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Abstract—We present an algorithm that determines the point on a direct method. Our reasons for pursuing direct rather
on a convex parametric surface patch that is closest to a given than indirect methods have to do with certain properties
(possibly moving) point. Any initial point belonging to the hai can he developed and proven much more easily for the

surface patch converges to the (possibly moving) closest point . ) . )
without ever leaving the patch. Thus the algorithm renders the diréct methods. These properties will not be available ffer t

patch invariant and is globally uniformly asymptotically stable. ~indirect methods (the polyhedral methods accompanied by
The algorithm is based on a control problem formulation and tessellation algorithms), primarily because tesselatitasks
solution via a switching controller and common control Lyapunov  the construction of the parametric models. We further belie
function. Analytic limits of performance are available, delineating .-+ these properties will be essential for any method that i
values for control gains needed to out-run motion (and shape) . L2
and preserve convergence under discretization. Together with to be extended for use in an.advance.d. collision detector. We
a top-level Voronoi diagram-based switching algorithm, the uUSe the ternadvancedo describe a collision detector that can
closest point algorithm treats parametric models formed by tiling treat intersecting, non-convex, and possibly deformabtids
together convex surface patches. Simulation results are used toformed by tiling together multiple convex surface patches.
c_ier_nonstrate invariance of the su_rface patch, global convergee, (Note that a body itself may be non-convex, even when
limits of performance, relationships between low-level and top- -
level switching, and a comparison to competing Newton-iteration all component surface P_atChes are convex, depen'dl'ng on the
based methods. orientation and composition of the patches.) We anticifizde
direct methods (again, with those certain properties) hal
especially advantageous for the case of deforming bodies si
parametric models offer compact geometric represention
fast and reliable collision detection algorithm is ess#ntieven under deformation. Polygonal models, on the other,hand
for computer simulation of dynamical systems, includingequire calculation of new tessellations as the bodiesraefo
systems of rigid bodies and deformable bodies. CollisigParametric models also support solid mechanics-basetheont
detectors are also important components of software to@lsus deformation models which, in certain cases, may prove
for computer-aided design and computer-aided manufacturi computationally more efficient than finite element appresch
Many collision detectors are based on closest point alymst Although very high resolution tessellations can be achieate
that determine the pair of closest points on two disjointiéed interactive speeds, smoothness and continuity indepéondian
A closely related problem is the determination of the fustheparticular rendering are intrinsic properties of directtinoels.
points on two intersecting bodies. Also, the determinatbn  In this paper we present a closest point algorithm with
the point on a body closest to a penetrating point is usedrtain properties not possessed by our previous algasithm
in penalty-based haptic rendering algorithms. The petietya The algorithm applies to a convex parametric surface patch,
point might be the image of a stylus tip in the hand ofathematical object that we will define carefully in the body
an operator acting through a haptic interface. The vectef the paper. The certain provable properties @evergence
connecting the closest point and the image of the stylad initial points on the patch converge to the closest point
tip determines the magnitude and direction of the reactieidinvariance all paths starting in the patch never leave the
force to be rendered. Likewise, closest point algorithne thpatch. These two properties taken together yield an alyurit
can determine the penetration depth and direction (defingt isglobally asymptotically convergent.
suitably) between two intersecting bodies can be used tteren |n the algorithm’s nominal form it determines the point
reaction forces appropriate to the intersection of the Enaiy on a convex surface patch that is closest to a given (pos-
a fingertip and a virtual object through a thimble-based ibapsibly moving) point. In forms that are simple extensions, it
interface. determines the pair of closest points on two disjoint convex
In our previous work [1] [2], we developed a closesturface patches. In forms that we claim are further simple
point tracking method with local convergence properties thextensions, but will not fully lay out here for lack of spadte,
operates on pairs of parametric surface patches. Thaitalgor determines the furthest pair between two intersecting @onv
can be called alirect method, in that it operates directly onsurface patches, and thus becomes what may be called an
parametric surface representations such as NURBS surfagggemalalgorithm.
rather than on polyhedra such as those that result from thealthough convergence may seem like a desirable property
tessellation of such surfaces. For a full literature sureey (and indeed a property possessed by many available algo-
direct and indirect closest point algorithms for paraneetrrithms) invariance and global convergence at first glancg ma
surfaces, see [2]. In the present paper, we also concentsdem unwarranted. We argue, however, that global conver-
I . , gence is essential if a given closest point algorithm is to be
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tiled together convex surfaces patches, the point on théy'®o [l. PRELIMINARIES
surfacg thgt is clqsest to.a given point in its mte_norwﬂlm a A Convex Surface Patch
path with discontinuous jumps as the given point moves acros

a medial axis [3] of the body. With discontinuous jumps, it is, IS this |cr)]aper we treat brc])dies described Ey a CO”;;:]“O” of
much more difficult to guarantee that the initial conditioitl w tiled together surface patches. We restrict the surfacenpat

lie within a local region of attraction of the analytical skst to be clonvex gnd for now, we also require the bodles'to be
point. convex®. That is, the convex surface patches shall be oriented

