: List of the placeholder y that denotes the tracer distributions. The definitions of the
tracer variables q1− q6 are described in the corresponding sections of the test case families.

state model runs can be compared against the initial state which is an analytic solution to the
primitive equations.

The steady-state and baroclinic wave test cases have been developed for dry dynamical cores
with pressure-based vertical coordinates like the pure pressure coordinate p, the pure σ = p/ps

coordinate (Phillips 1957) or the η (hybrid σ − p) coordinate (Simmons and Burridge 1981)
with ps symbolizing the surface pressure. The latter two coordinate systems are typically used
in GCMs today. The definition of the η-system with

p(λ, ϕ, η) = A(η)p0 +B(η)ps(λ, ϕ) (1)

together with the specification of all interface coefficients A and B (half indices) for the inte-
grations in Jablonowski and Williamson (2006a) are provided in Appendix C. λ and ϕ denote
the longitudinal and latitudinal directions, respectively. Note that the reference pressure p0 is
set to 105 Pa. This reference value might not be standard in all GCMs that utilize the hybrid
system. As an example, the model GME sets the standard value to p0 = 1013.25 hPa which has
been changed for the tests described here.

The surface pressure ps is constant and chosen to be ps(λ, ϕ) = p0 = 105 Pa. This guar-
antees that constant η-surfaces coincide with constant σ or pressure surfaces if there are no
variations in the surface pressure, which is the case here. If other σ-systems like

σ = (p− ptop)/(ps − ptop) (2)

with non-zero ptop are selected (Kasahara 1974), the conversion

η = σ +
ptop(1− σ)

p0

(3)

3



can be used in the equations below. This expression recovers η = σ for ptop = 0 hPa. In general,
the choice of the vertical coordinate system is left to the modeling group despite the fact that
each vertical coordinate system implies a different boundary condition for the vertical velocity.
In practice, this has been found to be insignificant for the steady state test or the evolution of
the baroclinic wave over a 10-day time period. If other generalized vertical coordinate systems
are used, like height-based or hybrid isentropic-σ levels, either an iterative method or vertical
interpolations of the initial conditions become necessary. Details of the iterative method, which
is the preferred choice, are provided in Appendix D

The initial state is defined by analytic expressions in spherical (λ, ϕ, η) coordinates where
λ ∈ [0, 2π] stands for the longitude, ϕ ∈ [−π/2, π/2] represents the latitude and η ∈ [0, 1]
denotes the position in the vertical direction which is unity at the surface and approaches zero
at the model top. The subsequent expressions can also be straightforwardly transformed into
different, e.g. Cartesian, coordinate systems. All physical constants used in the test specification
are listed below and in Appendix G. Users of the test case are encouraged to select the same
parameter set in their models to foster model intercomparisons.

Assuming that a model utilizes η-levels an auxiliary variable ηv is defined by

ηv = (η − η0)
π

2
(4)

with η0 = 0.252. Eq. (4) can also be directly applied to models with pure pressure coordinates
if η = p/ps is adopted at each pressure level p (for models with ptop = 0 hPa)..

The flow field is comprised of two symmetric zonal jets in midlatitudes. The zonal wind u
and meridional wind v are defined as

u(λ, ϕ, η) = u0 cos
3
2 ηv sin2 (2ϕ) (5)

v(λ, ϕ, η) = 0 m s−1. (6)

Here the maximum amplitude u0 is set to 35 m s−1 which is close to the wind speed of the
zonal-mean time-mean jet streams in the troposphere. In addition, the vertical velocity is set to
zero for non-hydrostatic setups. This flow field in nondivergent and allows the derivation of the
analytic initial data even for models in vorticity-divergence (ζ ,δ) form. In particular, the radial
outward component of the relative vorticity ζ is given by

ζ(λ, ϕ, η) =
− 4 u0

a
cos

3
2 ηv sinϕ cosϕ (2− 5 sin2 ϕ) (7)

and δ = 0 s−1 is automatically fulfilled. a = 6.371229× 106 m indicates the mean radius of the
Earth.

The horizontally averaged temperature T̄ (η) is split into two representations for the lower
(Eq. (8)) and middle (Eq. (9)) atmosphere. This introduces the characteristic atmospheric tem-
perature profiles especially at upper levels. They are given by

T̄ (η) = T0 η
RdΓ

g (for ηs ≥ η ≥ ηt) (8)

T̄ (η) = T0 η
RdΓ

g + ∆T (ηt − η)5 (for ηtop > η) (9)

with the surface level ηs = 1, the tropopause level ηt = 0.2 and the horizontal-mean temperature
at the surface T0 = 288 K. The temperature lapse rate Γ is set to 0.005 K m−1 which is similar
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to the observed diabatic lapse rate. Additionally, the empirical temperature difference ∆T =
4.8 × 105 K is chosen. Rd = 287.04 J (kg K)−1 represents the ideal gas constant for dry air
and g = 9.80616 m s−2 is the gravitational acceleration. The total temperature distribution
comprises the horizontal-mean temperature and a horizontal variation at each level. It is given
by

T (λ, ϕ, η) = T̄ (η) +
3

4

η π u0

Rd

sin ηv cos
1
2 ηv ×

{(
− 2 sin6 ϕ (cos2 ϕ+

1

3
) +

10

63

)
2u0 cos

3
2 ηv +

( 8

5
cos3 ϕ (sin2 ϕ+

2

3
)− π

4

)
a Ω

}
(10)

where Ω = 7.29212× 10−5 s−1 denotes the Earth’s angular velocity.
The geopotential Φ = gz completes the description of the steady-state initial conditions

where z symbolizes the elevation of a model level η. The total geopotential distribution Φ =
Φ̄+Φ′ comprises the horizontal-mean geopotential Φ̄ and a horizontal variation Φ′ at each level.
This is analogous to the description of the temperature field. The geopotential is determined by

Φ(λ, ϕ, η) = Φ̄(η) + u0 cos
3
2ηv ×{(

− 2 sin6 ϕ (cos2 ϕ+
1

3
) +

10

63

)
u0 cos

3
2 ηv +

( 8

5
cos3 ϕ (sin2 ϕ+

2

3
)− π

4

)
a Ω

}
. (11)

with

Φ̄(η) =
T0 g

Γ

(
1 − η

Rd Γ

g

)
(for ηs ≥ η ≥ ηt) (12)

Φ̄(η) =
T0 g

Γ

(
1 − η

Rd Γ

g

)
−Rd ∆T × (for ηt > η) (13)

{(
ln

( η
ηt

)
+

137

60

)
η5

t − 5 η4
t η + 5 η3

t η
2 − 10

3
η2

t η
3 +

5

4
ηt η

4 − 1

5
η5

}
.

This formulation enforces the hydrostatic balance analytically and ensures the continuity of
the geopotential at the tropopause level ηt. In hydrostatic models with pressure-based vertical
coordinates, it is only necessary to initialize the surface geopotential Φs = gzs. It balances the
non-zero zonal wind at the surface with surface elevation zs and is determined by setting η = ηs

in Eq. (11). This leads to the following equation for the surface geopotential

Φs(λ, ϕ) = u0 cos
3
2

(
(ηs − η0)

π

2

)
×

{(
− 2 sin6 ϕ (cos2 ϕ+

1

3
) +

10

63

)
u0 cos

3
2

(
(ηs − η0)

π

2

)
+

( 8

5
cos3 ϕ (sin2 ϕ+

2

3
)− π

4

)
a Ω

}
(14)

with η0 = 0.252 and ηs = 1. Note that Φs is actually a function of latitude only. As mentioned
before the surface pressure is constant and given by

ps = p0 = 1000 hPa. (15)

5



The geopotential equation (11) can fully be utilized for dynamical cores with height-based ver-
tical coordinates. Then, a root-finding algorithm is recommended to determine the correspond-
ing η-level for any given height z. This iterative method, which is also applicable to isentropic
vertical coordinates, is outlined in Appendix D. The resulting η-level is accurate to machine
precision and can consequently be used to compute the initial data set.

The balanced initial flow field comprises a zonally symmetric basic state with a jet in the
midlatitudes of each hemisphere and a quasi-realistic temperature distribution, which are dis-
played in Figs. 1(a) and (b). In addition, the figure shows the profile of the surface geopotential
(Fig. 1(c)), three selected vertical temperature distributions on a logarithmic scale (Fig. 1(d)),
the initial geopotential height field (Fig. 1(e)) and the unperturbed relative vorticity distribu-
tion (Fig. 1(f)). Overall, the atmospheric conditions resemble the climatic state of a winter
hemisphere reasonably well. The centers of the midlatitudinal jets at 45◦N/S are placed at the
pressure level p = η0ps = 252 hPa, which lies just below the tropopause level at p = 200 hPa.
Furthermore, the globally averaged temperature of this distribution is approximately 256.4 K,
which closely matches the observed global temperature of the atmosphere. The horizontally
averaged temperature at the surface is T̄ (η = 1) = T0 = 288 K which corresponds exactly to
the surface temperature of the so-called U.S. standard atmosphere (U.S. Standard Atmosphere
1976). In addition, the temperature distribution captures an idealized stratospheric and meso-
spheric temperature profile and prescribes a low-level temperature inversion in polar regions.
The test design guarantees static, inertial and symmetric stability properties, but is unstable with
respect to baroclinic or barotropic instability mechanisms.

The following test strategy is suggested. The dynamical core is initialized with the balanced
initial conditions and run for 30 model days at varying horizontal resolutions. This is a stringent
test of the dynamics that not only serves as a debugging tool but also as an assessment tool for
the algorithmic design of the numerical scheme and its horizontal grid. For these model runs
error norms can be directly assessed since the initial state is the true solution. If possible, the un-
perturbed model simulations should be run without horizontal or vertical diffusion. Most often,
the latter is a component of the physics package and therefore already inactive in a dynamical
core simulation. In addition, no Rayleigh friction near the model top (if included in the model)
should be applied. All three aforementioned diffusion mechanisms would damp the initial data
over time which is consequently reflected in the error statistics.

1.1.1 Rotated steady-state initial data set

The steady-state initial data are zonally uniform which favors models with orthogonal latitude-
longitude or Gaussian grids. Therefore, a rotated version of the initial conditions is suggested
for both the steady-state and baroclinic wave (see section 1.2) test cases. It rotates the compu-
tational grid by a flow orientation angle α ∈ [0, π/2]. This rotation is also depicted in Fig. 28
in Appendix E. For α = 0 the original zonal flow parallel to the equator is recovered, whereas
the flow orientation angle of α = π/2 directs the flow field straight over the poles. The latter
setup has the potential to expose filter effects that are associated with polar filters in latitude-
longitude grids. These are frequently used to alleviate the effects of the converging meridians in
spherical geometry. A flow orientation angle greater zero therefore diminishes the advantages
of the traditional orthogonal grids for zonal flows. In addition, a flow orientation angle like
α = π/4 challenge the design of cubed-sphere grids that place the corners of the cubed-sphere
in midlatitudes at ϕ± 45◦.
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Figure 1: Initial conditions for the (a) unperturbed zonal wind u, (b) temperature T , (c) sur-
face geopotential Φs, (d) vertical temperature profiles at the equator, 45◦N/S and the poles, (e)
geopotential height field z (in km) and (f) the unperturbed relative vorticity ζ (in 10−5 s−1). The
contour levels in (e) are non-uniformally spaced, negative contours are dashed. Note that the η
coordinate coincides with σ = p/ps for ptop = 0 hPa.
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Figure 2: Initial conditions for the unperturbed zonal wind u (top left), meridional wind v
(top right), temperature T (bottom left) and surface geopotential height zs (bottom right) at the
lowestmost model level (p = 992.6 hPa) with the flow orientation angle α = 45◦.

Very minor modifications of the model code and initial conditions are necessary for the
rotated test case. In particular, the change in the model configuration is a rotated Coriolis
parameter f(λ, ϕ) that now becomes a 2D field. This is in contrast to the regular 1D setting
f(ϕ) = 2Ω sin(ϕ). The rotated Coriolis parameter is

f(λ, ϕ) = 2 Ω [− cosλ cosϕ sinα+ sinϕ cosα]. (16)

The same representation of f is also used in Williamson et al. (1992) for rotated shallow water
test cases.

In addition, the initial conditions for u, v, T and Φs need to be rotated. Following Staniforth
and White (2007) the necessary steps are documented in Appendix E and also implemented
in the Fortran test case routines for the initial conditions. Two examples of the rotated initial
conditions are shown in Figs. 2 and 3. They depict the steady-state initial data at the lowest
most model level (p = 992.6 hPa) with the flow orientation angle α = 45◦ and α = 90◦.
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Figure 3: Initial conditions for the unperturbed zonal wind u (top left), meridional wind v
(top right), temperature T (bottom left) and surface geopotential height zs (bottom right) at the
lowestmost model level (p = 992.6 hPa) with the flow orientation angle α = 90◦.
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1.1.2 Resolution, output data and analysis

We suggest running the steady-state test case with flow orientation angle α = 0◦ at the spectral
resolutions T21, T42, T85 and T170 with 26 vertical levels. These resolutions correspond
approximately to the grid point resolutions 4◦ × 4◦, 2◦ × 2◦, 1◦ × 1◦ and 0.5◦ × 0.5◦. Similar
information on the resolutions and time steps are provided in Appendix 2 that lists the choices
for the three NCAR CAM3.5 dynamical cores and the icosahedral model GME.

We recommend repeating two rotated 30-day model run at the T85 spectral resolution or the
1◦ × 1◦ grid point resolution with 26 vertical levels. The flow orientation angles are α = 45◦

and α = 90◦.
For each model run the following instantaneous model variables to the NetCDF should be

written to the output file: PS, U, V, T, PHIS, Z3 (geopotential height at all model levels, if
available) and T850 (temperature at 850 hPa, if available). The output frequency is daily (every
24 hours starting with the initial state). Plot the snapshots of the surface pressure field at days
5, 10, 20 and 30. Assess whether the total mass and total energy is conserved during the 30-day
model run (see also Appendix F). Ideally, both quantities should be computed on the native
grid during the model run. Quantify the total loss or gain of mass and total energy in percent
at the end of the run (day 30). In addition, we recommend analyzing the zonal wind symmetry
deviations from the zonal mean and the degradation of the zonal wind average with respect to
the analytic solution. Both can be assessed via l2 error norms which are displayed in Eqs. 17
and 18 for pressure-based hybrid vertical coordinates. If other vertical coordinate systems are
used, the vertical integration weights (here the ηk thicknesses) need to be modified. The first l2
error norm evaluates the symmetry-deviations from the zonal average. It is defined as

l2
(
u(t)− u(t)

)
=

(
1

4π

∫ 1

0

∫ π
2

−π
2

∫ 2π

0

[u(λ, ϕ, η, t)− u(ϕ, η, t)]2 cosϕ dλ dϕ dη

)1/2

≈
(∑

k

∑
j

∑
i [u(λi, ϕj, ηk, t)− u(ϕj, ηk, t)]

2wj ∆ηk∑
k

∑
j

∑
iwj ∆ηk

)1/2

(17)

where the overbar ( ) denotes the zonal average and the sums with indices (i, j, k) are taken
over all longitude points λi, latitude points ϕj and vertical levels ηk of the global grid. The
summation weights wj are the Gaussian weights for the calculations on the spectral transform
grids. On uniform grids wj = | sin(ϕj+1/2)− sin(ϕj−1/2)| is used where the half indices denote
the location of the cell interfaces in the meridional direction. The weights ∆ηk = (ηk+1/2 −
ηk−1/2) indicate the thickness of a model layer. Here the half indices k ± 1/2 point to the
locations of the level interfaces. Eq. (17) assumes that the longitudinal grid points are equally
spaced. The second l2 norm assesses the degradation of the zonal average with respect to the
analytic solution. It is defined by

l2
(
u(t)− u(t = 0)

)
=

(
1

2

∫ 1

0

∫ π
2

−π
2

[u(ϕ, η, t)− u(ϕ, η, t = 0)]2 cosϕ dϕ dη

)1/2

≈
(∑

k

∑
j [u(ϕj, ηk, t)− u(ϕj, ηk, t = 0)]2wj ∆ηk∑

k

∑
j wj ∆ηk

)1/2

. (18)

Example figures of the two error norms are shown in Jablonowski and Williamson (2006a).

