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Diffusion, Filters and Fixers
• Equations of motion: diabatic effects
• Diffusion

– Explicit horizontal diffusion (neglecting vertical diffusion)
– Implicit numerical diffusion
– Divergence damping
– Decentering mechanism

• Spatial filters:
– Polar filters / Fourier filters
– Digital filters: e.g. Shapiro filters

• Time filters: Asselin-filter
• a posteriori Fixers:

– Mass
– Energy



The 3D Primitive Equations:
diabatic effects
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Continuity equation:
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Thermodynamic equation:
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Q Q: diabatic heating

Conservation of water vapor mixing ratio q:
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The 3D Primitive Equations:
diabatic effects

+ Conservation laws for liquid water + ice



• Diffusion applied to the prognostic variables
– Regular diffusion ∇2 - operator
– Hyper-diffusion ∇4, ∇6, ∇8 - operators: more scale-

selective
– Example: Temperature diffusion, i = 1, 2, 3, …

– K: diffusion coefficients, e-folding time dependent on
the resolution

– Choice of the prognostic variables and levels
• Divergence damping

Explicit Horizontal Diffusion

  

! 

"T

"t
=L# #1( )

i

 K
(2i)

 $
2i( ) T( )

! ! 



Effects of Horizontal Diffusion
• Comparison of the 700 hPa zonal wind at day 25 in

CAM FV and CAM EUL with test 5-0-0

CAM FV 1ºx1ºL26 CAM EUL T106L26

with standard horizontal diffusionwith monotonicity constraint,
divergence damping



Horizontal Diffusion Coefficients
• Diffusion coefficients are scale-dependent
• Are guided by the so-called e-folding time: How quickly are

the fastest waves damped so that their amplitude decrease
by a factor of ‘e’?

• Typical 4th-order diffusion coefficients K4 for CAM EUL



     ζ850  c) Day 7                ζ850  d) Day 9

Impact of Explicit Diffusion: Baroclinic Waves
• EUL T85L26 with standard K4 = 1015 m4/s diffusion coefficient
• Spectral noise (Gibb’s oscillations), test 2-0-0

ps T850a) Day 9 b) Day 9



Impact of Explicit Diffusion: Baroclinic Waves
• EUL T85L26 with K4 increased by a factor of 10 (1016 m4/s)
• No spectral noise, but severe damping of the circulation

ps T850

ζ850 ζ850



Implicit / Numerical Diffusion

• Implicit diffusion: diffusion that is inherent in the
numerical scheme

• Sources of implicit / numerical diffusion:
– Order of accuracy: 1st order, 2nd order, 3rd order,

…,  higher order schemes
– The higher the order, the less diffusive
– Monotonicity constraints
– Decentering parameters in semi-implicit time-

stepping schemes



Implicit diffusion: Order of accuracy
• Third order

(PPM)

• Second order
(van Leer)

• First order
upwind
scheme

Test 2-0-0
CAM FV 1°x 1.25° L26 
ps at day 9



Implicit diffusion: Order of accuracy
• Third order

(PPM)

• Second order
(van Leer)

• First order
upwind
scheme

Test 2-0-0
CAM FV 1°x 1.25° L26 
T850 hPa at day 9



Implicit diffusion: Order of accuracy

• Time-averaged
kinetic energy
spectrum at two
different horizontal
resolutions

• Third order (PPM)
• Second order (van

Leer scheme)
• Tail of 2nd order

scheme drops
faster

Test 2-0-0
CAM FV 

provided by
D. Williamson (NCAR)



Implicit diffusion: Monotonicity constraints
in Finite Volume Methods

• Linear subgrid distribution (van Leer scheme)

• Parabolic subgrid distribution (PPM) with cross terms

Reconstruction:

Slopes:

Slope 
limiter:



Implicit diffusion: Monotonicity constraint

Error PPM constrained Error PPM unconstrained

• SW Rossby-Haurwitz wave
• Initial u field at 2°x 2.5°
• Split cells to 1°x 1.25° grid

and interpolate via a PPM
reconstruction, compare to
analytical solution (error)

Errors cluster near the extrema where the
monotonicity constraint is strongest

Errors are reduced, but over- or 
undershoots are possible



Decentering mechanism (semi-implicit)

ε = 0.2 ε = 0

• Decentering mechanism is used in the semi-implicit
semi-Langrangian model CAM SLD, parameter ε

• Decentering technique damps noise induced by
orographic resonance, ε needed in real simulations

• Damping clearly shown in test 1-0-0, l2 error (Eqn. 18)



Divergence damping
• Example: 2D shallow water momentum equation

Momentum equation:

Horizontal divergence:

Semi-
discretized:

Divergence damping coefficients divided
by metric terms, different in both directions 

coefficient



Divergence damping
• Divergence damping diffuses the divergent part of the flow

2nd order 
diffusion
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Spatially variant divergence 
damping coefficient, units m2/s

• Can you select any coefficient c? Selection criterion?

