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A Closest Point Algorithm for Parametric Surfaces
with Global Uniform Asymptotic Stability

Volkan Patoglu and R. Brent Gillespie

Abstract— We present an algorithm that determines the point
on a convex parametric surface patch that is closest to a given
(possibly moving) point. Any initial point belonging to the
surface patch converges to the (possibly moving) closest point
without ever leaving the patch. Thus the algorithm renders the
patch invariant and is globally uniformly asymptotically stable.
The algorithm is based on a control problem formulation and
solution via a switching controller and common control Lyapunov
function. Analytic limits of performance are available, delineating
values for control gains needed to out-run motion (and shape)
and preserve convergence under discretization. Together with
a top-level Voronoi diagram-based switching algorithm, the
closest point algorithm treats parametric models formed by tiling
together convex surface patches. Simulation results are used to
demonstrate invariance of the surface patch, global convergence,
limits of performance, relationships between low-level and top-
level switching, and a comparison to competing Newton-iteration
based methods.

I. I NTRODUCTION

A fast and reliable collision detection algorithm is essential
for computer simulation of dynamical systems, including

systems of rigid bodies and deformable bodies. Collision
detectors are also important components of software tools
for computer-aided design and computer-aided manufacturing.
Many collision detectors are based on closest point algorithms
that determine the pair of closest points on two disjoint bodies.
A closely related problem is the determination of the furthest
points on two intersecting bodies. Also, the determinationof
the point on a body closest to a penetrating point is used
in penalty-based haptic rendering algorithms. The penetrating
point might be the image of a stylus tip in the hand of
an operator acting through a haptic interface. The vector
connecting the closest point and the image of the stylus
tip determines the magnitude and direction of the reaction
force to be rendered. Likewise, closest point algorithms that
can determine the penetration depth and direction (defined
suitably) between two intersecting bodies can be used to render
reaction forces appropriate to the intersection of the image of
a fingertip and a virtual object through a thimble-based haptic
interface.

In our previous work [1] [2], we developed a closest
point tracking method with local convergence properties that
operates on pairs of parametric surface patches. That algorithm
can be called adirect method, in that it operates directly on
parametric surface representations such as NURBS surfaces
rather than on polyhedra such as those that result from the
tessellation of such surfaces. For a full literature surveyon
direct and indirect closest point algorithms for parametric
surfaces, see [2]. In the present paper, we also concentrate
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on a direct method. Our reasons for pursuing direct rather
than indirect methods have to do with certain properties
that can be developed and proven much more easily for the
direct methods. These properties will not be available for the
indirect methods (the polyhedral methods accompanied by
tessellation algorithms), primarily because tessellation masks
the construction of the parametric models. We further believe
that these properties will be essential for any method that is
to be extended for use in an advanced collision detector. We
use the termadvancedto describe a collision detector that can
treat intersecting, non-convex, and possibly deformable bodies
formed by tiling together multiple convex surface patches.
(Note that a body itself may be non-convex, even when
all component surface patches are convex, depending on the
orientation and composition of the patches.) We anticipatethat
direct methods (again, with those certain properties) willbe
especially advantageous for the case of deforming bodies since
parametric models offer compact geometric representations
even under deformation. Polygonal models, on the other hand,
require calculation of new tessellations as the bodies deform.
Parametric models also support solid mechanics-based contin-
uous deformation models which, in certain cases, may prove
computationally more efficient than finite element approaches.
Although very high resolution tessellations can be achieved at
interactive speeds, smoothness and continuity independent of a
particular rendering are intrinsic properties of direct methods.

In this paper we present a closest point algorithm with
certain properties not possessed by our previous algorithms.
The algorithm applies to a convex parametric surface patch,a
mathematical object that we will define carefully in the body
of the paper. The certain provable properties areconvergence:
all initial points on the patch converge to the closest point,
and invariance: all paths starting in the patch never leave the
patch. These two properties taken together yield an algorithm
that isglobally asymptotically convergent.

In the algorithm’s nominal form it determines the point
on a convex surface patch that is closest to a given (pos-
sibly moving) point. In forms that are simple extensions, it
determines the pair of closest points on two disjoint convex
surface patches. In forms that we claim are further simple
extensions, but will not fully lay out here for lack of space,it
determines the furthest pair between two intersecting convex
surface patches, and thus becomes what may be called an
extremalalgorithm.

Although convergence may seem like a desirable property
(and indeed a property possessed by many available algo-
rithms) invariance and global convergence at first glance may
seem unwarranted. We argue, however, that global conver-
gence is essential if a given closest point algorithm is to be
successfully extended to serve as the basis of an advanced
collision detector. For example, if a convex body is made of
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tiled together convex surfaces patches, the point on that body’s
surface that is closest to a given point in its interior will make a
path with discontinuous jumps as the given point moves across
a medial axis [3] of the body. With discontinuous jumps, it is
much more difficult to guarantee that the initial condition will
lie within a local region of attraction of the analytical closest
point.

Another very desirable feature in any closest point algorithm
is the availability of analytical limits of performance, orthe
availability of adjustments that can be made to preserve the
properties in the face of demands made upon the algorithm.
What adjustments can be made to preserve the properties under
relative motion of the bodies, especially fast relative motion?
How are those adjustments dependent on the sharpness of body
shapes? What tradeoffs exist between the algorithm speed
(in terms of large time step used in a discretization) and
convergence rates?

Many closest point algorithms are based on a Newton
Iteration [4] [5] [6] [7]. A well-known deficit in Newton’s
iteration, however, is a limited region of attraction. Even
for convex problems, Newton’s iteration cannot yield global
convergence. Its region of attraction is local and comprises a
not necessarily connected set. In our work, we build algorithms
based on the explicit use of feedback control. Newton’s Flow
can be interpreted as a special case of feedback control
(using a particular control law) which, as can be shown using
control analysis, inherits onlylocal convergence. In our work
presented here, we rely on control laws that can be proven
globally convergent. Interestingly, these control laws are also
simpler to implement. As a natural product of our adoption of
control theoretic design tools, our algorithm is equipped with
gains that can be tuned to preserve the desirable properties
under various demands. One can even imagine tuning gains
adaptively to yield maximum computational efficiency when
the body shape and motion allows it, without risking loss of
global convergence. This is possible since the boundaries on
the gain values where the properties break down can be easily
evaluated.