10



1.2 Baroclinic wave test with tracers
A baroclinic wave can be triggered if the initial conditions for the steady-state test (section 1.1)
are overlaid with a perturbation. Here a perturbation with a Gaussian profile is selected and
centered at (λc, ϕc) = (π/9, 2π/9) which points to the location (20◦E,40◦N). The perturbation
overlays the zonal wind field. The zonal wind perturbation upert is given by

upert(λ, ϕ, η) = up exp
(
−

( r
R

)2 )
(19)

with radius R = a/10 and maximum amplitude up = 1 m s−1. It superimposes on the balanced
zonal wind field (Eq. (5)) by adding upert to the wind field at each grid point at all model levels.
It yields

u(λ, ϕ, η) = u0 cos
3
2 ηv sin2 (2ϕ) + up exp

(
−

( r
R

)2 )
(20)

where the great circle distance r is given by

r = a arccos
(

sinϕc sinϕ+ cosϕc cosϕ cos(λ− λc)
)

. (21)

The corresponding overlaying (ζ ′,δ′ ) perturbations at each level for models in vorticity-
divergence form are

ζ ′(λ, ϕ, η) =
up

a
exp

(
−

( r
R

)2 )
×

{
tanϕ−

2
( a
R

)2

arccos(X)
sinϕc cosϕ− cosϕc sinϕ cos(λ− λc)√

1−X2

}
(22)

δ′(λ, ϕ, η) =
−2 up a

R2
exp

(
−

( r
R

)2 )
arccos(X)

cosϕc sin(λ− λc)√
1−X2

(23)

with X =
(
sinϕc sinϕ + cosϕc cosϕ cos(λ − λc)

)
. For both singular points (λc, ϕc)

and (λc + π,−ϕc) with X2 = 1, δ′ is identical zero. In addition, ζ ′(λc, ϕc) = up tanϕ/a is
well-defined and limλ→λc+π,ϕ→−ϕc ζ

′ is zero. Similarly, limϕ→±π
2
ζ ′ is zero at the poles. The

perturbation fields u′, ζ ′ and δ′ are shown in Fig. 4.
The evolution of a baroclinic wave in the Northern Hemisphere is triggered when using the

steady-state initial conditions with the overlaid zonal wind perturbation. As before, different
horizontal resolutions should be assessed to estimate the convergence characteristics. In gen-
eral, the baroclinic wave starts growing observably around day 4 and evolves rapidly thereafter
with explosive cyclogenesis at model day 8. The wave train breaks after day 9 and generates
a full circulation in both hemispheres between day 20-30 depending on the model formulation.
Therefore, the simulation should cover at least a 10-day time period that captures the initial
and rapid development stages of the baroclinic disturbance. If longer time integrations are per-
formed (e.g. up to 30 days as in the subsequent examples) the spread of the numerical solutions
increases noticeably from model day 12 onwards. This indicates the predictability limit of the
test case. Nevertheless, the initial development stages of new systems at the leading edge of the
baroclinic wave train (compare also to Simmons and Hoskins (1979)) are still predicted reliably
until day 16.

The baroclinic wave, although idealized, represents very realistic flow features. Strong
temperature fronts develop that are associated with the evolving low and high pressure systems.

11



0.3

0.3

0.6

a) u’ (ms-1)

25

30

35

40

45

50

55
L

at
itu

de

5 10 15 20 25 30 35
Longitude

0 0.5

1

-0.5

b) ζ’ (10-6 s-1)

25

30

35

40

45

50

55

L
at

itu
de

5 10 15 20 25 30 35
Longitude

0

0.5 -0.5

c) δ’ (10-6 s-1)

25

30

35

40

45

50

55

L
at

itu
de

5 10 15 20 25 30 35
Longitude

Figure 4: Perturbation patterns for the (a) zonal wind, (b) relative vorticity and (c) divergence.
The zero contour in (a) is omitted.

In addition, the wavenumber with maximum growth rate lies between 5 and 9 which agrees
well with observations and assessments in the literature (for example Simmons and Hoskins
(1977)). It is important to note that the baroclinic wave test case does not have an analytic
solution. Therefore, high resolution reference solutions and their uncertainties can be assessed.

We suggest adding a variety of passive tracers to the baroclinic wave test case. The scientific
questions are

• whether the advection scheme is monotonic and/or positive definite.

• how thin filaments are represented and diffused.

• whether a constant tracer distribution is preserved in nondivergent flow fields. In particu-
lar, the steady state flow is expected to preserve a constant tracer.

• how accurate and diffusive the vertical transport is.

• whether the model traps tracer mass at the top or bottom of the domain.

The tracer distributions are denoted by the variables names q1, q2, q3 and q4. Their initial
distributions are given by

q1(λ, ϕ, η) =

{
x if |x| ≥ 10−8

0 if |x| < 10−8 (24)

with

x = exp

{
−

[( r
R

)2

+
(η − ηc

ηhw

)2
]}

(25)

where R = a/10 and ηhw = 0.1 determine the horizontal and vertical half widths of the tracer
distribution. The maximum amplitude in the vertical direction is placed at mid-levels with
ηc = 0.6. r is the great circle distance between the grid point position (λ, ϕ) and the center,
initially set to (λc, ϕc) = (π/9, 11π/18) = (20◦E, 55◦N). The great circle distance r is defined
as

r = a arccos [sinϕc sinϕ+ cosϕc cosϕ cos(λ− λc)]. (26)
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A variant of q1 is created when ηc = 0.6 is replaced with ηc = 1. This places the vertical
peak of the tracer distribution at the surface where strong gradients occur during the evolution
of the baroclinic wave. This choice of ηc is defined as tracer field q2.

The other tracer distributions are

q3(λ, ϕ, η) =
1

2

[
tanh

(
3|ϕ| − π

)
+ 1

]
, (27)

q4(λ, ϕ, η) = 1. (28)

Note that q3 only depends on the latitudinal position ϕ and q4 is constant everywhere.

1.2.1 Rotated baroclinic wave initial data set

The steady-state initial data without the perturbation are zonally uniform which favors models
with orthogonal latitude-longitude or Gaussian grids. Therefore, a rotated version of the initial
conditions is suggested. It rotates the computational grid by a flow orientation angle α ∈
[0, π/2]. This rotation is also depicted in Fig. E in Appendix 28. For α = 0, the original zonal
flow parallel to the equator is recovered, whereas α = π/2 directs the flow field straight over
the poles. The latter setup has the potential to expose filter effects that are associated with
polar filters in latitude-longitude grids. These are frequently used to alleviate the effects of the
converging meridians in spherical geometry. A rotation angle greater zero therefore diminishes
the advantages of the traditional orthogonal grids for zonal flows. In addition, an angle like
α = π/4 challenge the design of cubed-sphere grids that place the corners of the cubed-sphere
in midlatitudes at ϕ± 45◦.

Very minor modifications of the model code and initial conditions are necessary for the
rotated test case. In particular, the change in the model configuration is a rotated Coriolis
parameter f(λ, ϕ) that now becomes a 2D field. This is in contrast to the regular 1D setting
f(ϕ) = 2Ω sin(ϕ). The rotated Coriolis parameter is

f(λ, ϕ) = 2 Ω [− cosλ cosϕ sinα+ sinϕ cosα]. (29)

The same representation of f is also used in Williamson et al. (1992) for rotated shallow water
test cases.

In addition, the initial conditions for u, v, T and Φs need to be rotated. Following Staniforth
and White (2007) the necessary steps are documented in Appendix E and also implemented in
the Fortran test case routines for the initial conditions.

1.2.2 Resolution, output data and analysis

We suggest running the baroclinic wave test case with the flow orientation angle α = 0◦ at the
spectral resolutions T21, T42, T85, T170 and T340 with 26 vertical levels. These resolutions
correspond approximately to the grid point resolutions 4◦× 4◦, 2◦× 2◦, 1◦× 1◦, 0.5◦× 0.5◦ and
0.25◦ × 0.25◦. Similar information on the resolutions and time steps are provided in Appendix
2 that lists the choices for the three NCAR CAM3.5 dynamical cores and the icosahedral model
GME. The integration time is 30 days for T21, T42, T85, T170 and 15 days for T340 to reduce
the compute time.

We suggest repeating two rotated 30-day model runs at the T170 spectral resolution or
the 0.5◦ × 0.5◦ grid point resolution with 26 vertical levels. If the compute time becomes
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prohibitive the lower resolution T106 or the 1◦× 1◦ grid point resolution with 26 vertical levels
are recommended. The flow orientation angles are α = 45◦ and α = 90◦.

For each model run the following instantaneous model variables to the NetCDF should be
written to the output file: PS, U, V, T, OMEGA, PHIS, Z3 (geopotential height at all model
levels, if available), T850 (temperature at 850 hPa, if available) and all tracers. T850 is a
valuable output quantity for at least the first 20 days. At later days the minimum surface pressure
might locally drop below 850 hPa which requires an extrapolation of the temperature to the 850
hPa level. The output frequency is daily (every 24 hours starting with the initial state). Plot
the surface pressure, 850 hPa temperature and 850 hPa relative vorticity field at days 7 and 9 in
an equidistant cylindrical map projection. An example is provided in Fig. 5 that was computed
with the NCAR CAM3.5.41 Eul model at the resolution T106 with 26 levels. In addition,
compute the time sequence at day 15, 20, 25 and 30 of the kinetic energy spectra at 700 hPa.
Assess whether the total energy and mass are conserved during the 30-day model run (see also
Appendix F). Ideally, both quantities should be computed on the native grid during the model
run. The total energy time series should show the energy difference between the daily (or more
frequent) output and the initial state. In addition, quantify the final energy loss or gain in percent
(normalized energy difference).

Interpolate the tracer field q1 at day 9 and 15 to the 700, 600 and 500 hPa levels and plot
the three pressure levels as equidistant cylindrical maps. The tracer field q2 is best evaluated on
model levels near the surface. We again suggest visualizing at least day 9 and 15. Interpolate the
tracer field q3 at day 9 and 15 to the pressure levels 850, 500 and 300 hPa. Plot the three pressure
levels as equidistant cylindrical maps. In addition, evaluate whether the initially constant tracer
distribution q4 shows variations. Assess whether the global tracer masses of q1-q4 are conserved
during the whole forecast period. We will provide NCL (NCAR Command Language) scripts
to help interpolate and evaluate all diagnostic quantities.

The following plots show examples of unrotated and rotated baroclinic wave runs with se-
lected tracer distributions. The results were computed with EULT106L26 (see figure captions
for the details). The noisy contours are due to the Gibb’s ringing effect. The standard diffusion
coefficients were used (see section 2).

1.3 Pure tracer advection tests with prescribed wind
This 3D advection test case tests the transport scheme of the dynamical core in isolation. The
following model code changes are required

• prescribe the time-invariant horizontal wind speeds u and v

• prescribe the time-variant vertical velocity η̇, σ̇, ω or w depending on the choice of the
vertical coordinate

• suppress the forecast of all prognostic variables. This is often most easily attained by
commenting out the update of the forecast variables or setting the time tendencies of the
dynamical core to zero.

• introduce a counter variable that counts the seconds since the start of the advection test.
The latter is needed for the prescribed update of the vertical velocity.
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Figure 5: [2-0-y]: Baroclinic wave without rotation simulated with EULT106L26: surface pres-
sure (upper row), 850 hPa temperature (middle row) and 850 hPa relative vorticity at days 7 and
9.
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Figure 6: [2-0-1] simulated with EULT106L26: Tracer distribution q1 at day 9 and day 15 at
the pressure levels 700, 600 and 500 hPa. The flow orientation angle is α = 0.
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Figure 7: [2-0-3] simulated with EULT106L26: Tracer distribution q3 at day 9 and day 15 at
the pressure levels 850, 500 and 300 hPa. The flow orientation angle is α = 0.
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Figure 8: [2-3-y]: Baroclinic wave with flow orientation angle α = 45◦ simulated with
EULT106L26: surface pressure (upper row), 850 hPa temperature (middle row) and 850 hPa
relative vorticity at days 7 and 9.
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Figure 9: [2-3-1] simulated with EULT106L26: Tracer distribution q1 at day 9 and day 15 at
the pressure levels 700, 600 and 500 hPa. The flow orientation angle is α = 45◦.
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Figure 10: [2-3-3] simulated with EULT106L26: Tracer distribution q3 at day 9 and day 15 at
the pressure levels 850, 500 and 300 hPa. The flow orientation angle is α = 45◦.
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Figure 11: [2-6-y]: Baroclinic wave with flow orientation angle α = 90◦ simulated with
EULT106L26: surface pressure (upper row), 850 hPa temperature (middle row) and 850 hPa
relative vorticity at days 7 and 9.
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Figure 12: [3-3-y]: Prescribed zonal wind u (left) and meridional wind v (right) with the flow
orientation angle α = 45◦.

The prescribed wind fields in hybrid vertical coordinates are

u(λ, ϕ, η) = u0 (cosϕ cosα+ sinϕ cosλ sinα) (30)
v(λ, ϕ, η) = −u0 sinλ sinα (31)

η̇(λ, ϕ, η, t) =
ω0

p0

cos
(2π

τ
t
)

sin
(
s(η)

π

2

)
(32)

with u0 = 2πa/(12 days) which is equivalent to u0 ≈ 38.61 m s−1. The oscillation period is
τ = 345600 s which corresponds to 4 days. The maximum vertical pressure velocity ω0 is set
to ω0 = π 4 × 104Pa/τ which yields ω0 ≈ 0.3636 Pa/s. This value corresponds to a few cm/s.
The shape function is

s(η) = min

[
1, 2

√
sin

(η − ηtop

1− ηtop

π
)]
. (33)

The horizontal velocities are time-invariant and were also prescribed for shallow water advec-
tion tests in Williamson et al. (1992). As before, α ∈ [0, π/2] is the flow orientation angle. Two
examples of the horizontal velocities are shown in Figs. 12 and 13. They depict the zonal and
meridional wind fields with the flow orientation angle α = 45◦ and α = 90◦.

