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“Living” Test case document and DCMIP-2016 web page:

DCMIP:  2-week summer school and Dynamical Core Model 
Intercomparison Project (DCMIP): 2008, 2012, 2016
in 2016: use idealized moist test cases and focus on non-
hydrostatic dynamical cores and their physics-dynamics coupling

Three “core” test cases with idealized physics processes:
• Test 1:  Dry and moist (Kessler-physics) baroclinic instability test 

with “toy” terminator chemistry (110 km, 30 vertical levels)
• Test 2:  Moist tropical cyclone test
• Test 3:  Moist mesoscale storm test (supercell)

https://github.com/ClimateGlobalChange/DCMIP2016
https://www.earthsystemcog.org/projects/dcmip-2016/

What is DCMIP?

Recent paper: “DCMIP2016: a review of non-hydrostatic dynamical core design 
and intercomparison of participating models”, Ullrich et al. (2017) in GMD

https://github.com/ClimateGlobalChange/DCMIP2016
https://www.earthsystemcog.org/projects/dcmip-2016/
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DCMIP-2016 Models (in blue: comparison models)

• ACME (E3SM) (DoE, CU)
• FV3 (GFDL)
• Tempest (UC Davis)
• CAM SE (NCAR), hydrost.

• ICON (DWD & MPI, Germany)
• DYNAMICO (LMD, IPSL, France), hydrostatic

• CSU_LZ (CSU)
• OLAM (U. Miami)
• NICAM (Riken, U. Tokyo)
• MPAS (NCAR)

• FVM (ECMWF)

• CAM FV
(NCAR),
hydrostatic

• GEM 
(Environment 
Canada)



DCMIP-2016 Snapshots: “Toy” Terminator Chemistry
Tracer advection test with correlated tracers: Cly is the sum of Cl and Cl2 (needs to stay constant)

Lauritzen et al. (2015)



Snapshots of the dry baroclinic wave
Surface pressure at day 10 
(Δx=110 km): overall patterns 
similar, details differ

• Some Gibb’s ringing in 
ACME (spectral element 
model)

• Some grid imprinting (wave 
4 and wave 5 signals) in
CSU_LZ, DYNAMICO, FV3, 
ICON, NICAM, apparent in 
the Southern Hemispheres 



Snapshots of the moist baroclinic wave

Surface pressure at day 10 
(Δx=110 km): overall patterns 
similar, details differ

• Patterns look almost 
identical to the dry surface 
pressure patterns

• Moisture effects 
weaken high pressure 
systems and strengthen low 
pressure systems (e.g. 
visible in ICON and MPAS)



15-Day Time Series: dry and moist ps maxima

• Moisture effects weaken high pressure systems
• Presence of moisture widens the ensemble spread early 

in the simulations
• Points to the uncertainties in the physics-dynamics 

interactions and the possible impact of effective resolutions 

dry moist



15-Day Time Series: dry and moist ps minima

• Moisture effects: slight tendency to strengthen low 
pressure systems

• Presence of moisture considerably widens the ensemble 
spread

• Models tend to diverge after day 12

dry moist



Impact of Resolution: Moist ps maxima

• Impact of the horizontal resolution on the evolution of the
surface pressure maxima is small (in moist CAM FV, similar 
to FV3 model)

• However, PSmin spread in DCMIP models increases (next 
slide), physics-dynamics interactions most apparent in low 
pressure regions with precipitation and updraft

1°

DCMIP models

0.5°

0.25°

1°≈ 110 km

moistmoist



Impact of Resolution: Moist ps minima

• Increasing the horizontal resolutions from 1� (110 km) to 
0.5�/0.25� (55/28 km) strengthens the surface pressure 
minima in moist CAM FV

• Possible pathway: high precipation rates force intensification
• PSmin spread in DCMIP models includes the effects of the 

effective resolutions 

DCMIP models

1°≈ 110 km

1°

0.5°

0.25°
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Impact of Physics time step: Moist ps minima

• Varying the physics time step from 1800 s, 900 s to 450 s
has very little impact on the minimum surface pressure 
evolution in CAM FV(0.5�) 

• Suggests that physics time step is not the main driver for the 
model differences among DCMIP models

1° (1800 s)

0.5°
(1800 s)
0.25°
(900 s)

Overlap of all 3 physics 
time steps at 0.5°

Increased resolutions often come with decreased physics time steps  



Impact of Model Design & Resolution: Moist psmin

• Increasing the horizontal resolutions from 1� (110 km) 
to 0.5�/0.25� (55/28 km) strengthens the surface 
pressure minima in CAM FV and CAM SE

• PSmin spread in DCMIP models includes the effects of the 
effective resolutions and coupling uncertainties

DCMIP models

1°≈ 110 km

moist moist



• FV3 strengthens 
the fastest, already 
shows 4th

precipitation band

• Differing levels of 
‘noise’ (broken 
contours) and 
diffusion in the 
precipitation bands 
are apparent

Precipitation rates in the  moist baroclinic wave

Precipitation rates at
day 9 (Δx=110 km): 
overall patterns similar, 
details differ