In the following, we first carefully define aconvexsurface
patch and outline the design of our closest point algorithm
in Section II. In Section III we present the control law that
renders the closest point globally asymptotically convergent,
even when there exists relative motion between the point and
surface patch. The controller is presented in the form of a
theorem and the proof (based on a common Lyapunov func-
tion) is outlined in detail. The basic closest point algorithm
involves only a single patch and point. Extensions to two
patches are related in Remarks to the Theorem. In Section IV
we present four simulations which are designed to feature each
of the critical properties of our algorithm: invariance, global
region of attraction, selection of gains given relative motion
and discretization, and the de-coupled nature of the top-
level Voronoi-region based switching and low-level switching
between the surface patch interior and its bounding curves.
Finally, in Section V, we revisit the relationship between our
controls-based approach to collision detector design and the
Newton iteration based approaches espoused in the past by
other researchers.

II. PRELIMINARIES

A. Convex Surface Patch

In this paper we treat bodies described by a collection of
tiled together surface patches. We restrict the surface patches
to be convex and for now, we also require the bodies to be
convex1. That is, the convex surface patches shall be oriented
and joined together at their boundaries in such a way that
a line joining any two points in the interior of the compact
body will be wholly contained in that body. While defining
convexity for a body is straightforward even when it is a tiled
body, defining convexity for a surface patch requires special
consideration. Like the definition for a convex space curve [8],
we have defined a convex surface patch asanypatch cut from a
compact convex body. Convexity of the surface patch depends
on convexity of the body from which it is cut, and not on the
curvature of the bounding curves that lie in the surface. Thus
the projection of a surface patch onto a plane may well produce
a planar area which is not convex. Likewise, smoothness of the
surface patch depends on smoothness of the body from which
it was cut (we require at leastC2 smoothness). Note that the
body from which a patch is cut is to be distinguished from the
body formed by the tiled together patches. The convex tiled
body is the intersection of the bodies that play host to the
patch cutting operations. To accommodate a requirement for
our convergence proof that appears below, we further define
a convex surface patch as ‘nice’ when the angle between any
two surface normals (pointing outward) subtend less than 180
degrees. This requirement is non-restrictive as any convex
surface patch that is not nice can easily be divided into at
most two convex surface patches that are nice.

B. Feedback Based Algorithm

In this paper, and without loss of generality, we shall use
four curves intersecting in four distinct vertices to definethe
boundary of a surface patch. For example, Figure 1 shows
a convex surface patchS composed of its interiorS̆ and
the four curvesci (i = 1 . . . 4) that bound it. Further, a
parametric surface patch may be conveniently parameterized
using parametersu and v whose domains are restricted to
[0,1]. Thus the boundaries are theu = 0, v = 0, u = 1, v = 1
curves and the whole patchS is described as the image of
the vector mappingf(u, v) : ([0, 1] × [0, 1]) → ℜ3. Given a
point Q lying outside a convex surface patchS, there exists
a uniquepoint P∗ of the patch that is closer toQ than any
other point of the patch [9]. We will callP∗ the closest point
and (u∗, v∗) the parameters of the closest point.

The central problem we address in this paper is how to
determine the closest pointP∗ given surface patchS and point
Q and how to maintainP∗ given relative motion betweenS
andQ. To determineP∗, we use an algorithm that causes an
initialization pointP0 lying anywhere in the patch to converge
to the closest point. The algorithm drives to zero the tangent-
plane projections of the vector∆R from the best current guess
P (referred to as the witness point) toQ. Maintenance of the

1Later, after a means of tracking thefurthest points on two intersecting
convex surface patches has been developed, the restrictionof convexity on the
tiled-together bodies can be lifted. These topics will be addressed in future
papers.
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Fig. 1. A surface patchS, parameterized by(u, v) ∈ ([0, 1] × [0, 1]), is
composed of its interior̆S and its bounding curvesci (i = 1, . . . , 4). Point
Q (the free moving point outside the patch),P∗ (the corresponding closest
point on the patch) andP (the current best estimate of the closest point) are
indicated in the figure. Vectorsfu, fv (the unit surface tangents in theu, v
directions) andN (the unit surface normal) define the surface frame at any
point on the patch. Vector∆R (the vector fromP to Q) is expressed in the
surface frame whereΨu, Ψu and∆ are the resulting measure numbers. As
the best estimateP approaches the closest pointP∗, the measure numbers
in the tangent directionsΨu, Ψu, referred as the projection errors, converge
to zero, and the measure number∆ converges toE, the minimum distance
betweenS andQ.

closest pointP∗ comes for free, since convergence ofP to
P∗ ensures continual tracking as the closest pointP∗ changes
location on the surface patchS under the effects of relative
motion betweenQ and S and the shape ofS. Note that,
when the difference vector∆R is projected onto the surface
tangentsfu and fv, these projections are called theprojection
errors and labelledΨu andΨv, respectively.

Our algorithm is based on the formulation of a nonlinear
control problem and its solution takes the form of a feedback
stabilizing controller. The “plant” whose output the controller
drives is an integrator wrapped around the differential kine-
matics of the error vector∆R. The outputs of the plant are
the parametersu and v that locateP. The objective of the
controller is to manipulateu and v until the projectionsΨu

and Ψv of ∆R onto the surface tangentsfu and fv at P

are driven to zero. The “simulation” or numerical integration
of the differential kinematics then produces the convergent
algorithm. Feedback is used to stabilize the integration. Note
that similar feedback stabilization techniques have been used
to solve for the inverse kinematics of robot manipulators [10]
and to solve for the motion of constrained multibody systems
[11].

