AN IMPERFECT RING WITH A TRIVIAL COTANGENT COMPLEX

BHARGAV BHATT

Fix a perfect field k of characteristic p. Recall the following well-known fact:
Proposition 0.1. If A is a perfect k-algebra, then $L_{A / k} \simeq L_{A} \simeq 0$.
Proof. The Frobenius $F: A \rightarrow A$ induces the 0 map $F_{*}: L_{A} \rightarrow L_{A}$ (which is true for any \mathbf{F}_{p}-algebra A). On the other hand, since A is perfect, F is an isomorphism, so F_{*} is also an isomorphism, and thus $L_{A} \simeq 0$. Finally, since k is perfect, $L_{A} \simeq L_{A / k}$ as $L_{k}=0$.

The goal of this note is to record a counterexample to the converse statement; the idea of forcing variables to become products, rather than powers, used below was suggested to me by Gabber, and I grateful to him for this suggestion.

Proposition 0.2 (Gabber). There exists a non-reduced k-algebra A such that $L_{A / k} \simeq L_{A} \simeq 0$.
Proof. For $i \geq 0$, let $B_{i}=k\left[x_{i, 1}, x_{i, 2}, \ldots, x_{i, 2^{i}}\right]$ be be the polynomial algebra on the displayed 2^{i} generators. Write $I_{i} \subset B_{i}$ for the ideal spanned by the variables, and set

$$
A_{i}:=B_{i, \text { perf }} / J_{i}
$$

where $B_{i, \text { perf }}$ is the perfection of B_{i} (i.e., the direct limit along Frobenius), and $J_{i}=I_{i} \cdot B_{i, \text { perf }}$. Then $L_{B_{i, \text { perf }}}=0$. As J_{i} is defined by a regular sequence, it is standard to see that

$$
L_{A_{i}} \simeq J_{i} / J_{i}^{2}[1]
$$

is a free module on 2^{i} generators, placed in homological degree 1 . Now define maps $A_{i} \rightarrow A_{i+1}$ given by

$$
x_{i, j}^{\frac{1}{p^{n}}} \mapsto\left(x_{i+1,2 j} \cdot x_{i+1,2 j+1}\right)^{\frac{1}{p^{n}}} .
$$

In other words, each variable in A_{i} becomes a product of two variables in A_{i+1}. Set $A=\operatorname{colim} A_{i}$. Then we claim that $L_{A}=0$, and yet A is non-reduced. To see $L_{A}=0$, note that

$$
L_{A} \simeq \operatorname{colim}_{i} L_{A_{i}} \simeq \operatorname{colim}_{i} J_{i} / J_{i}^{2}[1],
$$

as the formation of the cotangent complex commutes with filtered colimits. Now it is enough to observe that the natural map

$$
J_{i} / J_{i}^{2} \rightarrow J_{i+1} / J_{i+1}^{2}
$$

is the 0 map, since each variable in J_{i} becomes a product of two variables in J_{i+1}. To see that A is not perfect, set $\alpha:=x_{0,1}^{\frac{1}{p}} \in A_{0}$. Then $\alpha^{p}=0$ (since $x_{0,1} \in J_{0}$). On the other hand, the image of α in A_{i} is given by

$$
\prod_{j=1}^{2^{i}} x_{i, j}^{\frac{1}{p}}
$$

which is non-zero (as it does not lie in J_{i}). Thus, α gives a nilpotent non-zero element in A, so A is not reduced.
We end by raising a question about the characteristic 0 analog:
Question 0.3. Let E be a field of characteristic 0 . Does there exist a E-algebra A such that $L_{A / E} \simeq 0$, yet A is not ind-étale over E ?