] ] ] . and joined together at their boundaries in such a way that

Another very desirable feature in any closest point algarit 5 |ine joining any two points in the interior of the compact
is the availability of analytical limits of performance, @re o4y will be wholly contained in that body. While defining
availability of adjustments that can be made to preserve gexity for a body is straightforward even when it is adile
properties in the face of demands made upon the algorithgygy defining convexity for a surface patch requires specia
What adjustments can be made to preserve the properties und@fsigeration. Like the definition for a convex space cuje [
relative motion of the bodies, especially fast relative il o have defined a convex surface patchmgpatch cut from a
How are those adjustments dependent on the sharpness of Raglyinact convex body. Convexity of the surface patch depends
shapes? What tradeoffs exist between the algorithm spegfconvexity of the body from which it is cut, and not on the
(in terms of large time step used in a discretization) angd,ature of the bounding curves that lie in the surface.sThu

convergence rates? the projection of a surface patch onto a plane may well preduc
Many closest point algorithms are based on a Newt@nplanar area which is not convex. Likewise, smoothnesseof th
Iteration [4] [5] [6] [7]. A well-known deficit in Newton’s surface patch depends on smoothness of the body from which
iteration, however, is a limited region of attraction. Eveit was cut (we require at leasf smoothness). Note that the
for convex problems, Newton’s iteration cannot yield globdody from which a patch is cut is to be distinguished from the
convergence. Its region of attraction is local and comprse body formed by the tiled together patches. The convex tiled
not necessarily connected set. In our work, we build algor# body is the intersection of the bodies that play host to the
based on the explicit use of feedback control. Newton's Flopatch cutting operations. To accommodate a requirement for
can be interpreted as a special case of feedback conwal convergence proof that appears below, we further define
(using a particular control law) which, as can be shown usirggconvex surface patch as ‘nice’ when the angle between any
control analysis, inherits onlpcal convergence. In our work two surface normals (pointing outward) subtend less thdnh 18
presented here, we rely on control laws that can be provdegrees. This requirement is non-restrictive as any convex
globally convergent. Interestingly, these control laws also surface patch that is not nice can easily be divided into at
simpler to implement. As a natural product of our adoption ahost two convex surface patches that are nice.
control theoretic design tools, our algorithm is equippdthw
gains that can be tuned to preserve the desirable properiesreedback Based Algorithm
under various demands. One can even imagine tuning gain
adaptively to yield maximum computational efficiency wheog)

tk;ebbcl)dy shape and _Thqt'qn a”OV\./EI I, W'thoﬁf rlzklngdloss oundary of a surface patch. For example, Figurg 1 shows
global convergence. This IS possible Since the boundanes B ey syrface patcl¥ composed of its interiorS and

the gain values where the properties break down can be eaﬁ%lé( four curvese; (i = 1...4) that bound it. Further, a

evaluated. parametric surface patch may be conveniently parameterize

In the following, we first carefully define eonvexsurface using parameters. and v whose domains are restricted to
patch and outline the design of our closest point algorith[o,1]. Thus the boundaries are the=0,v = 0,u = 1,0 =1
in Section Il. In Section Il we present the control law thagurves and the whole patc$i is described as the image of
renders the closest point globally asymptotically coneatg the vector mappind (u,v) : ([0,1] x [0,1]) — R*. Given a
even when there exists relative motion between the point apdint Q lying outside a convex surface patéh there exists
surface patch. The controller is presented in the form of zaunique point P* of the patch that is closer t@ than any
theorem and the proof (based on a common Lyapunov fungther point of the patch [9]. We will calP* the closest point
tion) is outlined in detail. The basic closest point algumt and (u*,v*) the parameters of the closest point.
involves only a single patch and point. Extensions to two The central problem we address in this paper is how to
patches are related in Remarks to the Theorem. In Sectiond¥termine the closest poilt* given surface patcK and point
we present four simulations which are designed to featw ea) and how to maintairP* given relative motion betweef
of the critical properties of our algorithm: invarianceplgl and Q. To determineP*, we use an algorithm that causes an
region of attraction, selection of gains given relative imot initialization pointP, lying anywhere in the patch to converge
and discretization, and the de-coupled nature of the torthe closest point. The algorithm drives to zero the tatgen
level Voronoi-region based switching and low-level switeh plane projections of the vectaxR. from the best current guess
between the surface patch interior and its bounding curves.(referred to as the witness point) @. Maintenance of the
Finally, in Section V, we revisit the relationship betweeur o
controls-based approach to collision detector design hrd t ILater, after a means of tracking tHerthest points on two intersecting

. . . convex surface patches has been developed, the restidtammvexity on the

Newton iteration based approaches espoused in the past;

all—together bodies can be lifted. These topics will beradsed in future
other researchers. papers.

™ this paper, and without loss of generality, we shall use
ur curves intersecting in four distinct vertices to defthe



Fig. 2. This figure demonstrates the feedback stabilizedyiaten of the
differential error kinematics of the closest point problerheprojection errors
W (x) are regulated to zero by the proportional control |Aithat drives the
inversedifferential error kinematics, whose convergent integratiesults in
the desired surface parameters.

the error kinematics¥“ and Ww». Differentiating the error
, kinematics produces an expression which may be encapdulate
in ¥ = M(z)i + b(z), whose inverse appears (solved for
renamedw) in the forward loop in Figure 2. Note that, by
Fig. 1. A surface patctt, Za_fa"t‘)e‘e”g?d byu,v) € ([0,1] x [0,1]), is  convexity of the surface patch, the projection errorsl are
O { ebndig Ao 2870 O if the withess poin s the closest poin”. For
point on the patch) an#® (the current best estimate of the closest point) arany other pointP?, the projection vectoWw has a direction and

indicated in the figure. Vector§,, fy (the unit surface tangents in the v g non zero magnitude that can be used to drive the parameters
directions) andN (the unit surface normal) define the surface frame at any ando to «* andv*

point on the patch. VectaAR (the vector fromP to Q) is expressed in the
surface frame wher@*, U* and A are the resulting measure numbers. As N [2], we have shown that the control law =

the best estimat@® approaches the closest poiBt’, the measure numbers \/—!(— KU — b) renders the closest point solutidacally

in the tangent direction&“, U*, referred as the projection errors, converg ; : . .

to zero, and the measure numh&rconverges taF, the minimum distance easym_ptotlcally Stat_)le gnd an estimate on the pas'” of dtirac

betweenS and Q. of this controller is given by the set of points aroulrt
where theM matrix is positive definite. While solving for

] ] a manipulator’s inverse kinematics with a feedback stzdili
closest pointP* comes for free, since convergence Bfto  gjmyjation of its differential kinematics, one may conside