In complete analogy to the solution of a manipulator’s
inverse kinematics by a feedback stabilized simulation of its
differential kinematics (see [10], Fig. 3.12), Figure 2 shows
the feedback stabilized integration of the differential error
kinematics. The termerror kinematicsrefers to the dependence
of the projection errorsΨu and Ψv on the parametersu
and v, on the location ofQ, and on the directions of the
surface tangentsfu and fv at P. Let the vectorx contain the
parametersu andv and letΨ(x) in the feedback loop contain

K

Ψ(.)

∫

M−1(µ − b)

Ψ

Ψ
0

x

xµ w

Fig. 2. This figure demonstrates the feedback stabilized integration of the
differential error kinematics of the closest point problem. The projection errors
Ψ(x) are regulated to zero by the proportional control lawK that drives the
inversedifferential error kinematics, whose convergent integration results in
the desired surface parameters.

the error kinematicsΨu and Ψv. Differentiating the error
kinematics produces an expression which may be encapsulated
in Ψ̇ = M(x)ẋ + b(x), whose inverse appears (solved forẋ,
renamedw) in the forward loop in Figure 2. Note that, by
convexity of the surface patchS, the projection errorsΨ are
zero only if the witness pointP is the closest pointP∗. For
any other pointP, the projection vectorΨ has a direction and
a non zero magnitude that can be used to drive the parameters
u andv to u∗ andv∗.

In [2], we have shown that the control laww =
M−1(−KΨ − b) renders the closest point solutionlocally
asymptotically stable and an estimate on the basin of attraction
of this controller is given by the set of points aroundP∗

where theM matrix is positive definite. While solving for
a manipulator’s inverse kinematics with a feedback stabilized
simulation of its differential kinematics, one may consider
different control laws than the one resulting from the direct
inversion of its differential kinematics. In [10], Lyapunov
type arguments are used to demonstrate that utilizing the
Jacobian transpose in the control law produces performance
comparable to that using the Jacobian inverse. In the next
section, we will prove with a control Lyapunov function that
asymptotic convergence toP∗ is preserved even when the term
w = M−1(µ − b) in the controller is replaced by a positive
constant. The convergence properties of this simplified control
law follow from the fact that any positive definite matrix can
be bounded by its eigenvalues and the effect of motion can
be counteracted by the feedback term given sufficiently large
controller gains.

C. Voronoi Switching to Locate the Active Patch

If the modeling environment is represented with asingle
patch and the algorithm is initializedsufficiently closeto P∗,
then the proposed controller can guarantee convergence within
the patch even thoughP∗ changes location on the patch under
the effect of relative motion. However, consideration of a
single parametric surface patch by itself is not quite sufficient,
since within a parametric modeling environment, objects are
generally modeled using collections of tiled-together surface
patches. When the object model consists of tiled-together
surface patches, detection of theactive patch on whichP∗

lies becomes an important concern. At a given instant of time,
the closest point solution may lie on any of the surface patches
and the active patch is subject to change due to relative motion.

To update the active patch with respect to the relative motion
of the bodies, we propose afeaturebased switching algorithm.
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Fig. 3. (A,B) illustrate an object consisting of tiled-together surface patches
and all of its Voronoi regions. (C) presents only a portion ofthe Voronoi
regions and labels them appropriately. (D) shows the automaton associated
with (C) that governs the discrete dynamics of the Voronoi based switching
algorithm.

Feature based switching algorithms are well established in
the literature for the collision detection of polygonal models
[12] [13]. The Voronoi diagram of an object partitions the
space around it into distinct regions. Feature based switching
algorithms rely on the fact that if an external pointQ is in the
Voronoi region of a feature, it is closer to this corresponding
feature than any other feature.

Voronoi diagrams also exist for parametric objects formed
using tiled-together surface patches [3] [14]. For example,
Figure 3 (A) illustrates such an object consisting of several
surface patches whereas (B) shows all of its Voronoi regions.
Figure 3 (C) presents only a portion of these Voronoi regions
with appropriate labels and (D) illustrates the automaton
associated with (C) that governs the discrete dynamics of the
Voronoi based switching algorithm. Note that determination
of Voronoi regions for curved objects can be computationally
expensive; however, the Voronoi switching algorithm requires
only a numerical pre-computation of these regions before the
simulation is started. Consequently, this step does not affect
the real time performance of the algorithm.

The proposed Voronoi based switching algorithm is virtually
the same as the Lin-Canny closest feature algorithm [12]. The
algorithm triggers updates to the closest feature when the point
Q crosses between the Voronoi regions of the object. The
discrete dynamics of this switching algorithm can be modeled
by an automaton constructed according to the connectedness
of the object’s features. For example, Figure 3 (D) shows a
portion of such an automaton. Incorporation of the Voronoi
based switching algorithm with the feedback controller results
in a hybrid control system that can handle object models built
from tiled-together patches. In our previous work [2], details
of the Voronoi based switching algorithm and its incorporation
with the feedback controller are discussed in detail and will
not be further elaborated here.

D. Boundary Switching for Global Convergence

Incorporation of the feedback controller with the Voronoi
based switching algorithm extends our results presented ear-
lier for the feedback controller to multiple patches, however
initialization sufficiently close toP∗ is still required for
the asymptotic convergence of this hybrid algorithm. The
requirement to initialize sufficiently close toP∗ is quite
restrictive and it is desirable to design an algorithm that can
be initialized anywhere within the active patch. In particular,
special attention must be paid to the constraints imposed by
the boundaries to achieve global convergence within a surface
patch.

