
A Driving Simulator for Teaching Embedded
Automotive Control Applications

Paul G. Griffiths
Department of Mechanical

Engineering
University of Michigan
Ann Arbor, MI 48109
paulgrif@umich.edu

R. Brent Gillespie
Department of Mechanical

Engineering
University of Michigan
Ann Arbor, MI 48109

brentg@umich.edu

Abstract— This paper presents the multi-disciplinary na-
ture of embedded control system design and how a course
developed at the University of Michigan addresses the broad
set of topics needed for embedded control system design to
senior engineering undergraduates from a variety of back-
grounds. The lab component uses a typical automotive power-
train micro-controller and teaches topics in system dynamics
through programming assignments involving dynamical sys-
tems simulations. Students interact with and feel their virtual
environments though a haptic interface. We present the final
project in the course, in which students build a fixed-based
driving simulator to test advanced automotive control system
designs. This course was developed partially in response to
industry demand for students with experience in embedded
control. The course has generated remarkable student interest
and former students have provided positive feedback about
projects and have reported better opportunities in the job
market as a result of their experience in this course.

I. I NTRODUCTION

Embedded control system design is inherently a multi-
disciplinary field, requiring some background in mathemat-
ics, computer science (CS), computer engineering (CE),
electrical engineering (EE), and mechanical engineering
(ME). Effective control education must cover this wide
breadth of topics [1]. Motivated by the expressed desire
of our colleagues in the automotive industry to hire EE,
CS and CE graduates with broad knowledge about micro-
controllers, real-time operating systems, sampling, dynam-
ics, simple control algorithms and state-of-art software tools
for model-based embedded system development, an ad-
vanced undergraduate course on embedded control systems
was developed at the University of Michigan. This course
has been very successful if measured by our inability to
meet the student demand for the course, positive student
feedback after completing the course, and anecdotal evi-
dence of improved job prospects of alumni of the course.
We present the final project of the class, which ties together
topics from control, real-time programming, networking,
sensors, and motors. The students create a driving simu-
lator and design a controller for either a steer-by-wire or
an adaptive cruise control system that they test on their
simulator.

The Embedded Control Laboratory was established in
the Electrical Engineering-Computer Science department

at the University of Michigan for the purpose of teach-
ing design of embedded systems to senior undergraduate
students with backgrounds in EE, CE, CS and ME. It
was noted that students in EE receive a good signals and
systems background, CE students understand low-level I/O
in micro-controllers, and ME students would have a strong
background in dynamics. However, all of the topics are
necessary for embedded controller design, and as a result,
students from different programs have different things to
learn, but also are able to teach each other. The Embedded
Control Lab complements lectures in an embedded sys-
tems class with practical experience programming a micro-
controller, interfacing with lab hardware, and networking
among multiple processors. Students are taught about low-
level programming needed to access a micro-controller’s I/O
and they learn about types of common sensors and actuators,
networking, and some basic concepts in control system
design such as sampling, P, PD, and PID control. Toward
the end of the course, the students use code generation
tools and a real-time operating system to rapid-prototype
their software. Using these tools, the students tackle a final
project of greater complexity than their regular weekly labs
and the project incorporates many of the concepts taught in
the course.

One of the devices for the students to control in the
Embedded Control Lab is the “Haptic Box”, which has
a motorized hand wheel and an encoder allowing single-
axis virtual environments to be programmed and experi-
enced through the sense of touch, or haptically. Building
on the various lab assignments that involve the haptic
boxes and that precede the final project, students create
virtual mechanical systems, and they learn through physical
experience about the dynamical equations for mechanical
systems and linear systems [2] [3]. Students program a
virtual spring, a virtual spring-damper and a virtual mass-
spring-damper, and because the system parameters are set
programmatically, the students can adjust the dynamics of
the hand wheel while the program is running. Holding onto
the hand wheel and feeling the difference between a lightly
damped system and an over-damped system is an intuitive
mode of learning dynamics. It is also difficult to setup
negative physical damping or springs with negative spring-

rates with physical springs and dampers, but the students
can feel such systems simply by tweaking the parameters
of their program. The experience with virtual mechanical
environments provide the students with an intuitive “grip”
on the meaning of P or PD control action which they will
use in their final project.