The vertical velocity is time-dependent and kept uniform throughout the majority of the
vertical domain. However, the vertical velocity profile is forced to approach zero at the upper
and lower boundary which guarantees mass conservation. The surface pressure is uniform and
set to p0 = 1000 hPa. The atmosphere is isothermal with T0 = 300 K. The latter determines
the scale height H = Rd T0/g ≈ 8.78 km which is used to transform the vertical velocity to
height-based coordinate systems. The vertical velocity describes a wave-like trajectory in the
vertical direction with a period of four days. For models with σ-, pressure or height coordinates
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Figure 13: [3-6-y]: Prescribed zonal wind u (left) and meridional wind v (right) with the flow
orientation angle α = 90◦.

the vertical velocity becomes

σ̇(λ, ϕ, σ, t) =
dσ

dt
= η̇(λ, ϕ, η, t) (34)

ω(λ, ϕ, p, t) =
dp

dt
= ω0 cos

(2π

τ
t
)

sin
(
s(p)

π

2

)
(35)

w(λ, ϕ, z, t) =
dz

dt
= − H

p(z)
ω(λ, ϕ, p(z), t) (36)

with
p(z) = p0 exp

(
− z

H

)
(37)

This pressure profile is equivalent to the height levels

z = H ln
(p0

p

)
(38)

The shape function s in pressure coordinates becomes

s(p) = min

[
1, 2

√
sin

( p− ptop

p0 − ptop

π
)]
. (39)

This shape function is mostly identical to unity and drops to zero at the model top above p = 315
hPa (≈ 10.14 km) and model bottom below p = 940 hPa (≈ 540 m). The tracers approximately
cover the area between 897 − 357 hPa during the transport unless diffusion and numerical
effects broaden the edges in the vertical direction. The initial setup renders the velocity field
non-divergent in the vicinity of the tracer for pressure-based vertical coordinates. However, the
velocity field is divergent for models in height coordinates. If an advection scheme for the tracer
q utilize the conservation form

∂

∂t

(
ρ q

)
+∇ · (~v ρ q) = 0 (40)
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the following discrete algorithm is recommended to prescribe the pressure p and thereby the
density ρ. First, we recommend calculating the pressure values p(t2) at the future time t2 =
t1 + ∆t where ∆t symbolizes the time step length and t1 is the current time counted in seconds
since the start of the advection test. The new pressure values are given by

p(t2) = p(t1) + ∆t ω0 cos
[2 π

τ

(
t1 +

∆t

2

)]
sin

(
s(p(t1))

π

2

)
(41)

where a time-centered evaluation of the cos-expression is selected. The time dependent density
can then be computed via the ideal gas law

ρ(t) =
p(t)

Rd T0

(42)

with constant temperature T0.
This wind field transports the tracer once around the sphere and reaches its initial position

after 12 days. During the revolution the tracer undergoes three wave cycles in the vertical
direction. The initital distribution serves as the analytic solution after 12 days. This allows
the computation of error norms and thereby an assessment of the numerical diffusion of the
transport scheme.

Two tracer distributions are suggested. The first is a smooth distribution given by

q5(λ, ϕ, z) =
1

2

(
1 + cos(π d1)

)
(43)

with the ellipse-like function

d1 = min

[
1,

{( r
R

)2

+
(z − z0

Z

)2}]
. (44)

As before, r denotes the great circle distance

r = a arccos
(

sinϕc sinϕ+ cosϕc cosϕ cos(λ− λc)
)

(45)

with center position (λc, ϕc) = (3π/2, 0). The vertical center is set to z0 = 4.5 km and the
horizontal and vertical half widths are chosen to be R = a/3 and Z = 1 km. a symbolizes the
Earth’s radius.

The second tracer field resembles a slotted ellipse with sharp edges. Such a profile chal-
lenges the numerical design of the transport schemes since over- and undershoots are likely to
occur in non-monotonic advection algorithms. The slotted ellipse is given by

q6(λ, ϕ, η) =

{
1 if d2 ≤ 1
0 if d2 > 1

(46)

with
d2 =

( r
R

)2

+
(z − z0

Z

)2

(47)

with the same parameters as above. The slot is cut out of the ellipse by the additional condition

q6 = 0 if z > z0 and ϕc − 1

8
< ϕ < ϕc +

1

8
(48)
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Figure 14: Latitude-height cross sections of the tracer fields q5 (left) and q6 (right) at the longi-
tudinal position λ = 3π/2.

The two initial tracer distributions are shown in Fig. 14. It depicts a latitude-height cross
section at λ = 3π/2 of the tracer fields q5 and q6. Figure 15(a) shows the trajectory of the
center position of the tracer fields in the vertical direction. The tracer distributions follow the
wave motion and undergo three oscillations in the vertical direction until day 12. The figure
also depicts the time variation of the vertical velocities (b) ω and (c) η̇. Recall that a positive ω
velocity corresponds to a downward motion in height coordinates.

1.3.1 Resolution, output data and analysis

We recommend using an equidistant ∆z = 200 m spacing of the vertical levels with the lower
and upper boundary (interface) positions z0 = 0 m and ztop = 12 km. This choice leads to 60
model levels with 61 model interfaces. They can be translated into a pressure-based system via
p(z) = p0 exp (−z/H) with scale height H . The σ-levels are

σ(z) =
p(z)− p(ztop)

ps − p(ztop)
. (49)

For hybrid vertical coordinate systems like

p(η) = A(η) p0 +B(η) ps (50)

we suggest using the hybrid coefficients A and B

A(η) = η −B(η) (51)

B(η) =

(
η − ηtop

1− ηtop

)
(52)

for the level interfaces as defined by Laprise and Girard (1990). For ps = p0, the definitions are
η = p(z)/p0 and ηtop = p(ztop)/p0 ≈ 0.254992. This hybrid coordinate system is a variant of
the one used by Simmons and Burridge (1981). It guarantees the conditions p(η = ηtop) = ptop

and p(η = 1) = ps at the upper and lower interface boundaries. The hybrid coefficients at the
full model levels can then be computed via the linear average

Ak =
1

2

(
Ak+1/2 + Ak−1/2

)
, (53)

Bk =
1

2

(
Bk+1/2 +Bk−1/2

)
(54)
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Figure 15: Time series of the (a) tracer trajectory, (b) vertical pressure velocity ω and (c) vertical
velocity in the hybrid coordinate system η̇.
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where the index k denotes the discrete full model level which is surrounded by the two inter-
face levels shown with half indices. The linear average guarantees that vertical differencing
operations conserve energy. Note that some models (Majewski et al. 2002) use the alternative
definition of Eq. (50)

p(η) = A(η) + B(η) ps. (55)

Then Eq. (51) is represented by A(η) = p0[η −B(η)].
We suggest running the pure advection test case for one revolution (12 days) at an approxi-

mately 1◦×1◦ horizontal resolution with 60 model levels. The horizontal resolution corresponds
to 180×361 grid points in the latitudinal and longitudinal directions if including the pole points.
The longitudes should start at position λ = 0. Additional higher or lower horizontal and ver-
tical resolutions might also be used to test the sensitivity of the results to the resolutions. In
particular, a model run with only 30 model levels (∆z = 400 m) might be valuable since GCMs
typically have very low vertical resolutions.

The flow orientation angles are α = 0, α = π/4 and α = π/2. The output data are 6-hourly
snapshots of the tracer fields q5 and q6 on model levels which results in a total of 49 time stamps
(including the initial state) for the 12-day forecast period.

For the flow orientation angle α = 0 the analysis of the model run concentrates on

1. longitude-height cross sections of the q5 and q6 contours at the equator (ϕ = 0) at days
0, 3, 6, 9 and 12.

2. latitude-height cross sections of the q5 and q6 contours at day 0 (λ = 270◦), day 3 (λ =
0◦), day 5 (λ = 60◦), day 6 (λ = 90◦), day 9 (λ = 180◦) and day 12 (λ = 270◦).

For the flow orientation angle α = π/4 the analysis of the model run concentrates on

1. longitude-height cross sections of the q5 and q6 contours at day 0 (ϕ = 0), day 3 (ϕ =
π/4), day 6 (ϕ = 0), day 9 (ϕ = −π/4) and day 12 (ϕ = 0).

2. latitude-height cross sections of the q5 and q6 contours at day 0 (λ = 270◦), day 3 (λ =
0◦), day 6 (λ = 90◦), day 9 (λ = 180◦) and day 12 (λ = 270◦).

For the flow orientation angle α = π/2 the analysis of the model run concentrates on

1. longitude-height cross sections of the q5 and q6 contours at day 0 (ϕ = 0), day 3 (ϕ =
π/2), day 6 (ϕ = 0), day 9 (ϕ = −π/2) and day 12 (ϕ = 0).

2. latitude-height cross sections of the q5 and q6 contours at days 0 and 3 (λ = 270◦), days
5, 6 and 7 (λ = 90◦), and day 12 (λ = 270◦).

In addition, we recommend plotting the following fields for all three rotation angles:

1. latitude-longitude cross section of q5 and q6 at position z0 = 4.5 km at days 0 and 12.

2. normalized l1, l2 and l∞ error norms after 12 days.

3. optional: time sequence of the q5 and q6 fields in 3D at days 0, 1, 3, 5, 6, 7, 9 and 12.
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Define I to be the discrete approximation to the global integral

I(q) =
1

4π (ηs − ηtop)

∫ ηs

ηtop

∫ 2π

0

∫ π/2

−π/2

q(λ, ϕ, η) cosϕdϕdλ dη (56)

that is consistent with the numerical scheme implemented in the dynamical core. Then the
normalized error norms of the tracer field q are

l1(q) =
I[ |q(λ, ϕ, η)− qT (λ, ϕ, η)| ]

I[ |qT (λ, ϕ, η)| ] (57)

l2(q) =

{
I
[ (
q(λ, ϕ, η)− qT (λ, ϕ, η)

)2 ]}1/2

{
I
[
qT (λ, ϕ, η)2

]}1/2
(58)

l∞(q) =
max all λ,ϕ,η |q(λ, ϕ, η)− qT (λ, ϕ, η)|

max all λ,ϕ,η |qT (λ, ϕ, η)| (59)

where qT indicates the analytic solution. After 12 days the tracers return to their initial position
and the initial state serves as the analytic solution.

1.4 3D Rossby-Haurwitz wave
The Rossby-Haurwitz (RH) wave test case is a 3D extension of the 2D shallow water RH wave
discussed in Williamson et al. (1992). The 2D test was originally proposed by Phillips (1959)
and later extended to three dimensions by Monaco and Williams (1975). The 3D extensions are
also described in Wan (2008) and Giraldo and Rosmond (2004). Note that the latter reference
contains a few inaccuracies. The main differences between the 2D shallow water formulation
and the 3D extension are the introduction of a temperature field and the derivation of the surface
pressure. All other equations are identical to Williamson et al. (1992). The Rossby-Haurwitz
wave is an analytical solution of the barotropic vorticity equation and approximately preserves
its shape even in nonlinear shallow water and primitive equation models. Therefore, it has
become a de facto standard for shallow water tests. In 3D hydrostatic dynamical cores the model
response mainly remains barotropic. It reveals the diffusion and conservation characteristics
over the forecast period.

The initial velocity field is nondivergent and defined via the streamfunction

ψ(λ, ϕ) = −a2M sinϕ+ a2K cosn ϕ sinϕ cos(nλ) (60)

where a symbolizes the Earth’s radius and n denotes the wave number, here set to n = 4. In
addition, the parameters M = K = u0/(n a) with u0 = 50 m s−1 are chosen which yields
M = K ≈ 1.962 × 10−6 s−1. For nondivergent barotropic models Haurwitz (1940) showed
that this streamfunction moves in the zonal direction without change of shape with an angular
velocity of

ν =
n(3 + n)M − 2 Ω

(1 + n) (2 + n)
. (61)

The parameter choices for n and M determine whether the Rossby-Haurwitz wave moves east-
ward (+) or westward (-). Using the parameters above and the Earth’s angular velocity Ω
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Eq. (61) yields a westward propagation. The time period τ = 2π/ν for a full revolution around
the sphere is approximately 24 days which corresponds to a propagation speed of about −15.2◦

day−1. This value is approximate for 3D hydrostatic flows as shown by Wan (2008).
The horizontal velocity components are vertically uniform and given by

u(λ, ϕ, η) = aM cosϕ+ aK cosn−1 ϕ cos(nλ) (n sin2 ϕ− cos2 ϕ) (62)
v(λ, ϕ, η) = −aK n cosn−1 ϕ sinϕ sin(nλ) . (63)

This results in the vorticity distribution

ζ(λ, ϕ, η) = 2M sinϕ−K sinϕ cosn ϕ cos(nλ) (n2 + 3n+ 2) (64)

The vertical velocity vanishes. The temperature profile T = T0 − Γ z is characterized by a
linear decrease with height. The lapse rate is set to Γ = 0.0065 K m−1 which mimics the
moist-adiabatic lapse rate in the atmosphere. The temperature T0 is set to 288 K. Substituting
the temperature profile into the hydrostatic approximation ∂p/∂z = −ρg yields the expression

z =
T0

Γ

(
1−

( p

pref

)Γ Rd
g

)
(65)

for the equivalent height z. Note that z does not represent the geopotential height. The reference
pressure is set to pref = 955 hPa which also determines the surface pressure at both pole points.
The pole points are anchored at the equivalent height z = 0 m. The height (65) transforms the
temperature profile into a pressure-based vertical coordinate system. In particular, it becomes

T (p) = T0

( p

pref

)Γ Rd
g

(66)

where the pressure p is given by

p(λ, ϕ, σ) = σ [ps(λ, ϕ)− ptop] + ptop (67)
p(λ, ϕ, η) = A(η) p0 +B(η) ps(λ, ϕ) (68)

for models with σ- and η-coordinates. Both expressions utilize the surface pressure ps that can
be derived via a second integration of the hydrostatic relationship with the temperature profile
(66). The integration yields

ps(λ, ϕ) = pref

(
1 +

Γ

g T0

Φ(λ, ϕ, η = 1)

) g
Γ Rd

. (69)

where the geopotential Φ = gz = Φ̄(η) + Φ′(λ, ϕ) is comprised of a mean horizontal state
Φ̄(η) and a perturbation Φ′(λ, ϕ). It is obtained from Eq. (60) by solving a balance equation
that forces the initial time tendency of the divergence to be zero. A flat surface elevation with
z̄(η = 1) = zs = 0 m is selected. It yields the constant surface geopotential Φs = 0 m2 s−2

which eliminates the influence of Φ̄(η = 1) at the surface. The surface pressure equation (69)
becomes

ps(λ, ϕ) = pref

(
1 +

Γ

g T0

Φ′(λ, ϕ)

) g
Γ Rd

(70)
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Figure 16: Initial conditions for the Rossby-Haurwitz wave: 850 hPa zonal wind u (top left),
850 hPa meridional wind v (top right) and surface pressure ps (bottom right).

with
Φ′(λ, ϕ) = a2A(ϕ) + a2B(ϕ) cos(nλ) + a2C(ϕ) cos(2nλ). (71)

The coefficients are defined by

A(ϕ) =
M (2 Ω +M)

2
cos2 ϕ+

K2

4
cos2n ϕ

[
(n+ 1) cos2 ϕ+ (2n2 − n− 2)

]

− n2K2

2
cos2(n−1) ϕ (72)

B(ϕ) =
2(Ω +M)K

(n+ 1)(n+ 2)
cosn ϕ

[
(n2 + 2n+ 2)− (n+ 1)2 cos2 ϕ

]
(73)

C(ϕ) =
K2

4
cos2n ϕ

[
(n+ 1) cos2 ϕ− (n+ 2)

]
(74)

The choice of pref = 955 hPa yields a horizontal mean surface pressure of about p̄s ≈ 1000.377
hPa for the parameters M,K, n and u0 given above. The mean value of the surface pressure
might be important for models with mass fixers. The initial data are shown in Fig. 16. The
figure depicts the 850 hPa zonal and meridional wind and the surface pressure ps.
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1.4.1 Resolution, output data and analysis

We recommend running the Rossby-Haurwitz test case for 30 days at an approximately 1◦ ×
1◦ horizontal resolution with 26 vertical levels as outlined in Appendix C. This horizontal
resolution corresponds to 181 × 360 grid points in the latitudinal and longitudinal directions if
including the pole points. If height-based vertical coordinates are used the model top must lie
below ztop = T0/Γ = 44.307 km.