P~ ensures continual tracking as the closest pBInthanges giterent control laws than the one resulting from the direc
Iocgtion on the surface patchi under the effects of relative ;. ersion of its differential kinematics. In [10], Lyapuno
motion betweenQ and S and the shape ob. Note thal, ne arguments are used to demonstrate that utilizing the
when the difference vectoAR is projected onto the surface jacopian transpose in the control law produces performance
tangentsf,, andf,, these projections are called theojection  comparable to that using the Jacobian inverse. In the next
errors and labelled?™ and ¥, respectively. section, we will prove with a control Lyapunov function that
Our algorithm is based on the formulation of a nonlinegsymptotic convergence B* is preserved even when the term
control problem and its solution takes the form of a feedbagk — M~*( — b) in the controller is replaced by a positive
stabilizing controller. The “plant” whose output the cailer  constant. The convergence properties of this simplifiedrobn
drives is an integrator wrapped around the differentialekin ay follow from the fact that any positive definite matrix can
matics of the error vectoAR. The outputs of the plant arepe pounded by its eigenvalues and the effect of motion can

the parameters: and v that locateP. The objective of the pe counteracted by the feedback term given sufficientlyelarg
controller is to manipulate, and v until the projections¥,  controller gains.

and ¥, of AR onto the surface tangentfy and f, at P
are driven to zero. The “simulation” or numerical integoati C. Voronoi Switching to Locate the Active Patch
of the differential kinematics then produces the convergen If the modeling environment is represented wittsiagle
algorithm. Feedback is used to stabilize the integrationteN patch and the algorithm is initializesufficiently closdéo P*,
that similar feedback stabilization techniques have besau u then the proposed controller can guarantee convergenbawit
to solve for the inverse kinematics of robot manipulatoi@] [1 the patch even thougR* changes location on the patch under
and to solve for the motion of constrained multibody systentise effect of relative motion. However, consideration of a
[11]. single parametric surface patch by itself is not quite seffit

In complete analogy to the solution of a manipulator'since within a parametric modeling environment, objects ar
inverse kinematics by a feedback stabilized simulationt®f igenerally modeled using collections of tiled-togetherfaze
differential kinematics (see [10], Fig. 3.12), Figure 2 wko patches. When the object model consists of tiled-together
the feedback stabilized integration of the differentiatoer surface patches, detection of thetive patch on whichP*
kinematics. The terrerror kinematicgefers to the dependencelies becomes an important concern. At a given instant of,time
of the projection errorst* and ¥ on the parameters the closest point solution may lie on any of the surface ptch
and v, on the location ofQ, and on the directions of the and the active patch is subject to change due to relativeomoti
surface tangentf, andf, at P. Let the vectorz contain the  To update the active patch with respect to the relative motio
parameters, andv and let¥ (z) in the feedback loop contain of the bodies, we proposefeaturebased switching algorithm.

u=0



VS,

Fig. 3. (A,B) illustrate an object consisting of tiled-tdger surface patches
and all of its Voronoi regions. (C) presents only a portiontioé Voronoi
regions and labels them appropriately. (D) shows the autmmassociated
with (C) that governs the discrete dynamics of the Voronoeldaswitching
algorithm.

D. Boundary Switching for Global Convergence

Incorporation of the feedback controller with the Voronoi
based switching algorithm extends our results presented ea
lier for the feedback controller to multiple patches, hoarev
initialization sufficiently close toP* is still required for
the asymptotic convergence of this hybrid algorithm. The
requirement to initialize sufficiently close t®* is quite
restrictive and it is desirable to design an algorithm treai ¢
be initialized anywhere within the active patch. In parécu
special attention must be paid to the constraints imposed by
the boundaries to achieve global convergence within a ceirfa
patch.

Having two unconstrained degrees of freedom, the controlle
as presented is feasible at any point of a surface without
boundaries; however, when applied to a surface patch, there
is no guarantee that the updated witness points will stay
within the patch boundaries. To guarantee that the parasete
u and v locating the witness point stay within the defined
range (which is constrained {d0, 1] x [0, 1])), we propose to
saturate the parameters at the boundaries to keep the svitnes
points on the boundary curves. The saturated version of the
control algorithm is utilized whenever the withess poinbis
a boundary curve and the main control algorithm attempts
to drive it outside the boundary. Saturation is implemented

Feature based switching algorithms are well established by simply determining the component of control signal that

the literature for the collision detection of polygonal netsi

attempts to drive the witness point outside the boundary and

[12] [13]. The Voronoi diagram of an object partitions thesetting it to zero.

space around it into distinct regions. Feature based siwich

algorithms rely on the fact that if an external po@tis in the
Voronoi region of a feature, it is closer to this correspoigdi
feature than any other feature.

Voronoi diagrams also exist for parametric objects formed
using tiled-together surface patches [3] [14]. For example @
Figure 3 (A) illustrates such an object consisting of sdvera g

surface patches whereas (B) shows all of its Voronoi regions /t‘ 0
Figure 3 (C) presents only a portion of these Voronoi region @ ’

A. B.
@ - ty uw=0and¥* >0
ty ty ty u=1and¥" <0
. 2 v=0and¥"” <0
ty v=1and¥’ >0

Switching conditions

with appropriate labels and (D) illustrates the automaton

associated with (C) that governs the discrete dynamicseof tit.
Voronoi based switching algorithm. Note that determinatio
of Voronoi regions for curved objects can be computatignall

expensive; however, the Voronoi switching algorithm reegii

only a numerical pre-computation of these regions befoee th
simulation is started. Consequently, this step does netiaff

the real time performance of the algorithm.