The final project assigned to students in past semesters
has been an advanced automotive control application: ei-
ther steer-by-wire or adaptive cruise control, which the
students tested on a driving simulator. The driving sim-
ulator consisted simply of a motorized wheel with an
angular encoder to serve as a steering wheel, a Motorola
MPC555 micro-controller to run a real-time simulation
of a vehicle and the steering controller, and a graphics
program running on a PC to provide the driver’s view of the
road. The simulator made use of existing equipment in the
Embedded Control Lab. For the steer-by-wire project, the
communication between the steering wheel controller and
steering system controller, which included a simulation of
the vehicle’s wheels and road forces, had to take place over
a Controller Area Network (CAN) bus. For the adaptive
cruise control project, instead of using radar to detect other
vehicles, students virtually sensed their classmates’ vehicles
via CAN messages broadcasted across a CAN bus. The
students responded enthusiastically to these projects and
apparently enjoyed them in part because they were “real-
world” but also because they could experience their designs
both visually and haptically through the graphics and the
motorized wheel.

II. D RIVING SIMULATOR HARDWARE

The driving simulator runs on a Motorola MPC555-based
development board for simulation of vehicle dynamics, a
PC for graphical display and a “Haptic Box” that serves
as a force-reflecting steering wheel. This setup uses only
pre-existing hardware in the Embedded Control Laboratory
and does not require additional hardware.

The Haptic Box is a general purpose, one degree of
freedom, impedance-based, haptic interface that uses a DC
motor to generate torque on a hand wheel and has an
angular encoder on the motor’s shaft to provide position
feedback. One of the lab’s Haptic Boxes is shown in Fig
1. It was designed and built by the Haptix Laboratory
at U of M to serve as a simple low-cost haptic device
($600) to teach students about systems dynamics [2]. It has
proven to be remarkably general purpose; several human
factors experiments have been run on the device, it has
taught students about instabilities arising from samplingand
encoder resolution, demonstrated dynamics of coupled mass
spring damper systems, served as the master and slave in
bilateral teleoperation systems, and for the driving simulator
it has served as a motorized steering wheel.

The setup for one lab station is shown in Fig. 2. The host
PC is used primarily to load programs onto the MPC555
micro-controller and run a debugger for the MPC555
through a parallel port connection. A proprietary piece of

Fig. 1. One of the force-reflecting Haptic Boxes designed at the University
of Michigan for teaching and research purposes. Students experience
system dynamics by manipulating a virtual environment that they program.

hardware–of which there are several available–connects the
parallel port to the micro-controller; we use a Macraigor
Wiggler. A serial port connection enables programs to log
data on the PC or to provide a simple text-based interface.
The MPC555 micro-controller is the target processor that
controls the Haptic Box. The particular MPC555-based
development board used is the Axiom CME555, which
can be purchased from Axiom Manufacturing for $599.
See http://www.axman.com. An additional break-out board
designed at U of M provides access to the pins of the
MPC555 through buffer chips that prevent students from
accidentally short-circuiting or otherwise destroying the
more expensive MPC555 chip. Specialized connectors have
been built into the break-out boards that combine a PWM
output and the inputs for quadrature decoding into one
ribbon cable. This ribbon cable plugs into the Haptic Box
and connects the PWM signal to a power amplifier for the
DC motor and connects the angular encoder’s output to
the MPC555’s Time Processing Unit (TPU) module, which
performs (fast) quadrature decoding (FQD).

HAPTIC BOX

Amp. & Motor

Hand Wheel
Encoder

BREAK-OUT

 BOARD
MPC555PC

PWM

FQD

Serial
Comm.

Debugging

Display of Roadway

CME-555

Macraigor Wiggler

Parallel Port

Com Port

Fig. 2. Hardware setup in the Embedded Control System Laboratory
is used to create a driving simulator, where the Haptic Box is aforce-
reflecting steering wheel.

Communication with the MPC555 is accomplished either
through a serial connection, a debugging session, or com-
munication across a CAN bus. Programs are loaded onto
the processor from the PC using SingleStep, a debugger
GUI for the MPC555 provided by Windriver. Once a
program is running, the serial and the CAN communication
modules can be initialized and begin communicating. A
simple text-based program interface can be developed over
the serial connection and accessed on the PC using a

terminal program such as HyperTerminal. For the driving
simulator, the serial communication connects the vehicle
simulation on the MPC555 with the graphics on the PC. At
a data rate of 115k bits per second, the link is more than
sufficient for providing updates to the vehicle’s location and
orientation, and additional data can be logged to a file for
subsequent inspection. The CAN bus allows communication
among processors in the lab enabling the implementation of
distributed control systems.