The output data are daily snapshots of the fields U, V, OMEGA, T, PS, PHIS and Z3 (if
available) on model levels. In addition, the output variables T850, T300, U850, U200, V850,
V200, OMEGA850, OMEGA500 and Z500 should be selected (if available). The analysis of
the model run concentrates on

1. 500 hPa geopotential height Z500 contours at days 5, 10, 15 and 30 on an equidistant
cylindrical latitude-longitude map.

2. U, V, T and the OMEGA fields at p = 850 hPa at days 5, 10, 15 and 30 on equidistant
cylindrical latitude-longitude maps. The contour spacings are 4 m s −1 for U and V, and
0.1 K for T.

3. equidistant cylindrical latitude-longitude map of PS at day 5, 10, 15 and 30. The contour
spacing is 10 hPa.

4. time series of the domain integrated total energy (see Appendix F). Plot the energy dif-
ference between the daily (or more frequent) output and the initial state. In addition,
quantify the final energy loss or gain in percent (normalized energy difference).

5. evaluation of the Rossby-Haurwitz wave without explicit horizontal diffusion (if applica-
ble). Are the simulations computationally stable?

6. effects of enhanced explicit diffusion near the model top (if applicable). Plot U, V, T at
the second model level (p ≈ 7.3 hPa) on equidistant cylindrical latitude-longitude maps.

7. the symmetry of the wave in the Northern and Southern hemisphere.

8. whether the wave breaks down over the 30-day forecast period and if yes when?

The geopotential height is given by
∫ z

zs

dz′ = −Rd

g

∫ p

ps

Td(ln p′) (75)

which can be approximated in the discrete system as

zm = zs +
Rd

g

m∑

k=Kmax

Tk∆(ln pk)

= zs +
Rd

g

m∑

k=Kmax

Tk(ln pk+1/2 − ln pk−1/2) (76)

This expression results in the geopotential height zm at level index m < Kmax. The summation
starts near the surface with maximum level number Kmax with decreasing level index k in the
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upward direction. The half-indices describe the interface levels. zs = Φs/g is the surface
elevation which is zero in this test case. For the computation of the geopotential height at a
fixed pressure surface p500 = 500 hPa the summation over the full model levels stops at the
interface level that lies just below p500. This interface level is denoted by index m + 1/2. The
remaining fractional contribution upward of interface level m + 1/2 is added via the last term
in

zp = zs +
Rd

g

m+1∑

k=Kmax

[
Tk(ln pk+1/2 − ln pk−1/2)

]
+ Tm(ln pm+1/2 − ln p500). (77)

The 850 hPa wind velocities and temperature can be derived via a linear interpolation in ln p
coordinates that takes the two surrounding model levels into account.

Snapshots of the output data at day 15 are presented in Fig. 17. The figure shows the 850
hPa zonal wind, meridional wind, temperature and vertical velocity fields as well as the 500
hPa geopotential height and surface pressure. These model results were computed with the
CAM3.5.41 verison of the NCAR Finite Volume (FV) dynamical core at the resolution 1◦ × 1◦

with 26 hybrid levels.

1.5 Mountain-induced Rossby wave train
The definition of the mountain-induced Rossby wave train closely resembles the description
of the initial conditions by Tomita and Sato (2004). The main difference is the derivation
of the surface pressure for hydrostatic conditions as considered here. The simulation starts
from smooth isothermal initial conditions that are a balanced analytic solution to the primitive
equations. They are also a solution to the non-hydrostatic shallow atmosphere equation set. An
idealized mountain then triggers the evolution of a Rossby wave train over the course of 15
days. We recommend integrating the models until day 30 to investigate the further evolution of
the circulation.

The horizontal wind components are prescribed as

u(λ, ϕ, η) = u0 cosϕ (78)
v(λ, ϕ, η) = 0 m s−1. (79)

The amplitude of the zonal wind u0 is set to 20 m s−1, the vertical velocity vanishes. The
temperature is isothermal and given by T (λ, ϕ, η) = T0 = 288 K. This yields the constant
Brunt-Väisälä frequency

N =

√
g2

cp T0

≈ 0.0182 s−1. (80)

The gravitational acceleration g and specific heat at constant pressure cp are listed in Appendix
G. An idealized bell-shape mountain is introduced via the surface geopotential

Φs(λ, ϕ) = gzs = gh0 exp

[
−

(r
d

)2
]

(81)

where h0 = 2000 m determines the peak height of the mountain and d = 1500 km is the half
width of the Gaussian mountain profile. As before, r is defined as the great circle distance

r = a arccos [sinϕc sinϕ+ cosϕc cosϕ cos(λ− λc)] (82)
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Figure 17: Snapshots of the Rossby-Haurwitz wave at day 15 simulated with FV181x360L26.
Top row: 850 hPa zonal wind u and meridional wind v, middle row: surface pressure ps and
850 hPa temperature T , bottom row: 500 hPa geopotential height and 850 hPa vertical pressure
velocity ω.
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Figure 18: Initial conditions for the mountain induced Rossby wave: zonal wind u, surface pres-
sure ps and surface elevation zs. The meridional wind v is zero, the temperature is isothermal
with T = 288 K.

to the center point here selected to be in the midlatitudes with (λc, ϕc) = (π/2, π/6). The
surface pressure field balances the initial conditions. For hydrostatic primitive equation models
it is defined as

ps(λ, ϕ) = psp exp

[
− aN2 u0

2 g2 κ

(u0

a
+ 2 Ω

)
(sin2 ϕ− 1) − N2

g2 κ
Φs(λ, ϕ)

]
(83)

with κ = 2/7 and the Earth’s radius a. psp denotes the surface pressure at the South Pole which
is set to psp = 930 hPa. This choice of psp yields a horizontal mean surface pressure of about
p̄s ≈ 1001.456 hPa. The mean value of the surface pressure might be important for models with
mass fixers. The initial conditions are depicted in Fig. 18 which shows the zonal wind, surface
pressure and surface elevation.

The parameters N , d, h0 and u0 determine the physical characteristics of the mountain wave
response. Non-hydrostatic effects can be measured by the ratio of the horizontal to the vertical
wave lengths. The ratio is

N d

u0

= 1139.45 À 1 (84)

where the half width d represents a quarter wave length. The ratio greatly exceeds unity which
separates the hydrostatic from the non-hydrostatic flow regimes. Therefore, the mountain wave
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response is hydrostatic. In addition, the non-linear effects are measured by the gravity wave
strength Nh normalized by the base state wind

N h

u0

= 1.82. (85)

This is the inverse Froude number that is a more than twice the critical value of 0.85 for which
a flow transition is expected. The mountain therefore triggers a nonlinear finite-amplitude
wave response. At mid-levels it resembles the barotropic mountain wave train described in
Williamson et al. (1992).

1.5.1 Resolution, output data and analysis

We recommend running the Rossby wave train test for 30 days at an approximately 1◦×1◦ hor-
izontal resolution with 26 vertical levels as outlined in Appendix C. This horizontal resolution
corresponds to 181 × 360 grid points in the latitudinal and longitudinal directions if including
the pole points.

The output data are daily snapshots of the fields U, V, OMEGA, T, PS, PHIS and Z3 on
model levels. In addition, the output variables T300, U200, V200, OMEGA500, Z700, Z500
and Z300 should be selected (if available). The analysis of the model run concentrates on

1. U, V, T, OMEGA and geopotential height at 700 hPa km at days 5, 10, 15, 20 and 25
on equidistant cylindrical latitude-longitude maps. Contour intervals are 5 m/s for U and
V, 3 K for T, and 100 m for the geopotential height. We also recommend plotting the
temperature at 300 hPa with a 1K contour interval.

2. OMEGA longitude-pressure cross section at 45◦N at day 15.

3. time series of the domain integrated total energy. Plot the energy difference between the
daily (or more frequent) output and the initial state. In addition, quantify the final energy
loss or gain in percent (normalized energy difference).

The computation of the geopotential height and the vertical interpolations of U, V, T and
OMEGA to the 700 hPa level are outlined in section 1.4. The computation of the geopoten-
tial and interpolations can also be a post-processing step which is e.g. supported by the NCAR
Command Language NCL.

Snapshots of the 700 hPa geopotential height and 700 hPa temperature fields at days 5, 15
and 25 are presented in Fig. 19. In addition, Fig. 20 shows snapshots of the zonal and meridional
wind field at 700 hPa. The results were computed with the CAM3.5.41 version of the NCAR
Finite Volume (FV) dynamical core at the resolution 1◦ × 1◦ with 26 hybrid levels.

1.6 Gravity waves with and without the Earth’s rotation
This test case explores with propagation of gravity waves in the spherical domain. Two variants
of the test case are considered. First, the Earth’s rotation Ω and thereby the Coriolis parameter
f = 2Ω sinϕ are set to zero which assesses the propagation of pure gravity waves. Second, the
Earth’s rotation and Coriolis parameter are retained that allows the analysis of inertia-gravity
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Figure 19: Snapshots of the mountain induced Rossby wave at days 5, 15 and 25 simulated with
FV181x360L26. Left column: 700 hPa geopotential height, right column: 700 hPa temperature
T .
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Figure 20: Snapshots of the mountain induced Rossby wave at days 5, 15 and 25 simulated with
FV181x360L26. Left column: 700 hPa zonal wind u, right column: 700 hPa meridional wind
v.
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waves. The initial data trigger large-scale and thereby hydrostatic waves that propagate outward
in concentric circles. The wind speeds are given by

u = u0 cosϕ

v = 0 m s−1

which results in

ζ =
2 u0

a
sinϕ (86)

δ = 0 s−1

for models in vorticity-divergence form. a denotes the Earth’s radius and u0 is the maximum
wind amplitude which is set to either 0 or 40 m s−1 depending on the chosen test case variant.
In addition, the vertical velocity and and surface geopotential Φs are set to zero. The surface
pressure field is balanced for the zonally symmetric (unperturbed) state and given by

ps(λ, ϕ) = peq exp

[
− aN2 u0

2 g2 κ

(u0

a
+ 2 Ω

)
sin2 ϕ

]
(87)

with κ = Rd/cp = 2/7. The values for the gas constant Rd, specific heat at constant pressure
cp and the gravitational acceleration g are listed in Appendix G. N2 symbolizes the squared
Brunt-Väisälä frequency. peq denotes the surface pressure at the equator which is set to peq =
p0 = 1000 hPa. Note that the surface pressure is constant with ps = peq = p0 for initial states
at rest with u0 = 0 m s−1.

The initial temperature field is given by analytic expressions for models with pressure-based
or height-based vertical coordinates. In case of ps = p0 the pressure p and height z positions
are interchangeable and represented by

p(z) = p0

[(
1− S

T0

)
+
S

T0

exp
(
− N2z

g

)] cp
Rd

(88)

z(p) = − g

N2
ln

[
T0

S

{( p

p0

)κ

− 1
}

+ 1

]
(89)

with the parameter S = g2/(cpN
2). S has temperature units. T0 represents a reference temper-

ature at the surface which is set to T0 = 300 K. N denotes the Brunt-Väisälä frequency that is
either chosen to be

N = 0.01 s−1 or

N =

√( g2

cpT0

)
≈ 0.01786 s−1 (90)

depending on the test case variant. The latter corresponds to isothermal background conditions
with temperature T0. The pressure-height relationship shown in Eqs. (88) and (89) is not exact
for the test case variant [6-2-0] with ps 6= p0. In the isothermal T = T0 case with Brunt-Väisälä
frequency (90) the pressure-height relationship for ps 6= p0 becomes

p(λ, ϕ, z) = ps(λ, ϕ) exp
(
− g z

Rd T0

)
(91)

z(λ, ϕ, p) =
Rd T0

g
ln

(ps(λ, ϕ)

p

)
(92)
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However, to simplify the test setup we suggest utilizing Eqs. (88) and (89) for all gravity wave
variants. We note that this implies an approximation for the temperature initialization in [6-2-0].

The initial temperature data are composed of a horizontally uniform background field that is
overlaid by a large scale temperature perturbation. This approach has also been used by Tomita
and Sato (2004). In particular, the temperature perturbation is defined in terms of the potential
temperature. The definitions of the initial temperature fields are

T (λ, ϕ, z) = Θ(λ, ϕ, z)
(p(z)
p0

)κ

(93)

T (λ, ϕ, p) = Θ(λ, ϕ, p)
( p

p0

)κ

(94)

where Θ(λ, ϕ, z) and Θ(λ, ϕ, p) are composed of the mean state Θ̄ in the vertical direction and
a 3D perturbation Θ′. The analytic expression for the height-based potential temperature are

Θ(λ, ϕ, z) = Θ̄(z) + Θ′(λ, ϕ, z)

= T0 exp
(N2z

g

)
+ ∆Θ s(λ, ϕ) sin

(2π z

Lz

)
(95)

For pressure-based vertical coordinates, the potential temperature field is given as

Θ(λ, ϕ, p) = Θ̄(p) + Θ′(λ, ϕ, p)

=
T0

T0

S

((
p
p0

)κ − 1
)

+ 1
+ ∆Θ s(λ, ϕ) sin

(2π z(p)

Lz

)
. (96)

The horizontal shape function s(λ, ϕ) resembles the cosine hill definition documented in
Williamson et al. (1992) (shallow water test case 1). It is defined as

s(λ, ϕ) =

{
0.5

(
1 + cos(πr/R)

)
if r < R

0 if r ≥ R
(97)

with R = a/3. r is the great circle distance between a position (λ, ϕ) and the center of the
cosine bell, initially set to (λc, ϕc) = (π, 0). The great circle distance r is defined as

r = a arccos [sinϕc sinϕ+ cosϕc cosϕ cos(λ− λc)] (98)

The maximum potential temperature amplitude is ∆Θ = 10 K and the vertical wave length of
the perturbation is set to Lz = 20 km. We recommend setting the height of the model top to
ztop = 10 km which corresponds to half a wave length ztop = Lz/2. Using N = 0.01 s−1 the
top level (interface) pressure then yields ptop = p(ztop) ≈ 273.819 hPa according to Eq. (88).
When using isothermal conditions with N = 0.01786 s−1 the position of the top level interface
pressure is ptop = p(ztop) ≈ 320.213 hPa. Here, both positions of the model tops are computed
for ps = p0. We also recommend using these model tops for test variant [6-2-0] with varying
surface pressure.