The proposed Voronoi based switching algorithm is virtall
the same as the Lin-Canny closest feature algorithm [123. Th

algorithm triggers updates to the closest feature whendire p

Q crosses between the Voronoi regions of the object. Thg. 4. This three-part figure illustrates the incorporatis several controller
discrete dynamics of this switching algorithm can be madieléayers to obtain the overall hybrid control algorithm. (A)presents the
by an automaton constructed according to the connectedn%‘g mﬁ;%nat:titmdaigf?: C‘;”mtp',‘fsgﬁncfﬁﬂeern?ih”essfgér%i;gm;eﬁiﬁsfé
of the object’s features. For example, Figure 3 (D) showspaich interior$ and the bounding curves; (i = 1,...,4) and tracks the
portion of such an automaton. Incorporation of the Voron@iode changes due to motion of the witness pdibn the closed patch.

S : - (B) shows the switching conditions for autonomous mode charajethe
based switching algorithm with the feedback controllenfiss boundary switching. (C) indicates the overall controllechétecture driving

in a hybrid control system that can handle object modeld bug to P*. The lower level feedback controller maintains the currestineate
from tiled-together patches. In our previous work [2], deta of the closest point by continually driving the projectiomaes to zero while

; it i ; T : the boundary switching selects controller gains that guesaconvergence for
of the Voronoi based switching algorithm and its incorpiomt any initialization within the patch. The Voronoi switchiigrms the highest

with the feedback controller are discussed in detail andl Wivel of the controller and keeps track of the active patclenvthe objects in
not be further elaborated here. the modeling environment consist of tiled-together surfaateipes.



As a consequence of the saturated control law at the patchet the first fundamental matrix for the surface patgh
boundaries, another switching layer is added to the overag denoted byl — E F
controller at a lower level than the Voronoi based switching F g
algorithm. The discrete dynamics of this switching at thgigenvalue. Also defing as Hﬁ%” — N*||. Note that¢ and
boundaries is completely decoupled from the dynamics Ri/uz + 1% = |AR — AN approach zero with the same
\Voronoi based switching algorithm and is dictated instegd t?ate as the witness poil® converges tdP*.

the current parameters of the witness point. The boundary

switching is best represented using an automaton with ﬁveTheorem 1:If the image of the mapping(u, v) : ([0, 1] x
distinct modes and such an automaton is illustrated in Eigur 1)) — R defines a ‘nice’ rigid convex pa;amétric; surface

(A). Each mode in the automaton corresponds to a different %;tchS, the pointQ is in the external Voronoi region of,
of gains for the feedback controller. The mode switchesiwith andf are in continuous motion with respect to one another

the automaton take place depending on the current parane d given controller gains satisfyingg > —£< AR

of the witness point. A summary of the switching rules A BCIARL pog k> BCLAR] thgn(qjgrjgw;\g/\)/it,ching

and let o be its largest

shown in Figure 4 (B). G wuz £ wo?
The global controller for a surface patch has two imer@:tir{:ontroller

layers: the automaton which selects the proper set of dértro i

gains K depending on the current state of the witness point —k 0 } if u=0and¥* >0

and the feedback control law which makes use of these gains CLwr ] oru=1land¥" <0

to update the witness point. On top of these two control Byer . L [ pu if v=0and¥® >0

the Voronoi based switching algorithm is put in place to keep [ . ] =9 ™| 0 } " orv=1and¥® <0 (1

track of the active patch due to the existence of multiple r NG _

patches. An abstraction of the overall controller is présgn -K NG } , otherwise

in Figure 4 (C). -

In the next section, it will be shown that, for any initial-.angers the minimum distance poiBt uniformly asymptoti-

ization within the active surface patch, uniform asymmiotic_a”y stable over the whole surface patsh

convergence of the witness points to the closest point is

guaranteed by the proposed switching controller. The proof is omitted here but it is based oncammon

control Lyapunov functionwhich is defined as the difference

IIl. A GLOBALLY CONVERGENTCLOSESTPOINT -
between the Euclidian norm of the the vectAlR and the

ALGORITHM - . .
. . _ . minimum distancer between the point and the surface patch,
In this section, we consider the problem of finding the
minimum distance between a point and a convex surface V= |AR| - E @)

patch when both of the bodies to which they are attached
are allowed to undergo rigid body motion with respect to orl@eing a common control Lyapunov functioW,is positive def-
another. Below, we state and prove a theorem that guarantite and decresent. To prove uniform asymptotic stabiity
global uniform asymptotic convergence of solutions whem tlthe algorithm, the negative definiteness of the time devieat
controller gains are chosen to be sufficiently high to compeaf the control Lyapunov function is to be shown.
sate for the motion of the bodies. We provide a practically Since the boundaries of the surface patch constrain the
implementable lower bound for these controller gains aradlowable motion directions of a candidate point whenever i
show global convergence of solutions when the algorithm @ a boundary, the feasible control inputs are also comstrai
initialized using any point within the patch. at the boundaries. The difference between feasible control
The algorithm relies on a controller to generétev) whose directions on the boundaries and on the interior of the saerfa
integration producegu,v) that converges tdu*,v*). The patch results in different control modes, within each of athi
switching nature of the controller guarantees that givepm aproper control laws are to be designed.
initialization (ue, vo) in the patch, the controller drives:, v) In the proof, it is shown that rendering the time derivative o
to the minimum distance solutiga*, v*) without ever leaving the control Lyapunov function negative definite in each con-
the patch. That is, the switching controller renders thelpattroller mode is possible with a switching controller. F&dgy
positively invariant. of the control laws in each control mode are also analyzed
Before stating the theorem, we will introduce some norand proper switching conditions are supplied. Although the
restrictive assumptions on the types of motion allowedstFir controller is of a switching nature, the existence of a commo
we will require the motion be continuous to assure Lipschitzyapunov function guarantees that the stability is unifawer
continuity of the closest distance between the convex Isodihe set of all switching signals [16].
[15]. An upper bound on the speed of the relative motion is Since the proposed controller renders the time derivative o
also required. Given the angular velocity vectas® of A (the the common control Lyapunov function negative definite at
body to which the surface patch is fixed) in a world referen@ny point on the surface patch except the minimum distance
frame N , we will define the upper boun8 as the Euclidian solution, we can claim that the common control Lyapunov
norm of the vecto™w* x Q). This bound is not restrictive function is actually a common Lyapunov function and the
and is only required so that a fast enough controller can bentrol algorithm is uniformly asymptotically stable [16]
designed to compensate for the perturbing effects of motioNote that the common Lyapunov function guarantees uniform