Having two unconstrained degrees of freedom, the controller
as presented is feasible at any point of a surface without
boundaries; however, when applied to a surface patch, there
is no guarantee that the updated witness points will stay
within the patch boundaries. To guarantee that the parameters
u and v locating the witness point stay within the defined
range (which is constrained to([0, 1]× [0, 1])), we propose to
saturate the parameters at the boundaries to keep the witness
points on the boundary curves. The saturated version of the
control algorithm is utilized whenever the witness point ison
a boundary curve and the main control algorithm attempts
to drive it outside the boundary. Saturation is implemented
by simply determining the component of control signal that
attempts to drive the witness point outside the boundary and
setting it to zero.
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Fig. 4. This three-part figure illustrates the incorporation of several controller
layers to obtain the overall hybrid control algorithm. (A) represents the
automaton that decides on the controller gains for the lower level feedback
loop. This automaton is composed of the modes corresponding to the surface
patch interiorS̆ and the bounding curvesci (i = 1, . . . , 4) and tracks the
mode changes due to motion of the witness pointP on the closed patch.
(B) shows the switching conditions for autonomous mode changes of the
boundary switching. (C) indicates the overall controller architecture driving
P to P∗. The lower level feedback controller maintains the current estimate
of the closest point by continually driving the projection errors to zero while
the boundary switching selects controller gains that guarantee convergence for
any initialization within the patch. The Voronoi switchingforms the highest
level of the controller and keeps track of the active patch when the objects in
the modeling environment consist of tiled-together surface patches.



5

As a consequence of the saturated control law at the patch
boundaries, another switching layer is added to the overall
controller at a lower level than the Voronoi based switching
algorithm. The discrete dynamics of this switching at the
boundaries is completely decoupled from the dynamics of
Voronoi based switching algorithm and is dictated instead by
the current parameters of the witness point. The boundary
switching is best represented using an automaton with five
distinct modes and such an automaton is illustrated in Figure 4
(A). Each mode in the automaton corresponds to a different set
of gains for the feedback controller. The mode switches within
the automaton take place depending on the current parameters
of the witness point. A summary of the switching rules are
shown in Figure 4 (B).

The global controller for a surface patch has two interacting
layers: the automaton which selects the proper set of controller
gainsK depending on the current state of the witness point
and the feedback control law which makes use of these gains
to update the witness point. On top of these two control layers,
the Voronoi based switching algorithm is put in place to keep
track of the active patch due to the existence of multiple
patches. An abstraction of the overall controller is presented
in Figure 4 (C).

In the next section, it will be shown that, for any initial-
ization within the active surface patch, uniform asymptotic
convergence of the witness points to the closest point is
guaranteed by the proposed switching controller.

III. A G LOBALLY CONVERGENTCLOSESTPOINT

ALGORITHM

In this section, we consider the problem of finding the
minimum distance between a point and a convex surface
patch when both of the bodies to which they are attached
are allowed to undergo rigid body motion with respect to one
another. Below, we state and prove a theorem that guarantees
global uniform asymptotic convergence of solutions when the
controller gains are chosen to be sufficiently high to compen-
sate for the motion of the bodies. We provide a practically
implementable lower bound for these controller gains and
show global convergence of solutions when the algorithm is
initialized using any point within the patch.

The algorithm relies on a controller to generate(u̇, v̇) whose
integration produces(u, v) that converges to(u∗, v∗). The
switching nature of the controller guarantees that given any
initialization (u0, v0) in the patch, the controller drives(u, v)
to the minimum distance solution(u∗, v∗) without ever leaving
the patch. That is, the switching controller renders the patch
positively invariant.

Before stating the theorem, we will introduce some non-
restrictive assumptions on the types of motion allowed. First,
we will require the motion be continuous to assure Lipschitz
continuity of the closest distance between the convex bodies
[15]. An upper bound on the speed of the relative motion is
also required. Given the angular velocity vectorNωωωωωωωωωωωωωA of A (the
body to which the surface patch is fixed) in a world reference
frameN , we will define the upper boundB as the Euclidian
norm of the vector(NωωωωωωωωωωωωωA × Q). This bound is not restrictive
and is only required so that a fast enough controller can be
designed to compensate for the perturbing effects of motion.

Let the first fundamental matrix for the surface patchS

be denoted byI =

[

E F

F G

]

and let α be its largest

eigenvalue. Also defineζ as
∥

∥

∥

∆R

‖∆R‖
− N∗

∥

∥

∥
. Note thatζ and

(Ψu2 + Ψv2) = ‖∆R − ∆N‖ approach zero with the same
rate as the witness pointP converges toP∗.

Theorem 1:If the image of the mappingf(u, v) : ([0, 1] ×
[0, 1]) → ℜ3 defines a ‘nice’ rigid convex parametric surface
patchS, the pointQ is in the external Voronoi region ofS,
Q andf are in continuous motion with respect to one another,
and given controller gains satisfyingK ≥ B ζ ‖∆R‖

α (Ψu2+Ψv2)
,

ku ≥ B ζ ‖∆R‖

G Ψu2
and kv ≥ B ζ ‖∆R‖

E Ψv2
, then the switching

controller

[

u̇

v̇

]

=







































−kv

[

0
Ψv

]

,
if u = 0 andΨu > 0
or u = 1 andΨu < 0

−ku

[

Ψu

0

]

,
if v = 0 andΨv > 0
or v = 1 andΨv < 0

−K

[

Ψu

Ψv

]

, otherwise

(1)

renders the minimum distance pointP∗ uniformly asymptoti-
cally stable over the whole surface patchS.

The proof is omitted here but it is based on acommon
control Lyapunov functionwhich is defined as the difference
between the Euclidian norm of the the vector∆R and the
minimum distanceE between the point and the surface patch,

V = ‖∆R‖ − E. (2)

Being a common control Lyapunov function,V is positive def-
inite and decresent. To prove uniform asymptotic stabilityof
the algorithm, the negative definiteness of the time derivative
of the control Lyapunov function is to be shown.