III. D RIVING SIMULATOR SOFTWARE

The software for the driving simulator can be divided
into target and host software that communicate together
through a serial connection. By “target” and “host” we
mean the MPC555 and the PC, respectively. The software
on the target consists of a vehicle simulation and a con-
troller. Models of these two components are combined into
one Simulink model and code is generated using Math-
work’s Realtime Workshop code generation technology. A
Simulink blockset provided by New Eagle Software called
RapidHawk (now Motohawk) supported generation of code
for OSEKWorks, a real-time operating system provided
by Windriver. A Simulink blockset written by one of the
authors added support for some hardware features of the
MPC555. The generated code is compiled using the Diab
compiler, linked with OSEKWorks, and downloaded to the
target. Although the students use this suite of tools to create
their vehicle simulation and controller, all that is required
is a compiler and debugger for the power-pc architecture,
which are freely available as part of the GNU C compiler,
gcc. See http://www.macraigor.com/gnufaq.htm. However,
the Rapidhawk blockset and the OSEKWorks operating
system were generously donated by New Eagle Software
and Windriver, respectively, and thus, our students benefited
from the opportunity to develop embedded control systems
with state-of-the-art software.

The background of the students is mainly computer and
electrical engineering so we did not expect them to derive
the kinematics and dynamics of a car. Instead we provided
them with the nonlinear differential equations describingthe
kinematics of the bicycle vehicle model without tire-slip,
which they in turn implemented and tested in Simulink. A
side-lesson for the students in this process was how the
use of a simulation tool like Simulink can significantly
reduce the development time of a control system as they
can design and test without ever running code on the
target. This lesson was particularly well appreciated as the
students had to code relatively complicated programs such
as real-time simulations of the dynamics of mass-spring-
damper systems, and they discovered how difficult it is to
diagnose a problem when the program is running inside a
micro-controller with no monitor, keyboard or mouse. Once
they had tested their vehicle model and controller through
simulation, they built the software and loaded it onto the
target.

The graphics software was written by one of the
authors and it makes use of the OpenGL library na-
tive in Windows 2000 and XP. See the course website
http://www.eecs.umich.edu/courses/eecs461. The graphics
program shows a view looking over a car hood down a
concrete roadway with a single yellow centerline, grassy
embankments on the right and left, and optional orange
cylinders that can serve as obstacles. A sample screen-shot
is shown in Fig. 3. Roadway geometry is read in from a
file, and any smooth path can be generated as the graphics
program simply extrudes the road and embankment texture
between cross-sections. Each cross-section has three spatial
coordinates and three coordinates for orientation. Although
the path shape is quite general, the software does not
support intersections. A smooth animation is accomplished
by double-buffering and generating the graphics in one
thread of execution and handling communication with the
target in another thread. The communication thread reads a
formatted message from the target through the serial port.
We provided students with a Simulink block that could
properly format a vector of input signals and send them
to the graphics program through the serial link. For the
students projects, we limited the road geometry to two-
dimensions and so the graphics software required regular
updates of the vehicle position in only two-dimensions
along with a single vehicle heading angle to determine
the direction of the view. Besides providing a display
of the roadway, the host software also logged the serial
communication to a file for later examination. Remaining
bandwidth in the serial link was used to log additional
variables. Students could read the logged data into Matlab
and graph vehicle coordinates, error signals, control values
or other data that might help them diagnose problems.

Roadway

HillsideObstacles Centerline

Car hood

Fig. 3. An OpenGL animation of the roadway visible over the hood of
the simulated vehicle (labels added).

IV. EXAMPLE AUTOMOTIVE CONTROL APPLICATIONS

Given the proximity of the University of Michigan,
Ann Arbor to major automotive manufacturers and tier-one
suppliers, there is significant student interest in automo-
tive engineering and partnering between industry and the

research work at the university. Working on automotive
applications while in school makes students more mar-
ketable, and experience with embedded systems is currently
in demand. The driving simulator seemed like a great way
to mix embedded systems design and control design in a
visual and haptic experience. Students had the opportunity
to tackle the design of an automotive control system, then
prototype it and actually feel and see its behavior with the
simulator.