asymptotic stability, which is to say, stability holds undeintroduces upper limits on the controller gains that depend
arbitrary switching, so analysis of the switching sequenam the integration method and step size chosen. There exist
is not required within the proof. Moreover, since the wholstandard techniques whereby the convergence rate (dagsmi
surface patch is rendered positively invariant under thee prby controller gains) and discretization step size can bdetta
posed control law, we can also claim that the region afff against one another while maintaining stability. In J17
attraction of the proposed controller is the whole surfa@nd [18] standard discrete time controller design techesqu
patch (including the boundaries), and the algorithrglabally are utilized to calculate an upper bound on controller gains
uniformly asymptotically stable (GUAS). given an explicit integration method and fixed integratiteps
Remark 1:Global uniform exponential stability (GUES)size. With these techniques, it becomes possible to preserv
can be achieved by the same controller setting the controltbe stability of the algorithm after discretization.
gains ask, = ”@,’fz”z , by = ”@%"2 and K = % Remark 5:Although the above theorem is given for the
However, the control inputy required to achieve exponentialminimum distance solution between a convex surface and a
stability grows unbounded as the candidate point appreachmint, it is relatively straightforward to extend the caler
the closest point. Therefore, exponential convergencebeanto operate on two convex surface patches (denftegv) and
obtained only to very close vicinity of the solution (a bafl oh(r, s) respectively) to find the minimum distance between
diametere around the closest point). This result is practicallihem. If the surface patches are convex and the minimum
satisfactory since convergence rate is of utmost impoetandistance point lies within the external Voronoi region of
when the candidate point is away from the solution. the corresponding patch, one can follow a similar Lyapunov
Remark 2:When there is no relative motion between thanalysis using the same proposed control Lyapunov function
bodies, the lower bound on the controller gaidsk, andk, to prove that, as long as both candidate points lie inside the
simplifies to zero. patch and with proper choice of gains, a similar controller
Remark 3:The presented controller treats all possible magenders the minimum distance solution globally uniformly
tion between the two bodies as perturbations and makes us@gfmptotically stable. Extension to the enhanced version o
sufficiently high gains to suppress them. However, whenewiéae controller is also straightforward.
possible, it may be desirable to take advantage of motion to
achieve even faster convergence rates at a cost of a slightly IV. SIMULATION RESULTS
more complex control law. This idea results in an enhanced
version of the controller given as

We have developed computer simulations to demonstrate
the important features of our algorithm. Our simulations ar
implemented in MATLAB and sample results are presented be-

1 [ 0 } if u=0and¥" >0 low. The first simulation highlights the importance of loareél
¢l —k¥"+b, |7oru=1and¥" <0 boundary switching and shows the invariance of the surface
U | kY +b, | fo=0and¥’ >0 patch under the switching controller. The second simufatio
[ o ]: F 0 "orv=1and¥® <0 (3 demonstrates the global convergence of the our contraliér a
[ —KUv b, ' characterizes the region of attraction of Newton iterabiased
T { KU 4+ b } , otherwise methods. Importance of controller gain selection undextinad
? motion and discretization is the theme of the third simolati
where whereas the top level Voronoi switching and its decoupled
R nature is shown in the fourth simulation. Common to the first
b.=3v5 [1—sign (¥*("w” x Q) -f,)] "w* x Q)-f, three simulations is the convex surface patch whose definiti
1 is given in Table I.
+5 [1—sign (V' ("w* x Q) -£,)] “w* x Q) -f,, TABLE |
DEFINITION OF THE CONVEX NURBS RATCH USED IN SIMULATIONS OF
v FIGURES5,6,AND 7
v
bu=3u3 [1 = sign (V' ("w" x Q) - £)] ("w" x Q) - £ el ©0,0,01) (3021 (5[,30,%],1) (8,0,3,1) (10,0,0,1)
1 control  {(1,3,3,1) (33,51 (53,6,1) (835.1) (9,33,1
+5 [1—sign (¥*("w” x Q) -f,)] “w* x Q) - £, points  |(2,55,1) (3,57,1) (5581) (857.1) (8551
(z,y,zw) (1,831 (3851 (586,1) (8851 (9,83,
and (0,10,0,1) (3,10,2,1) (5,10,3,1) (8,10,2,1) (10,10,0}1)
knots u [00055111]
knotsv [0003 5111]

A. Invariance of a Surface Patch

Note that this control law takes advantage of the motion The four-part Figure 5 shows a simulation that illustrates

whenever motion helps convergence and cancels it as muish convergence behavior of an initializati®h on the surface

as possible whenever motion acts as a disturbance. patch S. (A) shows the points that locate the witness points
Remark 4:Since the controller and its associated dynamiés each of the simulation snapshots. (B) demonstrates the

are implemented in discrete time, the impact of discratmat mode changes of the low level controller automaton as the

on the stability properties should be considered. Diszagitn convergence takes place. At startup, the first withess point
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surface patch and the importance of the boundary switching
to achieve convergence for any initialization within thegba

The boundary switching is required since without the satura
tion of the control law at the boundaries, invariance of the
patch cannot be guaranteed. Without the boundary switching
invariance does not exist because the level curves of the
Lyapunov function for the unrestricted controller go out of
the patch boundaries. The important feature of the boundary