Since the boundaries of the surface patch constrain the
allowable motion directions of a candidate point whenever it is
on a boundary, the feasible control inputs are also constrained
at the boundaries. The difference between feasible control
directions on the boundaries and on the interior of the surface
patch results in different control modes, within each of which
proper control laws are to be designed.

In the proof, it is shown that rendering the time derivative of
the control Lyapunov function negative definite in each con-
troller mode is possible with a switching controller. Feasibility
of the control laws in each control mode are also analyzed
and proper switching conditions are supplied. Although the
controller is of a switching nature, the existence of a common
Lyapunov function guarantees that the stability is uniformover
the set of all switching signals [16].

Since the proposed controller renders the time derivative of
the common control Lyapunov function negative definite at
any point on the surface patch except the minimum distance
solution, we can claim that the common control Lyapunov
function is actually a common Lyapunov function and the
control algorithm is uniformly asymptotically stable [16].
Note that the common Lyapunov function guarantees uniform
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asymptotic stability, which is to say, stability holds under
arbitrary switching, so analysis of the switching sequence
is not required within the proof. Moreover, since the whole
surface patch is rendered positively invariant under the pro-
posed control law, we can also claim that the region of
attraction of the proposed controller is the whole surface
patch (including the boundaries), and the algorithm isglobally
uniformly asymptotically stable (GUAS).

Remark 1:Global uniform exponential stability (GUES)
can be achieved by the same controller setting the controller
gains askv = ‖∆R‖2

Ψv2
, ku = ‖∆R‖2

Ψu2
and K = ‖∆R‖2

(Ψu2+Ψv2)
.

However, the control inputw required to achieve exponential
stability grows unbounded as the candidate point approaches
the closest point. Therefore, exponential convergence canbe
obtained only to very close vicinity of the solution (a ball of
diameterǫ around the closest point). This result is practically
satisfactory since convergence rate is of utmost importance
when the candidate point is away from the solution.

Remark 2:When there is no relative motion between the
bodies, the lower bound on the controller gainsK, ku andkv

simplifies to zero.
Remark 3:The presented controller treats all possible mo-

tion between the two bodies as perturbations and makes use of
sufficiently high gains to suppress them. However, whenever
possible, it may be desirable to take advantage of motion to
achieve even faster convergence rates at a cost of a slightly
more complex control law. This idea results in an enhanced
version of the controller given as

[

u̇

v̇

]

=







































1
G

[

0
−kvΨ

v + bv

]

,
if u = 0 andΨu > 0
or u = 1 andΨu < 0

1
F

[

−kuΨu + bu

0

]

,
if v = 0 andΨv > 0
or v = 1 andΨv < 0

I−1

[

−KΨu + b1

−KΨv + b2

]

, otherwise

(3)

where

bv =
Ψu

Ψv

1

2

[

1 − sign
(

Ψu(NωωωωωωωωωωωωωA × Q) · fu
)]

(NωωωωωωωωωωωωωA × Q) · fu

+
1

2

[

1 − sign
(

Ψv(NωωωωωωωωωωωωωA × Q) · fv
)]

(NωωωωωωωωωωωωωA × Q) · fv,

bu =
Ψv

Ψu

1

2

[

1 − sign
(

Ψv(NωωωωωωωωωωωωωA × Q) · fv
)]

(NωωωωωωωωωωωωωA × Q) · fv

+
1

2

[

1 − sign
(

Ψu(NωωωωωωωωωωωωωA × Q) · fu
)]

(NωωωωωωωωωωωωωA × Q) · fu,

and

[

b1

b2

]

=

[

1
2
[1 − sign (Ψu(NωωωωωωωωωωωωωA × Q) · fu)] (NωωωωωωωωωωωωωA × Q) · fu

1
2
[1 − sign (Ψv(NωωωωωωωωωωωωωA × Q) · fv)] (NωωωωωωωωωωωωωA × Q) · fv

]

Note that this control law takes advantage of the motion
whenever motion helps convergence and cancels it as much
as possible whenever motion acts as a disturbance.

Remark 4:Since the controller and its associated dynamics
are implemented in discrete time, the impact of discretization
on the stability properties should be considered. Discretization

introduces upper limits on the controller gains that depend
on the integration method and step size chosen. There exist
standard techniques whereby the convergence rate (determined
by controller gains) and discretization step size can be traded
off against one another while maintaining stability. In [17]
and [18] standard discrete time controller design techniques
are utilized to calculate an upper bound on controller gains
given an explicit integration method and fixed integration step
size. With these techniques, it becomes possible to preserve
the stability of the algorithm after discretization.

Remark 5:Although the above theorem is given for the
minimum distance solution between a convex surface and a
point, it is relatively straightforward to extend the controller
to operate on two convex surface patches (denotedf(u, v) and
h(r, s) respectively) to find the minimum distance between
them. If the surface patches are convex and the minimum
distance point lies within the external Voronoi region of
the corresponding patch, one can follow a similar Lyapunov
analysis using the same proposed control Lyapunov function
to prove that, as long as both candidate points lie inside the
patch and with proper choice of gains, a similar controller
renders the minimum distance solution globally uniformly
asymptotically stable. Extension to the enhanced version of
the controller is also straightforward.

IV. SIMULATION RESULTS

We have developed computer simulations to demonstrate
the important features of our algorithm. Our simulations are
implemented in MATLAB and sample results are presented be-
low. The first simulation highlights the importance of low-level
boundary switching and shows the invariance of the surface
patch under the switching controller. The second simulation
demonstrates the global convergence of the our controller and
characterizes the region of attraction of Newton iterationbased
methods. Importance of controller gain selection under relative
motion and discretization is the theme of the third simulation
whereas the top level Voronoi switching and its decoupled
nature is shown in the fourth simulation. Common to the first
three simulations is the convex surface patch whose definition
is given in Table I.