(SW equation)

Apply divergence operator



Divergence damping

• Example: 2D SW
steady state test case
with α=90°, model FV

• Difference field at day
10 compared to
analytical solution

• Contour interval is
0.05 m/s

• Why is the polar
region always
smooth? Because of
other filters (here
polar Fourier filter)

without divergence damping

with divergence damping



Divergence damping: Effects

• Example: 3D gravity
wave test 6-0-0

• Model CAM FV 1°x 1°
L20 at day 4, cross
section at equator

• with standard
divergence damping
coefficients (top)

• without divergence
damping (bottom)

• Clear difference in
the amplitudes of the
gravity wave



All types of diffusion change the solution
• Example: 3D gravity

wave test 6-0-0, cross
section at the equator at
day 4

• Model CAM EUL
T106L20 with explicit ∇4

diffusion (top)
• Model CAM FV 1°x 1°

L20, no divergence
damping (bottom)

• Clear difference in the
shape of the potential
temperature perturbation

• Check sharpness of
leading edge



Divergence damping: Needed for stability ?

• Example: alternative
3D inertio-gravity wave
test with background
flow

• Model CAM FV 1°x 1°
L20 at day 5.5, lat-lon
cross section at 850 hPa

• Numerical stability of
CAM FV depends on
the resolution- and time
step dependent choice
of the divergence
damping coefficient c

no divergence damping

divergence damping



Divergence Damping
• Effects of the divergence damping and order of

accuracy on the Kinetic Energy spectrum (test 2-0-0)

Blue: PPM, no 
divergence damping

Green: PPM, standard 
divergence damping

Model: CAM FV,
plot provided by 
D. Williamson (NCAR)

Accumulation of
energy at small 
scales without 
divergence damping



Divergence Damping
• Without diffusion (here divergence damping):

divergent part of the flow responsible for the hook

plots provided by D. Williamson (NCAR)

CAM FV CAM EUL



Computational grids (horizontal)

Cubed sphere

Icosahedral
grid

Latitude-longitude 
grid: needs polar
filtering due to
convergence of
meridians No polar

filter requires



Spatial filters
• Most popular and most effective polar filter: 1D Fourier filter

(spectral filter), used in the zonal (x) direction
• Basic idea:

– Transform the grid point data into spectral space via
Fourier transformations

– Eliminate or damp high wave numbers (noise) by either
setting the spectral coefficients to 0 or multiplying them
with a damping coefficient ∈ [0,1]

– Transform the field back from spectral space into grid
point space: result is a filtered data set

• Filter strength is determined by the spectral damping
coefficients, can be made very scale-selective and
dependent on the latitude (e.g. less strong towards equator)

• Drawback: needs all data along latitude ring (poor scaling)



Spatial filters: Fourier & Digital Filter
• Data assimilation run with CAM FV, D-grid v field at 266 hPa

67° N

provided by Jeff Anderson, NCAR

Fourier 
filter

Digital 
filter

90° N

36° N

Filter
change
at 67°N



Digital filters
• Digital or algebraic filters are local grid-point filters that only

take neighboring grid points into account
• Examples are the Shapiro filters (Shapiro, 1975)
• 2nd order Shapiro filter (i is the grid point index):

• The filter response/damping function is (Shapiro, 1971)

2n: order



Digital filters: Response function

• Response function of different Shapiro filters after (a) 1
application and (b) 1000 applications. n indicates the order
of the Shapiro filter. Higher orders need more data points.