C. D. . . . . .
Normalized Projection Errors AR switching is to restrict the witness point to move along the
. 5 boundary, but doing so without sacrificing the asymptotic
o8 - - convergence of the algorithm.
06 /\IJ 6
04 3 s| \ AR B. Region of Attraction for Various Controllers
02 / 4
0 /\/__ I initializations that do NOT converge
3 A. B. o initializations that converge
2 v
70'0 5 10 1.5 20_ 25 30 35 40 0 5 10 15) p.o] py 30 35 40 ~ 1
Simulation steps Simulation steps ) SN
Y RN
Y Zaiten .'#h’u‘o“‘:‘::‘:\\\\ 0.8
Fig. 5. This four-part figure shows the convergence of arnaiigation Pg Q ﬁ%ﬁﬁ":ﬁwﬂ“\“
through several mode changes demonstrating invariance duitiece patch %’/ﬂ%’"’l’,’,’ii‘i‘.‘ﬁ’ 06
under the proposed controller. (A) shows the path tracecherpatch by the l”””””"l'""l'i'.:‘i‘ 04
witness points whereas (B) illustrates the mode changesdahtatier goes llflllllllllllll"'l"'l".'.g
through during convergence. The witness point, initializéthin the surface Illlll"".... 02
patch S, hits the surface boundaky, att = ¢1, traces along4, and leaves ""'...
cy att = to converging to the solution &t = t3. Correspondingly, in (B) ..g 0

the mode switches of the controller take placet at ¢; andt = t2 when
the switching rules are satisfied. (C) demonstrates evalitithe normalized
projection errors¥* and ¥ while the algorithm converges to the closest
point solution as shown in (D).
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(which is the initialization poin®,) belongs to the interior of
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the surface patcly; consequently, the automaton governing /?’;{""i///ﬂ'}” "_:}':{5.5.:'.:%;3.
the controller gains is in the corresponding mode. At time ﬂ%%,’,’,’#’,’,’i,‘ig}’g
t = t,, the witness poinfP hits the bounding curve, and llllllllllllllzll",""','i.'s
the controller command would otherwise attempt to dive l””””’””ll,“'l,'"h.'l
outside this boundary of the patch. However, these comditio ""'..ﬂ
satisfy the rules for boundary switching and an immediate \

controller mode change takes place, invoking a saturated
version of the control law. The new controller mode (with the

saturated control law) stays valid as long as the unresttict E.
controller attempts to drivd® outside the boundaries of.

At t = t, the use of the unrestricted controller becomes
feasible and the controller goes through another mode &hang ittt s
removing the restriction on the witness points to move along °, lf‘y:;'llll’l,l!'l!',,il.,'.'i
c,. After this mode change, the witness points are free to move lf'l'il'l'llll%',',','l'
in two degrees of freedom and convergeltd at timet = ¢s. Pl

{
llllllllllll[l,z"l‘
(C) demonstrates the change in the normalized projection q
errors U, ¥* and (D) illustrates the evolution dfAR| as
the algorithm converges to the closest point solutidn As
shown in (C) and (D), even on a convex patch, the projection
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Our Controller

errors do not monotonically decrease while the witnesstpoifig. 6. In this Figure, convergence characteristics andegin of attraction
converges taP*. This is due to the fact that the projectiorfor three different control laws are demonstrated. The figwa the left

errors are evaluated at the witness pditand not at the
closest pointP*. An initialization sufficiently close tdP* is

illustrate the path that witness points follow when initiad atPo. PointQ
is the external pointP* is the closest point solution. In these simulations, no
relative motion between the bodies was used. The figures aigtiteshow the

required for the monotonic behavior of the projection egrorregion of attraction of the corresponding controller in gaameter space of

An important feature of our algorithm is its ability to haad

| the patch. The dark regions with white crossesorrespond to initializations
that do not converge whereas the circtesn the white background illustrate

any initialization whereas a Newton iteration based meth@g basin of attraction. (A) and (B) belong to Newton basedation with
relies on the monotonic decrease of the projection errods arp special boundary control. (C) and (D) are for Newton batedtion with

therefore requires sufficiently close initializations.

saturation at the boundaries. (E) and (F) demonstrate opopeal controller.
A ) S . Global convergence of our controller can be compared to laniegions of
This simulation demonstrates the positive invariance ef thttraction for Newton based methods.



The objective of this simulation is to reveal the globalitness point within the region of attraction of the unrieséd
basin of attraction of our controller and to compare it wittNewton’s iteration, the algorithm may go through many mode
the limited region of attraction for Newton iteration basedhanges causing the witness points to jump around by hitting
methods. Figure 6 shows the convergence characteristets #re boundaries, and such a behavior is not time efficient and
the region of attraction for three different control lawshel is computationally demanding.
figures on the left illustrate the paths that witness points Finally, (E) and (F) demonstrate our proposed controller.
follow when all three simulations are initialized at the samGlobal convergence of our controller is apparent from the fig
point P,. To be able to compare our algorithm to Newtomre on the right since all initializations within the suréggatch
based methods, no relative motion between the bodies veasverge to the solution. Note that this is also guarantged b
used. PoinQ represents the external point wherd@slabels the theorem given in section Ill. Moreover, (E) demonsgate
the closest point solution. In the figures on the right, thiaat unlike the Newton iteration based controller, the prmul
circles o on the white background label the parameters fa@ontroller converges directly to the solution without boung
initialization points that converge t®* whereas the dark around at the boundaries. This behavior of the controller is
regions with white crosses correspond to parameters foralways guaranteed by design. No matter if the witness point
initialization points that do not converge. Consequeritig is on the boundary or within the patch, the control law always
regions with white background illustrate the basin of aticm results in an update that is closer@othan all previous witness
of the corresponding controller in the parameter space ®f thoints. Consequently, as also demonstrated in Figure 5, the
surface patch. witness points always take a direct path towaRiswith no

(A) and (B) demonstrate a controller based on Newtamnecessary boundary switches.
iteration. During this S|mulat|on, no special control_lamsgd C. Convergence under Relative Motion
at the patch boundaries. (A) shows that for this particular
initialization P,, the Newton based controller starts in the Q=16
wrong direction and fails to converge 8* by going out , \ B. K=50
of the boundaries of the patch. (B) demonstrates the region :
of attraction of this controller which is a relatively small
unconnected set. a