For completeness, the representation of the mean temperature profiles T̄ are

T̄ (z) = exp
(N2z

g

)(
T0 − S

)
+ S (99)

T̄ (p) =
T0

(
p
p0

)κ

T0

S

((
p
p0

)κ − 1
)

+ 1
(100)
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which are incorporated above in Eqs. 93 and 94. Note that

Θ̄(z) = T0 exp
(N2z

g

)

= T̄ (z)
( p0

p(z)

)κ

(101)

despite the apparent differences in the analytic expressions. The equivalency can easily be
confirmed analytically for isothermal conditions.

We suggest using an approximately equidistant ∆z = 500 m spacing of the vertical levels.
Strictly speaking (for pressure-based vertical coordinates), the levels are only truly equidistant
in height without the temperature perturbation and constant ps = p0. Placing the model top at
ztop = 10 km leads to 20 full model levels and 21 interface levels. The interface levels include
the lower and upper boundaries z0 = 0 m and ztop. The level spacing can be translated into a
pressure-based system via Eq. (88) or Eq. (92). The σ-levels are

σ(z) =
p(z)− p(ztop)

ps − p(ztop)
(102)

with constant p(ztop) as determined above.
For hybrid vertical coordinate systems like

p(η) = A(η) p0 +B(η) ps (103)

we recommend using the hybrid coefficients A and B

A(η) = η −B(η) (104)

B(η) =

(
η − ηtop

1− ηtop

)c

(105)

for the interface levels as suggested by Laprise and Girard (1990). For ps = p0 and N = 0.01
s−1, the definitions are η = p(z)/ps and ηtop = p(ztop)/ps ≈ 0.273819. For N = 0.0178 s−1 the
model top interface level lies at ηtop = p(ztop)/ps ≈ 0.320213. We recommend also using these
model top positions for test variant [6-2-0] with ps 6= p0 which will lead to slight deviations
from the equidistant spacing in hybrid coordinates. The exponent c determines the smoothness
of the transition between the σ-coordinate at low levels to the pressure coordinate near the upper
boundary. We recommend choosing c = 1 which closely resembles the σ-system. This hybrid
coordinate system is a variant of the one used by Simmons and Burridge (1981). It guarantees
the conditions p(η = ηtop) = ptop and p(η = 1) = ps at the upper and lower boundaries. The
hybrid coefficients at the full model levels can then be computed via the linear average

Ak =
1

2

(
Ak+1/2 + Ak−1/2

)
, (106)

Bk =
1

2

(
Bk+1/2 +Bk−1/2

)
(107)

where the index k denotes the discrete full model level which is surrounded by the two interface
levels shown with half indices. The linear interpolation guarantees that vertical differencing
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operations conserve energy. Note that some models (Majewski et al. 2002) use the alternative
definition of Eq. (103)

p(η) = A(η) + B(η) ps. (108)

Then Eq. (104) is represented by A(η) = p0[η −B(η)].
The gravity wave response is nearly linear and hydrostatic and therefore determined by the

dispersion relation

ν2 = f 2 +N2 k
2 + l2

m2
(109)

where ν indicates the frequency. The zonal, meridional and vertical wave numbers are defined
as k = 2πL−1

x , l = 2πL−1
y and m = 2πL−1

z where Lx, Ly and Lz represent the zonal and
meridional wave lengths. Here we mainly concentrate on pure gravity waves that travel zonally
along the equator with f = 0 s−1 and l ≈ 0. Then the phase speed in the zonal direction
becomes

cx = ±ν
k

= ±N
m

= ±NLz

2π
. (110)

The hydrostatic estimate of the zonal phase speed along the equator with N = 0.01 s−1 and
Lz = 20 km = 2ztop is ±31.8 m s−1. The zonal phase speed is cx = ±56.9 m s−1 for N =
0.01786 s−1. The waves travel both in the westward (−) and eastward (+) direction. The gravity
wave test can also be run with the background flow u = u0 cosϕ. This leads to the dispersion
relation

(ν − ku)2 = f 2 +N2 k
2 + l2

m2
(111)

and therefore
cx = u± NLz

2π
. (112)

The unequal phase speeds lead to asymmetries in the westward and eastward traveling wave
packets. Perfect symmetry in the shape of the wave packets is expected for u0 = 0 m s−1. The
following sequence of tests is suggested. The parameters are

[6-0-0] Ω = 0 s−1, N2 = 1× 10−4 s−2, u0 = 0 m s−1, (λc, ϕc) = (π, 0)

[6-1-0] Ω = 0 s−1, isothermal, N2 = g2/(cpT0), u0 = 0 m s−1, (λc, ϕc) = (π, 0)

[6-2-0] Ω = 0 s−1, isothermal, N2 = g2/(cpT0), u0 = 40 m s−1, (λc, ϕc) = (π, 0)

[6-3-0] Ω = 2π
86164

s−1, isothermal, N2 = g2/(cpT0), u0 = 0 m s−1, (λc, ϕc) = (π, π/4)

Test variant [6-3-0] utilizes the Earth angular velocity Ω and triggers inertio-gravity waves.
Note that the global mean surface pressure for test variant [6-2-0] is p̄s ≈ 996.912 hPa which
might be important for models with mass fixers. The global mean surface pressure is p̄s = 1000
hPa for all other test variants.

The propagating wave packets are best displayed via the potential temperature perturbation
Θ′ that is defined by

Θ′ = Θ− Θ̄(z). (113)
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Figure 21: Initial potential temperature perturbation (a) λ − z cross-section along the equator,
(b) λ− ϕ cross section at 5 km. The zero contour is omitted.

Θ = T (p0/p)
κ represents the instantaneous potential temperature field on the model levels (no

vertical interpolations) and Θ̄(z) is given by Eq. (101). This technique assumes that the height
positions z of the model levels remain almost constant. The pressure p can be determined via

p(λ, ϕ, σ, t) = σ [ps(λ, ϕ, t)− ptop] + ptop (114)
p(λ, ϕ, η, t) = A(η) p0 +B(η) ps(λ, ϕ, t) (115)

for models with σ- or η-coordinates. ps(λ, ϕ, t) denotes the instantaneous surface pressure of
the model at time t.

Figure 21 shows the initial potential temperature perturbation in a λ− z cross section along
the equator and λ− ϕ cross section at 5 km. The perturbation is centered at (λc, ϕc) = (π, 0).

1.6.1 Resolution, output data and analysis

We suggest testing two horizontal resolutions. The first resolution is of order ∆λ = ∆ϕ ≈ 1◦ in
longitudinal and latitudinal direction, respectively. The second resolution is halved and of order
∆λ = ∆ϕ ≈ 2◦. The first resolution corresponds to 181×360 grid points in a latitude-longitude
grid when including the pole points in the meridional direction. In the vertical direction, 20
approximately equidistant (Deltaz ≈ 500 m) levels are prescribed as explained above. The
model output variables for the NetCDF files are U, V, OMEGA, T, Z3 and PS on the model
levels. In addition, the output variables T850, T300, U850, U200, V850, V200, OMEGA850,
OMEGA500 are recommended (if available). The model should be run for 4 days for test case
variants [6-0-0], [6-1-0] and [6-2-0] with 6-hourly output intervals. The test variant [6-3-0]
should be run for 15 days with a 12-hourly output interval. This reduces the size of the output
file.

For test variant [6-0-0], [6-1-0] and [6-2-0] we recommend plotting the Θ′ wave packets at
t = 6, 12, 24, 48, 72, 96 hours as a longitude-height (λ− z) cross section along the equator. For
test variant [6-3-0] we suggest plotting the Θ′ wave packets at t = 0.5, 1, 2, 5, 10, 15 days along
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ϕ = 45◦. The vertical plotting range is z ∈ [0, 10] km. The horizontal plotting range spans all
longitudes from λ ∈ [0◦, 360◦]. Both horizontal resolutions should be compared. The symmetry
of the westward and eastward traveling wave packets can be analyzed if no background flow is
chosen.

In addition, we recommend plotting latitude-longitude cross sections of the wind anomalies
(u-u(t=0)), v and the temperature anomaly (T − T̄ ) at selected levels (850 hPa, 500 hPa, 300
hPa) as well as the surface pressure anomaly (ps−ps(t = 0)). The radially outward propagating
gravity wave packets can clearly be seen in all fields at hour 6, 12, 24, 48, 72 and 96. Note that
the amplitudes of the wave packets are small. The horizontal temperature anomalies lie between
0-1 K, the wind variations are on the order of a few m s−1 and the surface pressure anomalies
are a few hPa.

Figures 22 and 23 show snapshots of the potential temperature perturbation Θ′ and surface
pressure anomaly from an NCAR CAM3.5.41 Eulerian simulation for test variant [6-0-0]. The
snapshots are taken at times 6, 12, 24, 48, 72 and 96 hours from a run with the spectral resolution
T106 (approx. 1◦ × 1◦) and 20 vertical levels .

Examples of the potential temperature perturbation from EULT106L20 for test variants [6-
1-0] and [6-2-0] are shown in Figs. 24 and 25.

In addition, Figs. 26 and 27 depict the potential temperature perturbation and surface pres-
sure anomaly from an NCAR CAM3.5.41 FV simulation for test variant [6-3-0]. The snapshots
are taken at times 0.5, 1, 2, 5, 10, 15 days from a run with the resolution 1◦× 1◦ and 20 vertical
levels .

2 Typical resolutions, time steps and diffusion coefficients
All dynamical cores should be run in their operational configurations which includes the typical
diffusion mechanisms and coefficients, filters, time steps and other tunable parameters. In addi-
tion, the runs should utilizes their standard a posteriori fixers like mass or energy fixers if appli-
cable. These standard runs serve as a control simulation. All parameters and fixers need to be
documented to foster model comparisons. In addition, the documentation needs to list the prog-
nostic variables, the equation set (e.g. shallow-atmosphere hydrostatic, or shallow-atmosphere
nonhydrostatic), the horizontal grid staggering, time stepping approach, vertical coordinate and
resolution. As an example, we list typical time steps, resolutions and diffusion coefficients for
various dynamical cores with different numerical approaches in the tables below.

The modeling groups are also invited to test their models in non-operational configurations
that, for example, use less explicit diffusion. These configurations are often viable for idealized
test cases as considered here, but might not be applicable in real weather or climate simulations.
Therefore, any conclusions need to be carefully drawn and are not necessarily valid for models
with physics parameterizations.

2.1 Gaussian grids for spectral transform methods
Table 4 lists the horizontal resolutions, time steps and ∇4diffusion coefficients K4 for the spec-
tral transform Eulerian dynamical core that is part of NCAR’s CAM3.5 modeling framework.
The abbreviation T symbolizes a triangular truncation which is followed by the maximum re-
solved wavenumber. The Eulerian dynamical core in vorticity-divergence form is based on
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Figure 22: Gravity waves at the equator on a non-rotating planet simulated with EULT106L20:
Potential temperature perturbation Θ′ at 6, 12, 24, 48, 72 and 96 hours for test scenario 6-0-0.
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Figure 23: Gravity waves on a non-rotating planet simulated with EULT106L20: Surface pres-
sure anomaly at 6, 12, 24, 48, 72 and 96 hours for test scenario 6-0-0.
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Figure 24: Gravity waves at the equator on a non-rotating planet simulated with EULT106L20:
Potential temperature perturbation Θ′ at 6, 12, 24, 48, 72 and 96 hours for test scenario 6-1-0.
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Figure 25: Gravity waves at the equator on a non-rotating planet simulated with EULT106L20:
Potential temperature perturbation Θ′ at 6, 12, 24, 48, 72 and 96 hours for test scenario 6-2-0.
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Figure 26: Inertio-gravity waves at 45◦ N on a rotating planet simulated with FV181x360L20:
Potential temperature perturbation Θ′ at 0.5, 1, 2, 5, 10 and 15 days for test scenario 6-3-0.
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Figure 27: Inertio-gravity waves on a rotating planet simulated with FV181x360L20: Surface
pressure anomaly at 0.5, 1, 2, 5, 10 and 15 days for test scenario 6-3-0.
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Eulerian spectral transform dynamical core(EUL)
Spectral # Grid points Grid distance Time step Diffusion coefficient

Resolution lat × lon at the equator ∆t K4 (m4 s−1)
T21 32 × 64 625 km 2400 s 2.0 × 1016

T42 64 × 128 313 km 1200 s 1.0 × 1016

T85 128 × 256 156 km 600 s 1.0 × 1015

T106 160 × 320 125 km 450 s 0.5 × 1015

T170 256 × 512 78 km 300 s 1.5 × 1014

T340 512 × 1024 39 km 150 s 1.5 × 1013

Table 4: Horizontal grid resolutions, time steps and diffusion coefficients for the spectral Eule-
rian (EUL) dynamical core in CAM3.5. The ∇2 horizontal diffusion coefficient, K2 = 2.5 ×
105 m2 s−1, is independent of horizontal resolution.

the traditional three-time-level, semi-implicit spectral transform approximations applied on
a quadratically unaliased transform grid with horizontal triangular truncation (Machenhauer
1979). The three-time-level core includes a time filter to control the 2∆t time computational
modes. The vertical coordinate is terrain following hybrid pressure. The core includes ∇4

horizontal diffusion on temperature, divergence and vorticity to control the energy at the small-
est resolved scales. The coefficient has been chosen for each resolution to yield a reasonably
straight tail for the kinetic energy spectra in realistically forced simulations. The model also
includes a ∇2 horizontal diffusion on the top three levels of the model which serves as a top
boundary condition to control upward propagating waves. The temperature equation includes a
frictional heating term corresponding to the momentum diffusion. The ∇2 horizontal diffusion
coefficient, K2 = 2.5 × 105 m2 s−1, is independent of horizontal resolution.

The NCAR CAM3.5 model also provides a configuration for a two-time-level semi-
Lagrangian semi-implicit spectral transform dynamical core (SLD). Then the time step ∆t can
be set to three times the corresponding Eulerian value. The diffusion coefficients K4 and K2

might possibly be reduced since SLD provides inherent diffusion due to the semi-Lagrangian
interpolations. Since the energy loss due to the damping by the interpolants is not explicitly
known, a term corresponding to the∇4 diffusive heating in the Eulerian core cannot be derived.
Thus an a posteriori energy fixer is applied every time step in the model which acts as a glob-
ally uniform heating term. (see also the discussion in Williamson et al. (2008)). In addition,
the a posteriori mass fixer is invoked every time step as in the Eulerian core. Note that the
semi-Lagrangian dynamical core applies a decentering technique to damp the noise induced by
orographic resonance (Collins et al. 2004). Although not needed for stability reasons in ideal-
ized studies, the standard CAM3 decentering parameter ε = 0.2 is used, here in the spirit of
evaluating the core as it would be applied in practice.