• At day 10 
precipitation bands 
become very narrow, 
tend to break up in 
some models (with 
very strong grid-point 
scale precipitation)

• 3 models already 
develop 5th

precipitation band

Precipitation rates at 
day 10 (Δx=110 km): 
overall patterns similar, 
details differ

Precipitation rates in the  moist baroclinic wave



• Increasing horizontal resolution sharpens the precipitation 
patterns and increases the peaks in CAM FV and CAM SE

Precipitation rates: Impact of Resolution
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• Physics time steps in CAM FV have little effect on patterns

Precipitation rates: Impact of Physics Time Step
FV

1°

0.5°

0.25°

0.5°

0.5°
900 s 450 s

1800 s1800 s

900 s Slight tendency to break up 
the band with decreasing physics
time step



• Precipitation bands 
tightly connected to 
the narrow updraft 
areas 

• Reduced updrafts 
translate into reduced 
precipitation rates

• Noisy updraft areas 
lead to noise in 
precipitation rates

Vertical velocity in the moist baroclinic wave
500 m vertical velocity at 
day 10 (Δx=110 km): 
overall patterns similar, 
details differ



• High levels of specific 
humidity are 
advected from the 
moist tropical areas 
into the midlatitudes
(ahead of the low 
pressure systems)

• Specific humidity 
provides moisture 
source for the 
Kessler precipitation 
scheme

Specific humidity in the moist baroclinic wave
500 m specific humidity at 
day 10 (Δx=110 km): 
overall patterns similar, 
details differ



• Breaking waves at 
day 10 (also visible 
in the specific 
humidity field)

• Updrafts are 
connected to the 
strong temperature 
fronts

Temperature in the moist baroclinic wave
500 m temperature at 
day 10 (Δx=110 km): 
overall patterns similar, 
details differ



• Maxima and minima 
differ (by about 
30%) and are found 
in very narrow strips 
(challenges the 110 
km grid spacing)

• Vorticity highlights 
noise and the 
diffusive properties
of the model

Relative vorticity in the moist baroclinic wave
500 m relative vorticity at 
day 10 (Δx=110 km): 
overall patterns similar, 
details differ



• Seems to be 
predicted rather 
well, field is 
dominated by 
large-scale 
resolved advection

Integrated water vapor: moist baroclinic wave
Vertically integrated water 
vapor at day 10 
(Δx=110 km): overall 
patterns similar, 
only details differ 



Integrated cloud water: moist baroclinic wave

• Cloud water 
highlights the 
physics-dynamics 
interactions

• Generation of cloud 
water is not resolved, 
parameterized in the 
Kessler warm rain 
scheme

• Model differences 
become more 
apparent 

Vertically integrated cloud 
water at day 10 
(Δx=110 km)



Integrated rain water: moist baroclinic wave

• Rain water further 
highlights the physics-
dynamics interactions

• Rain water comes 
from cloud water pool, 
parameterized in the 
Kessler scheme

• Differences become 
even more apparent

• Coherent patterns 
break up for this metric

Vertically integrated rain 
water at day 10 
(Δx=110 km)



• Correlated tracer should 
stay perfectly correlated

• Analytical solution: zero 
variations

• Magnitudes of the tracer 
errors differ greatly (10-1 –
10-6), caused by limiters, 
diffusion and monotonic 
constraints in the 
numerics

Tracer consistency in the dry baroclinic wave
Vertically integrated tracers 
(weighted sum) at day 10 
(Δx=110 km) 



1500 m Kinetic Energy Spectra: dry and moist

• KE spectra provide information about the diffusion properties
• Some dry dynamical cores flatten their KE spectra
• Despite nominal 1° resolutions, resolved scales vary widely as indicated by 

the wide spread at high wavenumbers, spread narrows in moist runs

Day 15, dry Day 15, moist

k-3 slope k-3 slope



Snapshots: Supercell Simulations (dx=1 km)

• Time series of vertical velocity (top row) and rain water (bottom row) 
at 5 km after 30, 60, 90 and 120 minutes (horizontal resolution is 1 km)

Very wide
model spread:
diffusion 
processes
differ

w vertical 
velocity 

qr rain 
water

2 h2 h 1/2 h

w

qr



Snapshots: Supercell Simulations (dx=1 km)

• Time series of vertical velocity (top rows) and rain water (bottom rows) 
at 5 km after 30, 60, 90 and 120 minutes (horizontal resolution is 1 km)

Very wide
model spread:
hard to 
disentangle
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Conclusions
• The interactions between a dynamical core and moisture 

processes can already be simulated with very simple 
model configurations, like the Kessler warm-rain scheme

• Rich data base: moist dynamical core configurations reveal 
aspects of the physics-dynamics coupling, related to 
different dynamical cores, resolutions and physics time 
steps

• Idealized test cases are a useful tool (with quick turn 
around times) to test/understand the moisture aspects

• Causes and effects can be analyzed more easily, but are 
still difficult to disentangle

• We currently further analyze the impact of various 
numerical & diffusion choices and physics-dynamics 
coupling decisions (e.g. Δt)
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