(C) and (D) are again for a controller based on Newton

(t=0)
Simulation time

iteration; however, this time saturation is utilized at ffech Yraaseniitt s K02
boundaries. (C) shows that for the particular initialiaati llllllllllll','l.,n,u,.. : “’\\p\
Py, the controller acts like the previous controller until the l’,f’,’,’%“’,’,ll’,’iii,‘#ﬁ 0 v ~
witness point hits the patch boundary and the parameters ollllléllll[ll""l"'".".' - : L
the witness point saturate. At this instant, the control Vit llllllllllll[l,,"l"" 0 o Korggp | Sulatenime
saturation becomes valid and the witness points move along "

the boundary until the control law no longer attempts to move
the witness points outside the patch boundaries. As soon as .
the unrestricted control law is re-activated, it takes tlimess ' T smusmonme”
p‘?'”t InSId(? the bou_nd:_ary._ However, after a few Ite_ratlonls—ig. 7. This four-part figure demonstrates the importance @ttioice of the
this new witness point inside the patch (corresponding tofgkdback gain for convergence of the algorithm. (A) illustssthe convergence
new initialization) hits another boundary resulting in t#rey and the tracking behavior of the algorithm when initializatdPo and the
controller mode change. Once again he winess poinis S PariQ ineergoes e moion il espect o e fued pach
restricted to the boundary and they leave the boundary Wh@Rnect the witness poiff to Q at every simulation snapshot. Convergence
the unrestricted controller becomes feasible. Luckilis thme  of the initialization error is apparent from the first threeapshots, whereas
the new witness point wihin the paich resuls in convergenSICeess ackry car, be cheened ereatr ©,0) Bccsent e
to P* without attempting to leave the boundary. (D) illustrategontroller gains. For a low gain ok = 0.02, as in (C), the convergence
the region of attraction for this controller with saturatiat is very slow whereas for a very high gain éf = 1300 (given in (D))
the boundaries. The region of atraction s larger than e (HXESIate chater appears due o ciaretiaton, For_ T ehou
without saturation but is not global. tracking behavior presented in (A).

As demonstrated in (D), the region of attraction of the
Newton based iteration with boundary saturation contdies t This simulation is performed to demonstrate the importance
region of attraction of the Newton based iteration (shown iof the choice of the feedback gain for the convergence of the
(B)) and extends it significantly. However, the new initialalgorithm. As dictated by theory in section lll, there eist
ization points recovered by the boundary saturation are thpper and lower bounds on the feedback controller gain. The
points that hit the boundary of the patch (probably a felewer bound on the feedback gain exists so that disturbing
times) and finally land in the region of attraction of Newtoreffects of motion can be suppressed by the controller. This
based iteration. This behavior of the algorithm is not gddé& lower bound is primarily governed by the relative motion
for two reasons. First of all, the convergence of the satdratbetween the bodies but is also dependent on the shape. The
controller at the boundaries is not guaranteed and the useupper bound on the controller gain is due to discretization
this control law may actually result in a sequence of witness the control law and is dictated by the sampling rate and
points diverging from the solution. Secondly, to arrive at mtegration method selected.