TABLE I

DEFINITION OF THE CONVEX NURBS PATCH USED IN SIMULATIONS OF

FIGURES5,6, AND 7

order [3 3]
(0,0,0,1) (3,0,2,1) (5,0,3,1) (8,0,3,1) (10,0,0,1)

control (1,3,3,1) (3,3,5,1) (5,3,6,1) (8,3,5,1) (9,3,3,1)
points (2,5,5,1) (3,5,7,1) (5,5,8,1) (8,5,7,1) (8,5,5,1)

(x, y, z, w) (1,8,3,1) (3,8,5,1) (5,8,6,1) (8,8,5,1) (9,8,3,1)
(0,10,0,1) (3,10,2,1) (5,10,3,1) (8,10,2,1) (10,10,0,1)

knotsu [0 0 0 1
3

2
3

1 1 1]
knotsv [0 0 0 1

3
2
3

1 1 1]

A. Invariance of a Surface Patch

The four-part Figure 5 shows a simulation that illustrates
the convergence behavior of an initializationP0 on the surface
patchS. (A) shows the points that locate the witness points
in each of the simulation snapshots. (B) demonstrates the
mode changes of the low level controller automaton as the
convergence takes place. At startup, the first witness point
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Fig. 5. This four-part figure shows the convergence of an initialization P0

through several mode changes demonstrating invariance of thesurface patch
under the proposed controller. (A) shows the path traced on the patch by the
witness points whereas (B) illustrates the mode changes the controller goes
through during convergence. The witness point, initialized within the surface
patchS̆, hits the surface boundaryc4 at t = t1, traces alongc4, and leaves
c4 at t = t2 converging to the solution att = t3. Correspondingly, in (B)
the mode switches of the controller take place att = t1 and t = t2 when
the switching rules are satisfied. (C) demonstrates evolution if the normalized
projection errorsΨu and Ψv while the algorithm converges to the closest
point solution as shown in (D).

(which is the initialization pointP0) belongs to the interior of
the surface patch̆S; consequently, the automaton governing
the controller gains is in the corresponding mode. At time
t = t1, the witness pointP hits the bounding curvec4 and
the controller command would otherwise attempt to driveP

outside this boundary of the patch. However, these conditions
satisfy the rules for boundary switching and an immediate
controller mode change takes place, invoking a saturated
version of the control law. The new controller mode (with the
saturated control law) stays valid as long as the unrestricted
controller attempts to driveP outside the boundaries ofS.
At t = t2 the use of the unrestricted controller becomes
feasible and the controller goes through another mode change
removing the restriction on the witness points to move along
c4. After this mode change, the witness points are free to move
in two degrees of freedom and converge toP∗ at timet = t3.

(C) demonstrates the change in the normalized projection
errorsΨu, Ψv and (D) illustrates the evolution of‖∆R‖ as
the algorithm converges to the closest point solutionP∗. As
shown in (C) and (D), even on a convex patch, the projection
errors do not monotonically decrease while the witness point
converges toP∗. This is due to the fact that the projection
errors are evaluated at the witness pointP and not at the
closest pointP∗. An initialization sufficiently close toP∗ is
required for the monotonic behavior of the projection errors.
An important feature of our algorithm is its ability to handle
any initialization whereas a Newton iteration based method
relies on the monotonic decrease of the projection errors and
therefore requires sufficiently close initializations.

This simulation demonstrates the positive invariance of the

surface patch and the importance of the boundary switching
to achieve convergence for any initialization within the patch.
The boundary switching is required since without the satura-
tion of the control law at the boundaries, invariance of the
patch cannot be guaranteed. Without the boundary switching,
invariance does not exist because the level curves of the
Lyapunov function for the unrestricted controller go out of
the patch boundaries. The important feature of the boundary
switching is to restrict the witness point to move along the
boundary, but doing so without sacrificing the asymptotic
convergence of the algorithm.

B. Region of Attraction for Various Controllers
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Q
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P∗

P∗

P∗

P∗

Fig. 6. In this Figure, convergence characteristics and theregion of attraction
for three different control laws are demonstrated. The figures on the left
illustrate the path that witness points follow when initialized atP0. PointQ
is the external point,P∗ is the closest point solution. In these simulations, no
relative motion between the bodies was used. The figures on theright show the
region of attraction of the corresponding controller in theparameter space of
the patch. The dark regions with white crosses× correspond to initializations
that do not converge whereas the circles◦ on the white background illustrate
the basin of attraction. (A) and (B) belong to Newton based iteration with
no special boundary control. (C) and (D) are for Newton basediteration with
saturation at the boundaries. (E) and (F) demonstrate our proposed controller.
Global convergence of our controller can be compared to limited regions of
attraction for Newton based methods.
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The objective of this simulation is to reveal the global
basin of attraction of our controller and to compare it with
the limited region of attraction for Newton iteration based
methods. Figure 6 shows the convergence characteristics and
the region of attraction for three different control laws. The
figures on the left illustrate the paths that witness points
follow when all three simulations are initialized at the same
point P0. To be able to compare our algorithm to Newton
based methods, no relative motion between the bodies was
used. PointQ represents the external point whereasP∗ labels
the closest point solution. In the figures on the right, the
circles ◦ on the white background label the parameters for
initialization points that converge toP∗ whereas the dark
regions with white crosses× correspond to parameters for
initialization points that do not converge. Consequently,the
regions with white background illustrate the basin of attraction
of the corresponding controller in the parameter space of the
surface patch.

(A) and (B) demonstrate a controller based on Newton
iteration. During this simulation, no special control law is used
at the patch boundaries. (A) shows that for this particular
initialization P0, the Newton based controller starts in the
wrong direction and fails to converge toP∗ by going out
of the boundaries of the patch. (B) demonstrates the region
of attraction of this controller which is a relatively small,
unconnected set.