Both the EUl and SLD model designs are non-conservative. Therefore, both dynamical
cores apply an a posteriori mass and energy fixer. They are based on the shallow-atmosphere
hydrostatic equation set, and utilize the Arakawa A-grid staggering and hybrid η (hybrid σ− p)
coordinate (Simmons and Burridge 1981). The prognostic variables are ζ, δ, ln ps, T .
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Finite Volume dynamical core (FV)
Resolution # Grid points Grid distance at the equator Time step
∆ϕ × ∆λ lat × lon ∆y,∆x ∆t

4◦ × 4◦ 46 × 90 435 km 720 s
2◦ × 2◦ 91 × 180 220 km 360 s
1◦ × 1◦ 181 × 360 111 km 180 s

0.5◦ × 0.5◦ 361 × 720 55 km 90 s
0.25◦ × 0.25◦ 721 × 1440 28 km 45 s

Table 5: Recommended horizontal grid resolutions and time steps for NCAR’s CAM3.5 Finite
Volume (FV) dynamical core. The regular latitude-longitude resolutions are also recommended
for other models with regular grids or as the target interpolation grids.

2.2 Regular latitude-longitude grids
The NCAR CAM3.5 Finite Volume dynamical core is built upon a regular latitude-longitude
grid. For these types of grids we recommend using the horizontal resolutions listed in Table
5. Note that the latitudes should include both pole points if possible. The longitudes start at
position λ = 0. These regular latitude-longitude resolutions are also recommended as the target
interpolation grids for models with cubed-sphere or icosahedral meshes. The table also lists
the approximate equatorial grid distances in physical space to ease the comparison to the other
dynamical cores.

The NCAR FV advection algorithm makes use of the monotonic third-order piecewise
parabolic method PPM (Colella and Woodward 1984) with an explicit time-stepping scheme.
Lower order approximations are applied near the model top to add extra diffusion at the upper
boundary. The FV dynamics package also employs both a weak 3-point digital filter in mid-
latitudes as well as a fast Fourier transform (FFT) filter in polar regions. These control the
unstable waves in the zonal direction that result from the convergence of the computational grid
near the poles. The FV dynamical core does not include explicit horizontal ∇4 or ∇2 diffu-
sion terms. The smallest scales are controlled by the monotonicity constraints of the numerical
scheme. In addition, a divergence damping mechanism is applied that damps the divergence δ
in the form of ∇2(νδ) where ν is a spatially varying divergence damping coefficient. As with
the NCAR’s semi-Lagrangian SLD core, the energy loss due to the numerical damping is not
explicitly known. Therefore, an a posteriori energy fixer is applied. The algorithms is inher-
ently mass-conservative. The prognostic variable are u, v,∆p, (∆pΘ) and held on a staggered
Arakawa D grid.

2.3 Icosahedral grids in the dynamical core GME
The dynamical core of the weather prediction system GME at the German Weather Service ap-
plies a finite-difference approximation with local spherical basis functions at each grid point.
The horizontal grid is based on an icosahedron which is further subdivided into smaller trian-
gles. An Arakawa-A grid staggering is chosen that places the prognostic variables u, v, ps, T at
the vertices of the triangles. In the vertical direction GME utilizes the same terrain following
η coordinate as the NCAR CAM3.5 Eulerian dynamics package. The model is based on the
shallow-atmosphere hydrostatic equation set.
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GME
Resolution # Grid Min. grid Max. grid Time step Diffusion coefficients

ni points distance distance ∆t K4 (m4 s−1) K2 (m2 s−1)
16 2562 440 km 526 km 1440 s 5.0 × 1016 2.0 × 106

32 10242 220 km 263 km 720 s 6.0 × 1015 1.5 × 106

64 40962 110 km 132 km 400 s 1.0 × 1015 1.0 × 106

128 163842 55 km 66 km 200 s 1.2 × 1014 2.0 × 105

256 655362 26 km 33 km 100 s 1.2 × 1013 2.5 × 104

Table 6: Horizontal grid resolutions, time steps and diffusion coefficients for GME with an
icosahedral grid.

The semi-implicit numerical scheme is second-order accurate and applies a classical
Leapfrog three-time-level approach with an Asselin time filter. Due to the quasi-uniformity
of the computational grid no longitudinal FFT-filtering is needed. The smallest scales are con-
trolled by a ∇4 horizontal diffusion mechanism that is applied to the prognostic wind and tem-
perature variables u, v and T . Near the model top the ∇4 diffusion is replaced with a stronger
∇2 diffusion operator that serves as a top boundary condition. Neither a mass fixer nor an
energy fixer is applied.

The horizontal grid of GME is based on an icosahedron with 20 equilateral triangles. The
sides of these base triangles are further subdivided into ni equal intervals. The corresponding
maximum and minimum grid distances, time steps and diffusion coefficients are listed in Table
6. We recommend interpolating the model results in the output file to regular latitude-longitude
grids as listed in Table 5.
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Appendices

A NetCDF model output conventions
To facilitate the analysis of the results and model intercomparison we ask the modeling group to
provide the output data in NetCDF format on a co-located (Arakawa-A type) regular latitude-
longitude grid. This does not mean that the model should output directly to NetCDF but the
output should be converted to NetCDF format.

The resolution of the chosen latitude-longitude grid should either reflect the actual grid res-
olution of the model run or should be comparable to the native grid (e.g. comparable to the
resolution of a cubed-sphere or icosahedral mesh). Ideally, the horizontal grid should include
the Greenwich (λ = 0) meridian and both pole points. In the vertical direction the data should
be output on the native grid (full model levels). If variables are staggered in the vertical direc-
tion we suggest interpolating them to the full model levels before outputting them. Additional
vertical interpolations to fixed pressure levels (e.g. 850 hPa or 250 hPa) are considered a post-
processing step.

The following model variables need to be written to the output NetCDF file. We ask the
modeling group to select the upper-case variable names shown below and to use the keywords
lat, lon, lev and time for the dimensions. This choice eases the use of standard analysis pack-
ages.

The standard output model variables on model levels are:

PHIS (time,lat,lon) Surface geopotential (m2 s−2)

PS (time,lat,lon) Surface Pressure (Pa)

U (time,lev,lat,lon) Zonal wind (m/s)

V (time,lev,lat,lon) Meridional wind (m/s)

T (time,lev,lat,lon) Temperature (K)

OMEGA (time,lev,lat,lon) Vertical pressure velocity (Pa/s)

P(time,lev,lat,lon) optional: Pressure at each grid point (Pa), optional if an analytic reconstruc-
tion is possible (e.g. for sigma or eta levels)

For selected test cases, the following post-processed variables are also desirable if offered as
output quantities by the dynamical core:

Z3 (time,lev,lat,lon) Geopotential height above sea level on model levels (m)

Z700(time,lat,lon) Geopotential height at 700 hPa (m)

Z500(time,lat,lon) Geopotential height at 500 hPa (m)

Z300(time,lat,lon) Geopotential height at 300 hPa (m)

T850(time,lat,lon) Temperature at 850 hPa (K)
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T300(time,lat,lon) Temperature at 300 hPa (K)

U850(time,lat,lon) zonal wind at 850 hPa (m s−1)

U200(time,lat,lon) zonal wind at 200 hPa (m s−1)

V850(time,lat,lon) meridional wind at 850 hPa (m s−1)

V200(time,lat,lon) meridional wind at 200 hPa (m s−1)

OMEGA850 (time,lat,lon) Vertical pressure velocity at 850 hPa (Pa/s)

OMEGA500 (time,lat,lon) Vertical pressure velocity at 500 hPa (Pa/s)

If the dynamical core does not provide these output quantities they can be computed with the
help of NCL (NCAR Command Language) post-processing routines after the model run. The
850 hPa pressure level requires extrapolations for the mountain-induced Rossby wave test (test
case 5) and is therefore less accurate and optional. The analysis of test case 5 will concentrate
on the 700 hPa level. If height-based vertical coordinates are used, the vertical velocity might
also be output as ’W’ in m/s. Note that the notation of the variables above uses the NetCDF-
specific order of the dimensions (time,lev,lat,lon). This does not imply that the model needs to
work with this data structure. We request the model data with single precision (float) accuracy
using 4 bytes per datum. In addition, the NetCDF file must contain information about the grid
and time dimensions, the positions of the horizontal grid and vertical model levels as well as
information on the time stamps (the latter are preferred in double precision accuracy, 8 bytes
per datum).

An example of an NCAR CAM3 output file on a regular 91 × 180 latitude-longitude grid
with grid spacing 2◦ × 2◦ and 26 hybrid η-levels is shown below. Note that this output data set
also lists the approximate pressure positions of the 26 full levels (lev) and 27 model interface
levels (ilev) as well as the hybrid coefficients for the full (hyam, hybm) and half levels (hyai,
hybi). The latter can be used in combination with the surface pressure to reconstruct the actual
pressure at each grid point. The surface geopotential PHIS is provided as a 3D data set despite
its time-independency. The time-dependent data sets PS, U, V, T and OMEGA (data not listed)
contain 11 instantaneous snapshots in time at day 0, 1, 2, 3, ... 10. In addition, the NetCDF
header also lists the post-processed variables. In general, shorter output intervals will also be
needed (e.g. 6-hourly) for the gravity wave test (test case 6). The output frequency should be an
input parameter for the model run. The NetCDF entry P0 corresponds to the reference pressure
used by hybrid η coordinates. It should be set to P0 = 105 Pa for all model runs. The meta data
of all model variables in netcdf format need to list their physical unit in the ‘units’ identifier.
These units are used by the provided NCL plotting routines.

Example of a NetCDF file (header and selected data sets):

netcdf fv180x091L26g_cam1.10_days {
dimensions:

lat = 91 ;
lon = 180 ;
lev = 26 ;
ilev = 27 ;
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time = UNLIMITED ; // (11 currently)
variables:

double P0 ;
P0:long_name = "reference pressure" ;
P0:units = "Pa" ;

double lat(lat) ;
lat:long_name = "latitude" ;
lat:units = "degrees_north" ;

double lon(lon) ;
lon:long_name = "longitude" ;
lon:units = "degrees_east" ;

double lev(lev) ;
lev:long_name = "hybrid level at midpoints(1000*(A+B))" ;
lev:units = "level" ;
lev:positive = "down" ;
lev:standard_name = "atmosphere_hybrid_sigma_pressure_coordinate" ;
lev:formula_terms = "a: hyam b: hybm p0: P0 ps: PS" ;

double ilev(ilev) ;
ilev:long_name = "hybrid level at interfaces (1000*(A+B))" ;
ilev:units = "level" ;
ilev:positive = "down" ;
ilev:standard_name = "atmosphere_hybrid_sigma_pressure_coordinate" ;
ilev:formula_terms = "a: hyai b: hybi p0: P0 ps: PS" ;

double time(time) ;
time:long_name = "time" ;
time:units = "days since 0000-01-01 00:00:00" ;

double hyai(ilev) ;
hyai:long_name = "hybrid A coefficient at layer interfaces" ;

double hybi(ilev) ;
hybi:long_name = "hybrid B coefficient at layer interfaces" ;

double hyam(lev) ;
hyam:long_name = "hybrid A coefficient at layer midpoints" ;

double hybm(lev) ;
hybm:long_name = "hybrid B coefficient at layer midpoints" ;

float PHIS(lat, lon) ;
PHIS:units = mˆ2/sˆ2" ;
PHIS:long_name = "Surface geopotential" ;

float PS(time, lat, lon) ;
PS:units = "Pa" ;
PS:long_name = "Surface pressure" ;

float T(time, lev, lat, lon) ;
T:units = "K" ;
T:long_name = "Temperature" ;

float U(time, lev, lat, lon) ;
U:units = "m/s" ;
U:long_name = "Zonal wind" ;
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float V(time, lev, lat, lon) ;
V:units = "m/s" ;
V:long_name = "Meridional wind" ;

float OMEGA(time, lev, lat, lon) ;
OMEGA:units = Pa/s" ;
OMEGA:long_name = "Vertical pressure velocity" ;

float OMEGA850(time, lat, lon) ;
OMEGA850:units = Pa/s" ;
OMEGA850:long_name = "Vertical pressure velocity at 850 hPa" ;

float OMEGA500(time, lat, lon) ;
OMEGA500:units = Pa/s" ;
OMEGA500:long_name = "Vertical pressure velocity at 500 hPa" ;

float T850(time, lat, lon) ;
T850:units = "K" ;
T850:long_name = "Temperature at 850 hPa" ;

float T300(time, lat, lon) ;
T300:units = "K" ;
T300:long_name = "Temperature at 300 hPa" ;

float U850(time, lat, lon) ;
U850:units = "m/s" ;
U850:long_name = "Zonal wind at 850 hPa" ;

float U200(time, lat, lon) ;
U200:units = "m/s" ;
U200:long_name = "Zonal wind at 200 hPa" ;

float V850(time, lat, lon) ;
V850:units = "m/s" ;
V850:long_name = "Meridional wind at 850 hPa" ;

float V200(time, lat, lon) ;
V200:units = "m/s" ;
V200:long_name = "Meridional wind at 200 hPa" ;

float Z3(time, lev, lat, lon) ;
Z3:units = "m" ;
Z3:long_name = "Geopotential height (above sea level)" ;

float Z300(time, lat, lon) ;
Z300:units = "m" ;
Z300:long_name = "Geopotential height at 300 hPa" ;

float Z500(time, lat, lon) ;
Z500:units = "m" ;
Z500:long_name = "Geopotential height at 500 hPa" ;

float Z700(time, lat, lon) ;
Z700:units = "m" ;
Z700:long_name = "Geopotential height at 700 hPa" ;

data:

P0 = 100000 ;
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lat = -90, -88, -86, -84, -82, -80, -78, -76, -74, -72, -70,
-68, -66, -64, -62, -60, -58, -56, -54, -52, -50, -48,
-46, -44, -42, -40, -38, -36, -34, -32, -30, -28, -26,
-24, -22, -20, -18, -16, -14, -12, -10, -8, -6, -4, -2, 0,
2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30,
32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58,
60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84,
86, 88, 90 ;

lon = 0, 2, 4, 6, 8, 10, 12, 14, 16, 18,
20, 22, 24, 26, 28, 30, 32, 34, 36, 38,
40, 42, 44, 46, 48, 50, 52, 54, 56, 58,
60, 62, 64, 66, 68, 70, 72, 74, 76, 78,
80, 82, 84, 86, 88, 90, 92, 94, 96, 98,