Figure 7 (A) illustrates the convergence and the trackimge-specified curved path around the fixed object. The lines
behavior of the algorithm under the relative motion between the figure connect the witness poilt to Q at every
the bodies. The algorithm is initialized &, with the con- simulation snapshot. Figure 8 (B) presents the evaluafitimeo
troller gain set toK = 50. The external poinQ undergoes surface patch parameteisandv as the closest point tracking
relative motion with respect to the fixed patch. At everyakes place. Compensation for the initialization error ban
simulation snapshot, the lines connecting the witnesstpoobserved from the trajectory of the surface parameterseat th
P to Q are shown. In the first three snapshots the controlleery beginning of the simulationt (< 0.01). At ¢ = 0.89
is compensating for the initialization error and converges whenwu decreases to zer@ hits the boundary of the Voronoi
the instantaneouB*, which thereafter changes location on theegion of S, labelledVS;, and crosses to the Voronoi region
patch under the effect of the relative motion. Once thedhiti of the bounding curve, ; . At the same instant, a switching is
ization error is compensated for, the controller succdlgsfutriggered by the Voronoi based switching algorithm, thds se
tracks the motion ofP* keeping witness points sufficientlycls1 as the active feature. As long as the bounding curye
close to the solution. stays active, tracking is restricted to this feature; tforeg
(B,C) and (D) present the normalized projection errdfs only the parametep is updated whileu is kept at zero. At
and ¥ of the same simulation for three different controllet = 1.26, when Q crosses intd).S,, another switching takes
gains. In (B), for a gain ofK = 50, the projection errors place andS, becomes the active patch. Tracking continues on
asymptotically converge to zero resulting in the tracking, until the simulation is terminated. Note that mode changes
behavior presented in (A). For this particular simulatidn, triggered by the Voronoi based switching algorithm are due
is possible to increase the feedback gain upkto= 1250 to motion of the external poin® and are independent of the
to achieve even faster convergence rates/At 1250 the motion of the witness poinP. lllustrations of the features
algorithm becomes unstable due to discretization. Behafio that become active in this simulation and the corresponding
the projection errors forX = 1300 is given in (C). Finally, Voronoi regions are given in Figure 3 (C). Also, the automato
although there is relative motion between the bodies, dimee associated with the Voronoi switching algorithm is shown in
angular velocity of the patcHw* is zero, the lower limit on Figure 3 (D).
K is also zero. (D) shows the projection errors for a low gain
of K = 0.02, in which case the convergence still takes place V. DISCUSSION ANDCONCLUSIONS
but is quite slow. We have contributed a closest point algorithm with certain
attractive properties that follow from its formulation as a
dynamic control problem and its solution by synthesis of a
feedback controller. These properties incluglebal uniform
asymptotic convergence, invariance, and the availabity
analytical limits of performance.
Patch Parameters Global uniform asymptotic stability of our algorithm folis
from its derivation from a control Lyapunov function and
such stability implies that any initialization within antae
convex surface patch converges to the unique solution. The
algorithm is in fact a switching algorithm, even at the lowdke
involving only patches (not tiled bodies), and ours amon
Lyapunov function that need not switch as the controllersdoe
Switching certain control gain terms to zero is necessary if
o 05 o5 o5 1 15 15 the witness point moves onto a boundary curve as it navigates
simulation time toward the closest point. We call thisoundary saturation
This control gain switching renders the active patch irastri
meaning that the witness point cannot leave the patch during
Fig. 8.  This two-part figure illustrates the upper level \fowdb based Convergence.
SXVitghinqg rg?rg;igs\Thfé)fcggvzlsieecrfcceogigttigg 3;2"224?; ai/utg:?; F:)éﬁtchhrﬁs- These features pertain to the control-based algorithm that
\(Nl'zeneinict)ialized atPo and th% external poinQ und%rgoes relativge motion handles the CIO.SeS.t point On.a convex parametric sqrche.pat
with respect to the fixed object. The lines in this figure canrtee witness A top-level switching algorithm based on Voronoi diagram
phOi”t It)crt10 ga"ﬁl eet\éisryas(ijmulﬁgnvzpsr?;%- igEr‘])s %:(etshingsb_tgg E\S’:'(;J?r:i‘meﬁfandles switching among convex surface patches, bounding
tsir(reui,?lgtionpand the automa1t)(')n associated Wi?h the Vorono'r:!;Wig are given curves, and vertices making up the _conve_x b_o_dy (collegtivel
in Figure 3 (C) and (D). called features). The top-level algorithm significantlytesds
the properties outlined above, for it effectively increaske
This final simulation demonstrates the upper level Voronbiasin of attraction of the closest point beyond the active
based switching algorithm for an object consisting of tiledeature to the entire tiled body. We discussed how the Vdrono
together surface patches. Figure 8 (A) shows a convex objbesed switching and stabilized closest point algorithmhwit
made of five planar patches and a convex curved patch. Tdmundary saturation can be combined to form a hybrid dy-
same object and its Voronoi regions are illustrated in F@gunamical system, wherein the membership of the witness point
3. The simulation is initialized at poinP, in the curved to a particular Voronoi region controls the switching among
patch S; and the external poin@Q is allowed to trace a features on the body. Transitions between surface patches

D. Voronoi Switching
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are handled in a manner that decreases minimum distarioedies. The global property in particular will become impor
as guaranteed by the the V-Clip [13] or the Lin-Canny [1ZhAnt not just during initialization, but when a witness goin
algorithm. Of course determination of the Voronoi diagram f undergoes discontinuous jumps between patches on a tiled

parametric models can be computationally intensive affait
this can be undertaken off-line.

body that is penetrated by a point or other body. We aim for an
algorithm guaranteed not to break down except as quanéfiabl

Invariance is an important property for that part of th&mits on performance are exceeded.

algorithm that handles closest point convergence on pstche
in order to de-couple the low-level and top-level switchiitg
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the Voronoi region containing the point on the opposing hoadgnd
not according to the convergence behavior of the witheg# poi

In our previous work [1] [2] (represented in Figure 2), wey
presented a closest point algorithm that possessed ooy
convergence. Whereas the present controller is based on 2]':1
Lyapunov function defined in terms of the magnitude of th
difference vector, the previous controller was based on the
squared sum of the error vector projectioh% and . The
behavior of the present Lyapunov function is monotonic oveL
the entire patch as the witness point converges. The behavio
of the previous Lyapunov function is not monotonic over th :
entire patch, an example of which can be seen in Figureﬁg
(C). An estimation of the basin of attraction of the previous
controller is a ball around the minimum distance solutior®!
where the Jacobian matrii/ is positive definite.

As discussed in [2], there exists a close relationship betwe
Newton iteration based methods and our previous control laf!
Without compensation for the motion of the bodies and under
discretization using Euler's method, our previous fee#bac[7]
controller reduces to that published in [6]. Both methods
possess onlyocal convergence characteristics. The basin of
attraction of the Newton-iteration algorithm was demaaistd  [8]
by simulation in section IV-B to be a complicated and not[9]
necessarily connected set.

Analytical limits of performance for the algorithm aref10]
discussed in section lll and demonstrated in section IV4@& T
lower bound on the controller gains (defined in Theorem) %1]
due to the relative motion between the bodies. The uppet limi
is due to discretization and its analysis is simple. Details [12]
the use of discrete time controller design techniques ttyaea
convergence rates under various integrators are given9h [113]
[20] [21]. Once these bounds are in hand, the algorithm Cﬁq]
be driven to its limits in speed. Note that the determinatibn
stability-preserving gaing’ for algorithms based on Newton
iteration is a much more complicated affair, since these dfé!
discrete and nonlinear methods. [16]

When it comes to comparing the computational efficiency @f7]
our algorithm with that of the previously available methods
our argument relies on the simplicity of our feedback cofjg
trol law relative to the Newton iteration and gradient based
methods. Our algorithm requires a mere simple controllflr9
gain K, whereas the Newton iteration based methods requi es]
calculation andnversionof a Jacobian matrix//. Moreover,
since derived in continuous time, the computational efficye
of our algorithm can be adjusted with a broader choice gfol
numerical methods to be used for its discretization.

However, our chief motivation for pursuing a closest point
algorithm that operatedirectly on parametric surfaces rathernI ]
than on their tessellations is for benefits expected to acasu
its use is extended to non-convex, intersecting, and defolen

some very fruitful discussions with Jessy Grizzle.
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