Networking is one of the topics taught in the class
and we wanted the final projects to include a networking
aspect. The MPC555 has two CAN modules on-board that
allow the micro-processor to be attached to a CAN bus,
a common communication bus in American cars. The first
class to try the simulator was given the task of designing
a steer-by-wire controller, where the wheel and steering
actuator dynamics were simulated on one processor along
with a controller to receive commands and reflect forces
to another controller running on another processor. The
two parts of the controller communicated to each other via
the CAN bus. The second project was the design of an
adaptive cruise control system. In this project, each group
had simulated its vehicle and controller on one processor
and virtual sensing of other vehicles was accomplished by
each processor broadcasting its vehicle’s location on the
CAN bus in a fashion similar to the way radar systems
broadcast target information.

For both projects, the students were presented with the
bicycle model for representing the simplified kinematics
of a four-wheeled car. This model assumes that there is
just one front wheel and one rear wheel like a bicycle as
shown in figure 4. We allowed the students to ignore tire slip
– although the more ambitious students tried deriving the
equations of motion using tire-slip and some even included
tire-patch saturation. The bicycle model has three degrees
of freedom: the position (x,y) of the vehicle center in the
X-Y plane and the headingψ. If the front wheel speed isu,
and the steering angle isδf , then the kinematics are given
by:

ẋ =
−ud

L
sin δf sinψ + u cos δf cosψ (1)

ẏ =
ud

L
sin δf cosψ + u cos δf sinψ (2)

ψ̇ =
u

L
sin δf (3)

A. Steer-by-wire over a CAN Network

For the steer-by-wire project, students had a distributed
control problem with a communication link between two
controllers via a CAN bus. One controller had the re-
sponsibility of actuating the front (steerable) wheels of the
simulated vehicle. The wheels were modelled as a rotational
inertia driven by a torque. A self-aligning torque acted on
the steering system and this torque had to be reflected
back onto the steering wheel by communication across the

d
L

),(yx

fδ

ψ

X

Y

Fig. 4. Bicycle vehicle model

network. A PD controller was suggested to the students,
where the set-point for the front wheel is the steering wheel
angle and the applied steering force is reflected back to the
steering wheel.

A number of complicating factors are embedded within
this problem which the students discover by themselves
when realize the control system. For instance, the students
have to choose sampling rates for both controllers and
consider the network bandwidth that they will then require.
All the students share the bus which has a total bandwidth of
500 kbps. A sample rate too slow leads to instability given
the round-trip delay between the two controllers. However,
the CAN protocol allows nodes, in effect, to yell over-top
of other nodes by transmitting messages with higher IDs,
so a controller transmitting at a very high frequency can
monopolize the bus. The students learn first-hand that the
networking protocol can affect a control system’s perfor-
mance when another student’s controller floods the CAN
bus, starving their controllers of communication.

One logistical difficulty in the steer-by-wire project is
the need for two processors per student group. A feature
of the MPC555’s TouCAN module (the CAN controller)
is the ability to receive its own transmissions. This al-
lowed students to test their distributed controllers without
really distributing them across two processors, although
combining both onto one processor reduced the maximum
frequency at which they could run their controllers.

B. Adaptive Cruise Control

The adaptive cruise control project turned the lab into a
more collaborative–if sometimes hostile–experience. Allthe
simulated vehicle controllers had to interact with each other
through the CAN network to share one virtual roadway.
From a functional perspective, an ACC system has a typical
cruise control that maintains the vehicle speed, but it also
detects traffic ahead and maintains some appropriate spacing
if needed. For this project to work, each simulated vehicle
had to broadcast its position and velocity information onto

the CAN bus for the rest of the controllers to hear. Then,
if the ACC system was enabled, either a speed control
or a distance controller is activated depending on some
appropriate switching logic.

Basic PID controllers were supplied to the students
for the speed control and distance control and their task,
arguably tougher than design of a PID controller, was to
select an appropriate switching logic. For many students,
this was their first experience with hybrid systems, and we
let them discover on their own the problems of chatter in
the switching and instability due to switching.