100, 102, 104, 106, 108, 110, 112, 114, 116, 118,
120, 122, 124, 126, 128, 130, 132, 134, 136, 138,
140, 142, 144, 146, 148, 150, 152, 154, 156, 158,
160, 162, 164, 166, 168, 170, 172, 174, 176, 178,
180, 182, 184, 186, 188, 190, 192, 194, 196, 198,
200, 202, 204, 206, 208, 210, 212, 214, 216, 218,
220, 222, 224, 226, 228, 230, 232, 234, 236, 238,
240, 242, 244, 246, 248, 250, 252, 254, 256, 258,
260, 262, 264, 266, 268, 270, 272, 274, 276, 278,
280, 282, 284, 286, 288, 290, 292, 294, 296, 298,
300, 302, 304, 306, 308, 310, 312, 314, 316, 318,
320, 322, 324, 326, 328, 330, 332, 334, 336, 338,
340, 342, 344, 346, 348, 350, 352, 354, 356, 358 ;

lev = 3.544638, 7.388813, 13.96721, 23.94463,
37.23029, 53.1146, 70.05914, 85.43912,

100.51469, 118.25033, 139.11538, 163.66205, 192.53994,
226.51321, 266.48106, 313.50127, 368.81799, 433.89523,
510.45525, 600.5241, 696.796239999999, 787.70201,
867.16071, 929.648975, 970.554785, 992.5561 ;

ilev = 2.194067, 4.895209, 9.882418, 18.05201, 29.83724,
44.62334, 61.60587, 78.51243, 92.3658,

108.66359, 127.83708, 150.39371, 176.93043, 208.14944,
244.87709, 288.08522, 338.91731, 398.71865, 469.0718,
551.83871, 649.20969, 744.38289, 831.02123,
903.30029, 955.99746, 985.1122, 1000 ;

time = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ;

hyai = 0.002194067, 0.004895209, 0.009882418, 0.01805201,
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0.02983724, 0.04462334, 0.06160587, 0.07851243,
0.07731271, 0.07590131, 0.07424086,
0.07228744, 0.06998933, 0.06728574, 0.06410509,
0.06036322, 0.05596111, 0.05078225,
0.04468960, 0.03752191, 0.02908949, 0.02084739,
0.01334443, 0.00708499, 0.00252136, 0, 0 ;

hybi = 0, 0, 0, 0, 0, 0, 0, 0, 0.01505309, 0.03276228,
0.05359622, 0.07810627, 0.1069411, 0.1408637,
0.180772, 0.227722, 0.2829562, 0.3479364, 0.4243822,
0.5143168, 0.6201202, 0.7235355, 0.8176768,
0.8962153, 0.9534761, 0.9851122, 1 ;

hyam = 0.003544638, 0.007388813, 0.01396721,
0.02394463, 0.03723029, 0.0531146, 0.07005914,
0.07791257, 0.07660701, 0.0750710800000003, 0.07326415,
0.07113839, 0.06863754, 0.06569541, 0.06223416,
0.05816217, 0.05337169, 0.04773593,
0.04110575, 0.03330570, 0.02496844,
0.01709591, 0.01021471, 0.004803175, 0.001260685, 0 ;

hybm = 0, 0, 0, 0, 0, 0, 0, 0.00752655, 0.02390768,
0.04317925, 0.06585123, 0.09252366, 0.1239024,
0.1608178, 0.2042469, 0.2553391, 0.3154463, 0.3861593,
0.4693495, 0.5672184, 0.6718278,
0.7706061, 0.856946, 0.9248458, 0.9692941,
0.9925561 ;

}

B Graphics
We recommend using the NCAR Command Language (NCL) and NCAR graphics to visual-
ize the model results. This graphics system is installed on most NCAR platforms and is also
available for download via the Earth System Grid (ESG). NCL/NCAR graphics provide many
functions for the manipulation of the data such as interpolations to pressure levels or the com-
putation of the geopotential height. We will provide NCL scripts to the modeling groups to ease
the visualization and analysis of the model runs.
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C Vertical coordinates
The hybrid orography-following η-coordinate (Simmons and Burridge 1981) comprises a pure
pressure coordinate and a σ-component with σ = p/ps. The pressure p at a vertical level η is
given by

p(λ, ϕ, η, t) = a(η) p0 + b(η) ps(λ, ϕ, t) (116)

where the coefficients a(η) and b(η) are height-dependent and provided in tabular form (see
below). Most commonly the reference pressure p0 is set to 105 Pa or 1.01325× 105 Pa. Here, a
setup with p0 = 105 Pa is chosen which coincides with the constant initial surface pressure ps.
This leads to the simplified expression

p(λ, ϕ, η, t = 0) = (a(η) + b(η)) p0 = η p0 . (117)

In the discrete representation, the vertical direction is subdivided into Nlev model levels
which are bounded by Nlev + 1 interface levels (denoted by the half indices k + 1

2
below). The

pressure at the interfaces is then given by

pk+ 1
2

= ak+ 1
2
p0 + bk+ 1

2
ps = ηk+ 1

2
p0 (118)

with ηk+ 1
2

= ak+ 1
2

+ bk+ 1
2

and k = 0, 1, 2, · · ·Nlev. The corresponding ηk values at the centers
are determined via the average ηk = 1

2
(ηk+ 1

2
+ ηk− 1

2
). It follows pk = ηk p0.

For the baroclinic wave tests described here, three setups with 18, 26 and 49 model levels
are chosen. The corresponding coefficients for the model interfaces ak+ 1

2
and bk+ 1

2
are listed

in Tables 7 and 8. Here it is important to note that some GCMs (for example Majewski et al.
(2002)) employ the alternative notation pk+ 1

2
= ak+ 1

2
+ bk+ 1

2
ps where the coefficients ak+ 1

2
are

given in Pa. If such a setup is encountered, the ak+ 1
2

coefficients in Tables 7 and 8 need to be
multiplied by p0.

If level spacings are prescribed in z-coordinates as in section 1.6 the z positions can be trans-
lated into a pressure-based system for idealized temperature profiles. For isothermal conditions
with T = T0 the pressure profile is given by

p(z) = p0 exp

( −gz
Rd T0

)
(119)

where p0 is the surface pressure. If the atmosphere is characterized by a linear temperature
profile T = T0 − Γz with constant lapse rate Γ = −∂T/∂z the pressure profile is given by

p(z) = p0

(
1− Γ z

T0

) g
Rd Γ

. (120)

where T0 symbolizes the surface temperature. For atmospheres with constant Brunt-Väisälä
frequency N the pressure profile is

p(z) = p0

[(
1− S

T0

)
+
S

T0

exp
(
− N2z

g

)] cp
Rd

(121)

with the parameter S = g2/(cpN
2). Again, T0 and p0 symbolize the constant surface tempera-

ture and pressure. All three pressure profiles assume a flat surface with surface elevation zs = 0
m. Using Eqs. (119), (120) or (121) the σ-levels are

σ(z) =
p(z)− p(ztop)

ps − p(ztop)
. (122)
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Index 18 Model levels (L18) 26 Model levels (L26)
k ak+ 1

2
bk+ 1

2
ak+ 1

2
bk+ 1

2

0 0.00251499 0. 0.002194067 0.
1 0.00710361 0. 0.004895209 0.
2 0.01904260 0. 0.009882418 0.
3 0.04607560 0. 0.01805201 0.
4 0.08181860 0. 0.02983724 0.

5 0.07869805 0.03756984 0.04462334 0.
6 0.07463175 0.08652625 0.06160587 0.
7 0.06955308 0.1476709 0.07851243 0.
8 0.06339061 0.221864 0.07731271 0.01505309
9 0.05621774 0.308222 0.07590131 0.03276228

10 0.04815296 0.4053179 0.07424086 0.05359622
11 0.03949230 0.509588 0.07228744 0.07810627
12 0.03058456 0.6168328 0.06998933 0.1069411
13 0.02193336 0.7209891 0.06728574 0.1408637
14 0.01403670 0.816061 0.06410509 0.1807720

15 0.007458598 0.8952581 0.06036322 0.2277220
16 0.002646866 0.953189 0.05596111 0.2829562
17 0. 0.985056 0.05078225 0.3479364
18 0. 1. 0.04468960 0.4243822
19 0.03752191 0.5143168

20 0.02908949 0.6201202
21 0.02084739 0.7235355
22 0.01334443 0.8176768
23 0.00708499 0.8962153
24 0.00252136 0.9534761

25 0. 0.9851122
26 0. 1.

Table 7: Vertical coefficients for a 18- and 26-level setups. The parameter ak+ 1
2

denotes the
pure pressure component, bk+ 1

2
defines the σ part of the hybrid η-system.

For hybrid vertical coordinate systems like

p(η) = A(η) p0 +B(η) ps (123)

we recommend using the hybrid coefficients A and B

A(η) = η −B(η) (124)

B(η) =

(
η − ηtop

1− ηtop

)c

(125)
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Index 49 Model levels (L49) Index 49 Model levels (L49)
k ak+ 1

2
bk+ 1

2
k ak+ 1

2
bk+ 1

2

0 0.002251865 0. 25 0.07118414 0.1556586
1 0.003983890 0. 26 0.06962863 0.1737837
2 0.006704364 0. 27 0.06795950 0.1932327
3 0.01073231 0. 28 0.06616846 0.2141024
4 0.01634233 0. 29 0.06424658 0.2364965

5 0.02367119 0. 30 0.06218433 0.2605264
6 0.03261456 0. 31 0.05997144 0.2863115
7 0.04274527 0. 32 0.05759690 0.3139801
8 0.05382610 0. 33 0.05504892 0.3436697
9 0.06512175 0. 34 0.05231483 0.3755280

10 0.07569850 0. 35 0.04938102 0.4097133
11 0.08454283 0. 36 0.04623292 0.4463958
12 0.08396310 0.006755112 37 0.04285487 0.4857576
13 0.08334103 0.01400364 38 0.03923006 0.5279946
14 0.08267352 0.02178164 39 0.03534049 0.5733168

15 0.08195725 0.03012778 40 0.03116681 0.6219495
16 0.08118866 0.03908356 41 0.02668825 0.6741346
17 0.08036393 0.04869352 42 0.02188257 0.7301315
18 0.07947895 0.05900542 43 0.01676371 0.7897776
19 0.07852934 0.07007056 44 0.01208171 0.8443334

20 0.07751036 0.08194394 45 0.007959612 0.8923650
21 0.07641695 0.09468459 46 0.004510297 0.9325572
22 0.07524368 0.1083559 47 0.001831215 0.9637744
23 0.07398470 0.1230258 48 0. 0.9851122
24 0.07263375 0.1387673 49 0. 1.

Table 8: Same as Table 7 but for a 49-level setup.

for the interface levels as suggested by Laprise and Girard (1990). For ps = p0, the definitions
are η = p(z)/ps and ηtop = p(ztop)/ps. The exponent c determines the smoothness of the
transition between the σ-coordinate at low levels to the pressure coordinate near the upper
boundary. We recommend choosing c = 1 which closely resembles the σ-system. Bigger
coefficients c > 1 would allow for a more gradual transition and could also be tested (e.g.
c = 2). This hybrid coordinate system is a variant of the one used by Simmons and Burridge
(1981). It guarantees the conditions p(η = ηtop) = ptop and p(η = 1) = ps at the top and bottom
boundaries. The hybrid coefficients at the full model levels can then be computed via the linear
average

Ak =
1

2

(
Ak+1/2 + Ak−1/2

)
, (126)

Bk =
1

2

(
Bk+1/2 +Bk−1/2

)
(127)
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where the index k denotes the discrete full model level which is surrounded by the two inter-
face levels shown with half indices. The linear average guarantees that vertical differencing
operations conserve energy. We again note that some models (Majewski et al. 2002) use the
alternative definition of Eq. (123)

p(η) = A(η) + B(η) ps. (128)

Then Eq. (124) is represented by A(η) = p0[η −B(η)].
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D Iterative Method for Dynamical Cores with z- or Θ-Based
Vertical Coordinates

In sections 1.1 and 1.2 the initial conditions are shown in closed form for pressure-based vertical
coordinates with η = σ = p/ps. For dynamical cores with z- or Θ-based vertical coordinates a
root-finding technique (Newton’s method) is suggested. It determines the corresponding η-level
for any given height z or isentropic level Θ with high accuracy. This technique therefore avoids
vertical interpolations of the initial data set. The iterative method is given by

ηn+1 = ηn − F (λ, ϕ, ηn)
∂F
∂η

(λ, ϕ, ηn)
(129)

where the superscript n = 0, 1, 2, 3, . . . indicates the iteration count.
For a given z-level the functions F and ∂F/∂η are determined by

F (λ, ϕ, ηn) = −g z + Φ(λ, ϕ, ηn) (130)
∂F

∂η
(λ, ϕ, ηn) = −Rd

ηn
T (λ, ϕ, ηn) (131)

where T and Φ are shown in Eqs. (10) and (11), respectively.
If isentropic vertical coordinates with given Θ-levels are utilized the function F is defined

by
F (λ, ϕ, ηn) = −Θ + (ηn)−κ T (λ, ϕ, ηn) (132)

with κ = Rd/cp. The specific heat of dry air at constant pressure cp is set to 1004.64 J (kg K)−1.
Using Rd = 287.04 J (kg K)−1, κ is identical to 2/7. For ∂F/∂η it follows

∂F

∂η
(λ, ϕ, ηn) = G(ηn)− 3π u0

4Rd (ηn)κ
cos

1
2 ηn

v

{3 π

2
u0η

nC sin2 ηn
v cos

1
2 ηn

v− (133)
(
2C u0 cos

3
2 ηn

v +DaΩ
) (

(1− κ) sin ηn
v +

π ηn

4 cos ηn
v

(2− 3 sin2 ηn
v )

)}

with

C =
(− 2 sin6 ϕ (cos2 ϕ+

1

3
) +

10
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)
(134)

D =
(8

5
cos3 ϕ (sin2 ϕ+

2

3
)− π

4

)
(135)

and ηn
v = ((ηn − η0)π/2). As before, η0 is set to 0.252 and ηt = 0.2 is the tropopause

level. G symbolizes the vertical derivative of the horizontal-mean potential temperature Θ̄(η) =
η−κT̄ (η). It is given by

G(ηn) = T0

(Rd Γ

g
− κ

)
(ηn)(

RdΓ

g
−κ−1) (for ηs ≥ ηn ≥ ηt) (136)

G(ηn) = T0

(Rd Γ

g
− κ

)
(ηn)(

RdΓ

g
−κ−1) − ∆T

(ηn)(κ+1)
(ηt − ηn)4

(
κ ηt + ηn(5− κ)

)