(C) and (D) are again for a controller based on Newton
iteration; however, this time saturation is utilized at thepatch
boundaries. (C) shows that for the particular initialization
P0, the controller acts like the previous controller until the
witness point hits the patch boundary and the parameters of
the witness point saturate. At this instant, the control lawwith
saturation becomes valid and the witness points move along
the boundary until the control law no longer attempts to move
the witness points outside the patch boundaries. As soon as
the unrestricted control law is re-activated, it takes the witness
point inside the boundary. However, after a few iterations,
this new witness point inside the patch (corresponding to a
new initialization) hits another boundary resulting in another
controller mode change. Once again the witness points are
restricted to the boundary and they leave the boundary when
the unrestricted controller becomes feasible. Luckily, this time
the new witness point within the patch results in convergence
to P∗ without attempting to leave the boundary. (D) illustrates
the region of attraction for this controller with saturation at
the boundaries. The region of attraction is larger than the case
without saturation but is not global.

As demonstrated in (D), the region of attraction of the
Newton based iteration with boundary saturation contains the
region of attraction of the Newton based iteration (shown in
(B)) and extends it significantly. However, the new initial-
ization points recovered by the boundary saturation are the
points that hit the boundary of the patch (probably a few
times) and finally land in the region of attraction of Newton
based iteration. This behavior of the algorithm is not desirable
for two reasons. First of all, the convergence of the saturated
controller at the boundaries is not guaranteed and the use of
this control law may actually result in a sequence of witness
points diverging from the solution. Secondly, to arrive at a

witness point within the region of attraction of the unrestricted
Newton’s iteration, the algorithm may go through many mode
changes causing the witness points to jump around by hitting
the boundaries, and such a behavior is not time efficient and
is computationally demanding.

Finally, (E) and (F) demonstrate our proposed controller.
Global convergence of our controller is apparent from the fig-
ure on the right since all initializations within the surface patch
converge to the solution. Note that this is also guaranteed by
the theorem given in section III. Moreover, (E) demonstrates
that unlike the Newton iteration based controller, the proposed
controller converges directly to the solution without bouncing
around at the boundaries. This behavior of the controller is
always guaranteed by design. No matter if the witness point
is on the boundary or within the patch, the control law always
results in an update that is closer toQ than all previous witness
points. Consequently, as also demonstrated in Figure 5, the
witness points always take a direct path towardsP∗ with no
unnecessary boundary switches.

C. Convergence under Relative Motion
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Fig. 7. This four-part figure demonstrates the importance of the choice of the
feedback gain for convergence of the algorithm. (A) illustrates the convergence
and the tracking behavior of the algorithm when initializedat P0 and the
external pointQ undergoes relative motion with respect to the fixed patch.
For this simulation the controller gain is set toK = 50. The lines in (A)
connect the witness pointP to Q at every simulation snapshot. Convergence
of the initialization error is apparent from the first three snapshots, whereas
successful tracking can be observed thereafter. (B,C) and (D) present the
evaluation of the normalized projection errorsΨu andΨv for three different
controller gains. For a low gain ofK = 0.02, as in (C), the convergence
is very slow whereas for a very high gain ofK = 1300 (given in (D))
undesirable chatter appears due to discretization. ForK = 50 (shown in
(B)), the projection errors asymptotically converge to zeroresulting in the
tracking behavior presented in (A).

This simulation is performed to demonstrate the importance
of the choice of the feedback gain for the convergence of the
algorithm. As dictated by theory in section III, there exists
upper and lower bounds on the feedback controller gain. The
lower bound on the feedback gain exists so that disturbing
effects of motion can be suppressed by the controller. This
lower bound is primarily governed by the relative motion
between the bodies but is also dependent on the shape. The
upper bound on the controller gain is due to discretization
of the control law and is dictated by the sampling rate and
integration method selected.
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Figure 7 (A) illustrates the convergence and the tracking
behavior of the algorithm under the relative motion between
the bodies. The algorithm is initialized atP0 with the con-
troller gain set toK = 50. The external pointQ undergoes
relative motion with respect to the fixed patch. At every
simulation snapshot, the lines connecting the witness point
P to Q are shown. In the first three snapshots the controller
is compensating for the initialization error and convergesto
the instantaneousP∗, which thereafter changes location on the
patch under the effect of the relative motion. Once the initial-
ization error is compensated for, the controller successfully
tracks the motion ofP∗ keeping witness points sufficiently
close to the solution.

(B,C) and (D) present the normalized projection errorsΨu

and Ψv of the same simulation for three different controller
gains. In (B), for a gain ofK = 50, the projection errors
asymptotically converge to zero resulting in the tracking
behavior presented in (A). For this particular simulation,it
is possible to increase the feedback gain up toK = 1250
to achieve even faster convergence rates. AtK = 1250 the
algorithm becomes unstable due to discretization. Behavior of
the projection errors forK = 1300 is given in (C). Finally,
although there is relative motion between the bodies, sincethe
angular velocity of the patchNωωωωωωωωωωωωωA is zero, the lower limit on
K is also zero. (D) shows the projection errors for a low gain
of K = 0.02, in which case the convergence still takes place
but is quite slow.

D. Voronoi Switching

0.25 0.5 0.75 1 1.25 1.50

0.2

0.4

0.6

0.8

1

A. B.

Simulation time

Patch Parameters

c1S1 S1

S2

S3

u

v

P0

Q

Fig. 8. This two-part figure illustrates the upper level Voronoi based
switching algorithm for an object consisting of tiled-together surface patches.
(A) demonstrates the convergence and the tracking behavior of the algorithm
when initialized atP0 and the external pointQ undergoes relative motion
with respect to the fixed object. The lines in this figure connect the witness
point P to Q at every simulation snapshot. (B) presents the evaluation of
the patch parametersu andv. The Voronoi regions of the object used in the
simulation and the automaton associated with the Voronoi switching are given
in Figure 3 (C) and (D).