The collaborative nature of the project was interesting be-
cause students were subject to the problems in other groups’
simulations. Cars would sometimes randomly appear and
demonstrate to everyone that some students did not have the
right kinematics or dynamics for their car. This led to a lot
of excitement, laughing and some hair-pulling as students
tried to understand the strange behavior of their vehicle.
An additional processor on the network allowed the lab
instructors to run a CAN monitor, written by one of the
authors (see the course website given), to identify groups
running amok on the bus. This sort of bus monitoring tool is
a most in the lab setting to settle debates between students
about who is transmitting what.

V. EVALUATION

For many students, this course is their first experience in
the field of control systems. We think that the a hands-on
haptic and visual experience is a particularly intuitive way
to connect abstract concepts like the roots of a system’s
characteristic equation with physical behavior like damped
oscillations or unstable behavior. The students built on
their experience with virtual environments like springs and
spring-damper systems to understand the use of P and
PD controllers to achieve a control objective. Feeling the
control action of a P or PD control through the Haptic
Box provided another means for teaching the concept in an
intuitive manner. Many students also had the opportunity to
feel negative spring rates and negative damping coefficients
when they accidently omitted a negative sign!

The breadth of the course prohibited including much
discussion of control theory. Instead, some basic ideas such
as P and PD control were presented by talking about the
mechanical analogs and programming virtual springs and
virtual spring-dampers. We appealed to students’ intuition
to get them started in the right direction for the final
project. Beyond the basic controller, we asked the students
to develop some additional control feature for their final
project. This is where the students really stretched to
out-shine each other. As examples, some groups designed
steering controllers to drive their car down the center of the
road. There were also lane departure controllers that tried
to keep the car off the shoulder. Some groups used orange
barrels in the road to test obstacle avoidance controllers;
some groups tried to combine the idea of haptic collision
warning (shaking the steering wheel to alert the driver)

with active obstacle avoidance. In tackling these tough
problems, there were many opportunities to foster students’
nascent interest in control by showing them different control
design techniques. We showed students how to tune PID
controllers, how to understand open-loop Bode plots and
how to use Matlab to design a state-feedback control law.

The driving simulator combined both a visual and haptic
way of experiencing control design. For a variety of reasons,
we cannot let students try their hand at designing and testing
steer-by-wire or adaptive cruise control systems on real
vehicles. But in a graphical and haptic simulation, they
were able to attack some relatively sophisticated control
problems, test their software on an appropriate micro-
processor for the application, and experience their design
in a manner more satisfying and fun than only examining
plots of signals from simulation. The real-world control
problem and the multi-modal way of experiencing their
control system provides the students with a more engaging
and valuable learning experience [4].

From our perspective, this course is successfully provid-
ing students with valuable background in embedded control
systems. Certainly there is an overwhelming demand for
the class, with a typical wait-list as long as the enrollment
limit of 48 students per semester. After the course, students
have responded particularly enthusiastically about the final
project and say that they are listing the experience in this
course on their resume to improve their prospects in the job
market. One student reported back to us that her experience
with the MPC555, rapid-prototyping, and the automotive
application of the final project was what secured her a job.
Besides making the students more marketable, we believe
the course is providing unique exposure to the wide set of
topics necessary for designing embedded control systems
that is called for by industry and leading figures in the field
of automatic control [1] [4].

REFERENCES

[1] P. Antsaklis, T. Basar, R. DeCarlo, N. H. McClamroch, M. Spong, and
S. Yurkovich. Report on the NSF/CSS workshop on new directions
in control engineering education.IEEE Control Systems Magazine,
19(5):53–58, October 1999.

[2] R. B. Gillespie, M. B. Hoffman, and J. Freudenberg. Hapticinterface
for hands-on instruction in system dynamics and embedded control.
In Proceedings of the 11th Sympsium on Haptic Interfaces for Virtual
Environment and Teleoperator Systems, pages 410–415. IEEE Com-
puter Society, March 2003.

[3] C. Richard, A. M. Okamura, and M. R. Cutkosky. Getting a feel
for dynamics: Using haptic interface kits for teaching dynamics and
controls. InProceedings of ASME DSC Division, pages 153–7. ASME,
November 1997.

[4] D. S. Bernstein. Enhancing undergraduate control education. IEEE
Control Systems Magazine, 19(5):40–43, October 1999.