(for ηt > ηn) . (137)
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The starting value η0 = 10−7 is recommended for all Newton iterations following Eq. (129).
Then Newton’s method converges for any given height z below zmax = 100 km or any given
potential temperature Θ below Θmax = 15000 K. Note that the convergence is only achieved
if η0 is greater than zero and physically lies above the uppermost model level. If models with
higher model tops are used, η0 needs to be decreased. We have observed that this iterative
technique converges within a maximum of 25 iterations. Then the absolute error |η − ηn|
is decreased to machine precision (10−14 for double-precision arithmetics). Most often, the
convergence is already achieved with fewer iterations. The resulting η-level can now be used
for the computation of the analytic initial conditions at the location (λ, ϕ, η).
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E Transformations for rotated coordinates
The rotation of the coordinates, together with their inverse relations, has been described in
Nair and Jablonowski (2008) and Staniforth and White (2007). Here, we partly cite from the
reference by Staniforth and White (2007) and add the details for the initial conditions of the
steady-state and baroclinic wave test cases. Note that the trigonometric functions as outlined
below might suffer from precision problems due to the nesting and the application of inverse
trigonometric functions. Therefore, a slightly different but highly precise method has been
implemented in the Fortran example code made available to the modeling groups on the NCAR
Wiki web page

https://wiki.ucar.edu/display/dycores/Test+cases

The following steps illustrate the basic principle behind the rotations. Let the North pole
of a rotated coordinate system be located at the point (λp, ϕp) of the unrotated geographical
coordinate system. This is schematically shown in Fig. 28 (Nair and Jablonowski 2008). Let us
assume λp = 0 for the calculations here. For a flow orientation angle α the North Pole position
is given by (λp, π/2−α). From Ritchie (1987), the following relations hold between the rotated
(λ′, ϕ′) and unrotated (λ, ϕ) coordinate systems:

sinϕ′ = sinϕ sinϕp + cosϕ cosϕp cos(λ− λp), (138)
sinϕ = sinϕ′ sinϕp − cosϕ′ cosϕp cosλ′, (139)

cosϕ sin(λ− λp) = cosϕ′ sinλ′. (140)

For the steady-state conditions of section 1.1, expressed in the unrotated (λ, ϕ) coordinate sys-
tem, the horizontal wind components at each vertical level satisfy

u(ϕ) = a cosϕ
Dλ

Dt
, v = a

Dϕ

Dt
= 0, (141)

whilst the wind components in the rotated system satisfy

u′(λ′, ϕ′) = a cosϕ′
Dλ′

Dt
, v′(λ′, ϕ′) = a

Dϕ′

Dt
. (142)

Differentiating Eq. (138) with respect to time and using Eqs. (141) and (142) gives

v′(λ′, ϕ′) cosϕ′ = − cosϕp sin(λ− λp)u(ϕ). (143)

Differentiating Eqs. (139) and (140) with respect to time and manipulating the resulting equa-
tions using (140) - (143) then yields

u′(λ′, ϕ′) =
[
cosλ′ cos(λ− λp) + sinϕp sinλ′ sin(λ− λp)

]
u(ϕ) . (144)

Suppose now that the initial conditions in section 1.1 are to be expressed in the (λ′, ϕ′) coor-
dinate system, whose North Pole is located at the point (λp, ϕp) of the unrotated geographical
coordinate system (λ, ϕ). The steps for obtaining the initial conditions at the meshpoints (λ′, ϕ′)
of the rotated system are:
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α

Figure 28: A center position (λc, θc) at the equator (dashed line) of a rotated coordinate system
(λ′, θ′) whose North pole is at (λp, θp) with respect to the regular (λ, θ) sphere with radius a.
N and S are the poles of the unrotated Earth. The flow orientation parameter α is the angle
between the axis of the unrotated Earth and the polar axis of the rotated Earth.

66



1. Compute ϕ from Eq. (139) which yields

ϕ = arcsin
(
sinϕ′ sinϕp − cosϕ′ cosϕp cosλ′

)
(145)

2. Compute the inverse relation λ derived as

λ = λp + arctan

(
cosϕ′ sinλ′

sinϕ cosϕp + cosϕ′ cosλ′ sinϕp

)
(146)

This step is necessary for the computation of the zonal wind perturbation for the baro-
clinic wave. It can be omitted for the steady-state test case. Inverting the trigonometric
functions, particularly for λ can be problematic due to the non-unique nature of the in-
verted (arctan) function values. To avoid this problem we recommend using the intrinsic
Fortran function atan2(y,x) for arctan(y/x) which provides values in the range
[−π, π]. The negative values between [−π, 0) then need to be shifted by adding 2π. This
guarantees the proper branch cut in the longitudinal direction between [0, 2π].

3. Compute cos(λ− λ′) from Eq. (138) and sin(λ− λ′) from Eq. (140) which yields

cos(λ− λp) =
sinϕ′ − sinϕ sinϕp

cosϕ cosϕp

(147)

sin(λ− λp) =
cosϕ′ sinλ′

cosϕ
(148)

4. Depending on the choice of the test case compute the zonal wind field for either the
unperturbed conditions according to section 1.1 Eq. (5)

u(ϕ, η) = u0 cos
3
2 ηv sin2 (2ϕ) (149)

or the perturbed initial conditions for the baroclinic wave test. The latter is given as

u(λ, ϕ, η) = u0 cos
3
2 ηv sin2 (2ϕ) + up exp

(
−

( r
R

)2 )
(150)

where the parameters up and R are explained in section 1.2. The great circle distance r is
given by

r = a arccos
(

sinϕc sinϕ+ cosϕc cosϕ cos(λ− λc)
)

. (151)

with the original (unrotated) center position (λc, ϕc). Use the results from Eqs. (145) and
(146) for ϕ and λ.

5. Use Eqs. (147), (148) and (149)/(150) to compute the u′(λ′, ϕ′, η) and v(′λ′, ϕ′, η) as
shown in Eqs. (144) and (143). The (λ′, ϕ′) coordinates are the meshpoints of the com-
putational grid.

6. Compute the scalar fields T ′(λ′, ϕ′, η) and Φ′
s(λ

′, ϕ′, η) in the rotated system by using
the result of Eq. (145) in the temperature equation (Eq. (10)) and the expression for the
surface geopotential (Eq. (14)) from section 1.1.
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F Conservation of total energy
In the continuous primitive equations with hybrid vertical coordinates total energy is conserved
if the rate of change

∂

∂t

∫

A

∫ ηs

ηtop

(v2

2
+ cpT

)∂p
∂η

dη dA = −
∫

A

(
Φs
∂ps

∂t
− Φtop

∂ptop

∂t

)
dA (152)

is obtained (Laprise and Girard 1990). This equation is valid in the absence of diabatic and
frictional effects. Φs, ps and Φtop, ptop are the geopotential and pressure at the surface and
the model top, cp is the specific heat of dry air at constant pressure and v = (u, v)T stands
for the horizontal velocity vector with the zonal and meridional wind components u and v.
Furthermore, T symbolizes the temperature, p is the pressure, and t denotes the time. The
integrals span the 3D and 2D domains where A symbolizes the horizontal area of the sphere
and η stands for the hybrid vertical coordinate. The vertical integral is bounded by the value ηs

at the surface and ηtop at the model top. Here, ηs is identical to unity and ηtop is set ptop/p0 with
p0 = 1000 hPa. Note that ηtop is non-zero for constant ptop > 0 hPa. A constant pressure at
the model top ensures the global conservation of total energy in the continuous equations and
simplifies the 2D integral. Eq. (152) then becomes

∂

∂t

{ ∫

A

1

g

[( ∫ ηs

ηtop

(v2

2
+ cpT

)∂p
∂η

dη

)
+ Φsps

]
dA

}
= 0. (153)

Here we divided Eq. (152) by the gravitational constant g to recover energy units (Kasahara
1974). This expression is equivalent to

∂

∂t
E = 0

where E symbolizes the global integral of the total energy as shown by the term in the curly
bracket in Eq. (153). In the semi-discrete system with ∂p/∂η ≈ ∆p/∆η and dη ≈ ∆η, the
domain-integrated total energy E is given by

E =

∫

A

1

g

[(
Kmax∑

k=1

(u2
k + v2

k

2
+ cpTk

)
∆pk

)
+ Φsps

]
dA. (154)

The summation index k indicates the vertical index of a full model level with the maximum
level number Kmax near the surface. The pressure difference ∆pk is defined as

∆pk = pk+1/2 − pk−1/2 = p0 ∆Ak + ps ∆Bk (155)

with ∆Ak = Ak+1/2 − Ak−1/2 and ∆Bk = Bk+1/2 − Bk−1/2. The discrete positions of the
hybrid coefficients Ak+1/2 and Bk+1/2 at the model interface levels are listed in Appendix C.
∆ηk is given by ∆ηk = ηk+1/2 − ηk−1/2 = ∆Ak + ∆Bk.

If hydrostatic models with σ coordinates like

σ =
p− ptop

ps − ptop

(156)
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are considered the global integral of the total energy becomes

E =
1

g

∫

A

∫ σs

σtop

(v2

2
+ cpT + Φs

)∂p
∂σ

dσ dA (157)

≈ 1

g

∫

A

[ Kmax∑

k=1

(u2
k + v2

k

2
+ cpTk + Φs

)
∆pk

]
dA. (158)

The pressure differences ∆pk are determined with the help of Eq. (114) which leads to

∆pk = pk+1/2 − pk−1/2 = (σk+1/2 − σk−1/2) (ps − ptop). (159)

Note that the conservation of energy requires σtop = 0 which is guaranteed in Eq. (156). The
lower boundary at the surface is σs = 1.

As noted in Kasahara (1974) the global integral of the total energy for hydrostatic models
with a pure height coordinate z in the vertical direction is represented by

E =

∫

A

∫ zs

ztop

(v2

2
+ cvT + gz

)
ρ dz dA (160)

≈
∫

A

[ Kmax∑

k=1

(u2
k + v2

k

2
+ cvTk + gzk

)
ρk ∆zk

]
dA. (161)

The quantities ρv2/2, ρ cvT and ρgz are the kinetic, internal and potential energy per unit
volume, respectively. cv is the specific heat at constant volume and defined by cv = Rd − cp =
717.6 J kg−1 K−1. ρ denotes the density which is defined by the ideal gas law ρ = p/(Rd T ). zs

is the height of the orography. If height-based orography-following coordinates like

ξ =
ztop − z

ztop − zs

(162)

are used the domain integral of the total energy transforms to

E =

∫

A

∫ ξs

ξtop

(v2

2
+ cvT + gz

)
ρ dξ dA (163)

≈
∫

A

[ Kmax∑

k=1

(u2
k + v2

k

2
+ cvTk + gzk

)
ρk ∆ξk

]
dA (164)

with the lower and upper integration limits ξs and ξtop.
Note that the full 3D velocity vector v3D = (u, v, w)T need to be used for the computation

of the kinetic energy in nonhydrostatic dynamical cores.
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G Constants and symbols
Physical constants and model coordinates

a mean radius of the Earth a = 6.371229× 106 m
g gravitational acceleration g = 9.80616 m s−2

Ω Earth’s angular velocity Ω = 2π/sidereal day Ω = 7.29211 ∗ 10−5 s−1

length of a sidereal day 86164 s
f Coriolis parameter f = 2Ω sinϕ
Rd ideal gas constant for dry air R = 287.04 J kg−1 K−1

cp specific heat at constant pressure cp = 1004.64 J kg−1 K−1

cv specific heat at constant volume cv = Rd − cp cv = 717.6 J kg−1 K−1

κ κ = Rd/cp = 2/7
π π = 3.141592654
λ longitude λ ∈ [0, 2π]
ϕ latitude ϕ ∈ [−π/2, π/2]
η hybrid level η ∈ [0, 1]
σ sigma level σ ∈ [0, 1]
t time
A(η) hybrid coefficients for η coordinate, also Ak

B(η) hybrid coefficients for η coordinate, also Bk

Symbols and parameters

u zonal wind (unrotated)
v meridional wind (unrotated)
uperturb perturbation of the zonal wind
u′ rotated zonal wind
v′ rotated meridional wind
ω vertical pressure velocity ω = ṗ = dp/dt
η̇ vertical velocity in η coordinates η̇ = dη/dt
σ̇ vertical velocity in σ coordinates σ̇ = dσ/dt
q1− q6 tracer distributions
p pressure
ρ density ρ = p/(RdT )
ps surface pressure
T temperature
T̄ horizontal mean temperature
Θ potential temperature Θ = T (1000 hPa

p
)κ

Θ′ potential temperature perturbation
Θ̄ horizontal mean potential temperature
∆Θ potential temperature perturbation amplitude ∆Θ = 10 K
Φ geopotential
Φ′ geopotential perturbation
Φ̄ horizontal mean geopotential
Φs surface geopotential Φs = gzs

ζ relative vorticity
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δ horizontal divergence
ζ ′ perturbation of the relative vorticity
δ′ perturbation of the horizontal divergence
α flow orientation angle α ∈ [0, π/2]
N Brunt-Väisälä frequency
S parameter S = g2/(cpN

2)
T0 horizontal mean surface temperature
H scale height H = (Rd T )/g
τ time period (waves)
u0 horizontal wind amplitude or constant background velocity
up maximum wind amplitude of the perturbation up = 1 m s−1

ω0 maximum vertical pressure velocity
∆T empirical temperature difference ∆T = 4.8× 105 K
Γ temperature lapse rate in K m−1 Γ = −∂T/∂z
p0 reference pressure at the surface p0 = 1000 hPa
ptop pressure at the model top
ηv auxiliary variable ηv = (η − η0)π/2
η0 center of the zonal jet η0 = 0.252
ηt tropopause level in η coordinates ηt = 0.2
ηtop top level in η coordinates
ηs surface level in η coordinates ηs = 1
ηhw half width of the tracer distribution ηhw = 0.1
σtop top level in σ coordinates σtop = 0
σs surface level in σ coordinates σs = 1
ztop height at the model top
zs surface height
z0 center of the tracer distribution, also interpolation level
h0 height of the mountain h0 = 2000 m
d half width of the mountain d = 1250 km
ξ height-based orography following coordinate system ξ = (ztop − z)/(ztop − zs)
E domain integrated total energy
Kmax maximum vertical level number
r great circle distance
R distance or half width in the horizontal direction
Z half width in the vertical direction Z = 1 km
λp longitudinal position of the rotated North pole set to λp = 0
ϕp latitudinal position of the rotated North pole ϕp = π/2− α
λc center point in longitudinal direction
ϕc center point in latitudinal direction
ηc center point in the vertical direction
τ wave period in s
ν wave frequency or angular velocity
n generic wave number
K frequency parameter for Rossby-Haurwitz wave K = u0/(n a)
M frequency parameter for Rossby-Haurwitz wave M = K = u0/(n a)
k wave number in the zonal direction k = 2π/Lx
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l wave number in the meridional direction l = 2π/Ly

m wave number in the vertical direction m = 2π/Lz

cx gravity wave phase speed in the zonal direction
Lx wave length in zonal direction
Ly wave length in meridional direction
Lz wave length in the vertical direction

Key symbols for output quantities

U zonal wind, unstaggered
V meridional wind, unstaggered
OMEGA vertical pressure velocity
T temperature
PS surface pressure
PHIS surface geopotential
Z3 geopotential height
Z700 geopotential height at 700 hPa
Z500 geopotential height at 500 hPa
Z300 geopotential height at 300 hPa
T850 temperature at 850 hPa
T300 temperature at 300 hPa
U850 zonal wind at 850 hPa
U200 zonal wind at 200 hPa
V850 zonal wind at 850 hPa
V200 zonal wind at 200 hPa
OMEGA850 vertical pressure velocity at 850 hPa
OMEGA500 vertical pressure velocity at 500 hPa
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