Digital filters
• Can provide a

strong damping
effect

• Use very
selectively

• Example: SW
simulation, digital
filtering in y-
direction applied
near the pole
points



Spatial Filters
• Can provide a strong

damping effect
• Example: Rossby-

Haurwitz wave in SW FV
model, height at day 14

• (a) Fourier (90º-75º N/S)
and digital Shapiro
filtering (75º-60º N/S)

• (b) Digital Shapiro filter
also applied between
60ºN - 60ºS, very
diffusive, not suitable



Time filters

• Used in models with 3-time level schemes
• Most often used: Asselin filter (Asselin, 1972)
• Avoids that the even and odd time steps separate
• Basic idea: Second-order diffusion in time
• Example with time levels n-1, n, n+1:

• Filter strength is determined by the coefficient α
• Often used α ≈ 0.05



Conservation of Mass

• Conservation of the (dry) air mass is only guaranteed if the
continuity equation equation is written in conservative form:

requires the density ρ to be a prognostic variable
• Alternative form for Lagrangian vertical coordinates:
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Conservation of Mass: Mass fixers

• Evaluate mass conservation properties of some models in
the colloquium:
ICON, CAM FV, CAM EUL

• Be careful what you see: Some models, especially climate
models, apply a posteriori mass fixers

• Conservation of mass is needed in long-term climate
simulations, less important in short weather prediction runs

• Basic idea behind the mass fixer: adjust the mean value of
ps after each time step, adjustment modifies all grid points
at the surface

• This technique does not alter the pressure gradients
• Ask your modeling mentor!



Conservation of Total Energy
• There are many forms of the Total Energy (TE or E)

Equation that depend on the choice of the fluid dynamics
equations and the vertical coordinate (see Appendix F)

• An example for hydrostatic models with Cartesian
coordinates is

• In general: The TE equation is a global integral of the
kinetic, thermal and potential energy in the model.

• The global integral is conserved in the continuous
equations.



Conservation of Total Energy

• The question is whether TE is a conserved quantity
in a dynamical core with numerical discretizations.

• Should we care?
– in Weather Prediction Models

• The answer is ‘not necessarily’
– in Climate Models

• The answer is ‘yes’
• When running for long times the violation of the total

energy conservation leads to artificial drifts in the
climate system (e.g. ocean heat fluxes)



Total Energy Fixer

• In nature:
– conservation of total energy
– energy lost by molecular diffusion provides heat

• In atmospheric models:
– Energy is lost due to explicit or implicit (numerical) diffusion

processes
– Molecular diffusion is not represented on the model grid

(spatial scale in models in way too big)
– Numerical scheme might also lead to increase in total

energy
• Therefore: some models provide an a posteriori

energy fixer that restores the conservation of total
energy by modifying the temperature



A posteriori Total Energy Fixer

• Goal: Total energy at each time step should be
constant

• Compute the residual:

• Compute the total energy before (-) and after (+)
each time step



A posteriori Total Energy Fixer

• Idea: Correct the temperature field to achieve the
conservation of  total energy (mimics heating by
molecular diffusion)

• Option: Fixer 1, correction proportional to the
magnitude of the local change in T at that time step

• Option: Fixer 2, correction is constant everywhere

• Fixer 1 looks physical, but leads to wrong results



Energy Fixer: Surprising Consequences

• Baroclinic wave
test 2-0-0,
ps at day 10

• CAM SLD with a
‘wrong’ and
‘corrected’
choice of an
energy fixer

• Wrong choice
leads to wrong
circulation
pattern

wrong energy fixer

corrected energy fixer

Williamson, Olson & Jablonowski,
MWR, in review



Energy Fixer: CAM SLD simulations

• Wrong choice
(Fixer 1) is a
clear outlier in
the l2 (ps) error
norm plot

• Lies above the
uncertainty of the
reference solutions
(gray shaded)

Williamson, Olson & Jablonowski,
MWR, in review



Energy Fixer: SLD Dynamical Core
• Fixer 1 in the SLD simulation is also an outlier in the

time series of the minimum surface pressure

SLD problem with 
the energy fixer corrected



Conclusions

• These are the modeling aspects that nobody will tell
you unless you ask.

• Ask your modeling mentor lots of questions !!
• Diffusion and filters help maintain the numerical

stability
• Some diffusion (either explicit or implicit) is always

needed to prevent a build-up of energy at the
smallest scale (due to truncated energy cascade)

• But: Use the techniques selectively and know their
consequences.

• It is very easy to compute nice-looking smooth,
highly diffusive, but very inaccurate solutions to the
equations of motion.