This final simulation demonstrates the upper level Voronoi
based switching algorithm for an object consisting of tiled-
together surface patches. Figure 8 (A) shows a convex object
made of five planar patches and a convex curved patch. The
same object and its Voronoi regions are illustrated in Figure
3. The simulation is initialized at pointP0 in the curved
patch S1 and the external pointQ is allowed to trace a

pre-specified curved path around the fixed object. The lines
in the figure connect the witness pointP to Q at every
simulation snapshot. Figure 8 (B) presents the evaluation of the
surface patch parametersu andv as the closest point tracking
takes place. Compensation for the initialization error canbe
observed from the trajectory of the surface parameters at the
very beginning of the simulation (t < 0.01). At t = 0.89
whenu decreases to zero,Q hits the boundary of the Voronoi
region ofS1, labelledVS1, and crosses to the Voronoi region
of the bounding curvec1S1

. At the same instant, a switching is
triggered by the Voronoi based switching algorithm, that sets
c1S1

as the active feature. As long as the bounding curvec1S1

stays active, tracking is restricted to this feature; therefore,
only the parameterv is updated whileu is kept at zero. At
t = 1.26, whenQ crosses intoVS2, another switching takes
place andS2 becomes the active patch. Tracking continues on
S2 until the simulation is terminated. Note that mode changes
triggered by the Voronoi based switching algorithm are due
to motion of the external pointQ and are independent of the
motion of the witness pointP. Illustrations of the features
that become active in this simulation and the corresponding
Voronoi regions are given in Figure 3 (C). Also, the automaton
associated with the Voronoi switching algorithm is shown in
Figure 3 (D).

V. D ISCUSSION ANDCONCLUSIONS

We have contributed a closest point algorithm with certain
attractive properties that follow from its formulation as a
dynamic control problem and its solution by synthesis of a
feedback controller. These properties includeglobal uniform
asymptotic convergence, invariance, and the availabilityof
analytical limits of performance.

Global uniform asymptotic stability of our algorithm follows
from its derivation from a control Lyapunov function and
such stability implies that any initialization within an active
convex surface patch converges to the unique solution. The
algorithm is in fact a switching algorithm, even at the low level
involving only patches (not tiled bodies), and ours is acommon
Lyapunov function that need not switch as the controller does.
Switching certain control gain terms to zero is necessary if
the witness point moves onto a boundary curve as it navigates
toward the closest point. We call thisboundary saturation.
This control gain switching renders the active patch invariant,
meaning that the witness point cannot leave the patch during
convergence.

These features pertain to the control-based algorithm that
handles the closest point on a convex parametric surface patch.
A top-level switching algorithm based on Voronoi diagram
handles switching among convex surface patches, bounding
curves, and vertices making up the convex body (collectively
called features). The top-level algorithm significantly extends
the properties outlined above, for it effectively increases the
basin of attraction of the closest point beyond the active
feature to the entire tiled body. We discussed how the Voronoi
based switching and stabilized closest point algorithm with
boundary saturation can be combined to form a hybrid dy-
namical system, wherein the membership of the witness point
to a particular Voronoi region controls the switching among
features on the body. Transitions between surface patches
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are handled in a manner that decreases minimum distance,
as guaranteed by the the V-Clip [13] or the Lin-Canny [12]
algorithm. Of course determination of the Voronoi diagram for
parametric models can be computationally intensive affair, but
this can be undertaken off-line.

Invariance is an important property for that part of the
algorithm that handles closest point convergence on patches
in order to de-couple the low-level and top-level switching. It
is only appropriate to switch patches according to changes in
the Voronoi region containing the point on the opposing body,
not according to the convergence behavior of the witness point.

In our previous work [1] [2] (represented in Figure 2), we
presented a closest point algorithm that possessed onlylocal
convergence. Whereas the present controller is based on a
Lyapunov function defined in terms of the magnitude of the
difference vector, the previous controller was based on the
squared sum of the error vector projectionsΨu andΨv. The
behavior of the present Lyapunov function is monotonic over
the entire patch as the witness point converges. The behavior
of the previous Lyapunov function is not monotonic over the
entire patch, an example of which can be seen in Figure 5
(C). An estimation of the basin of attraction of the previous
controller is a ball around the minimum distance solution
where the Jacobian matrixM is positive definite.

As discussed in [2], there exists a close relationship between
Newton iteration based methods and our previous control law.
Without compensation for the motion of the bodies and under
discretization using Euler’s method, our previous feedback
controller reduces to that published in [6]. Both methods
possess onlylocal convergence characteristics. The basin of
attraction of the Newton-iteration algorithm was demonstrated
by simulation in section IV-B to be a complicated and not
necessarily connected set.

Analytical limits of performance for the algorithm are
discussed in section III and demonstrated in section IV-C. The
lower bound on the controller gains (defined in Theorem) is
due to the relative motion between the bodies. The upper limit
is due to discretization and its analysis is simple. Detailson
the use of discrete time controller design techniques to analyze
convergence rates under various integrators are given in [19]
[20] [21]. Once these bounds are in hand, the algorithm can
be driven to its limits in speed. Note that the determinationof
stability-preserving gainsK for algorithms based on Newton
iteration is a much more complicated affair, since these are
discrete and nonlinear methods.

When it comes to comparing the computational efficiency of
our algorithm with that of the previously available methods,
our argument relies on the simplicity of our feedback con-
trol law relative to the Newton iteration and gradient based
methods. Our algorithm requires a mere simple controller
gainK, whereas the Newton iteration based methods requires
calculation andinversionof a Jacobian matrixM . Moreover,
since derived in continuous time, the computational efficiency
of our algorithm can be adjusted with a broader choice of
numerical methods to be used for its discretization.

However, our chief motivation for pursuing a closest point
algorithm that operatesdirectly on parametric surfaces rather
than on their tessellations is for benefits expected to accrue as
its use is extended to non-convex, intersecting, and deformable

bodies. The global property in particular will become impor-
tant not just during initialization, but when a witness point
undergoes discontinuous jumps between patches on a tiled
body that is penetrated by a point or other body. We aim for an
algorithm guaranteed not to break down except as quantifiable
limits on performance are exceeded.
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