AN IMPERFECT RING WITH A TRIVIAL COTANGENT COMPLEX

BHARGAV BHATT

Fix a perfect field k of characteristic p. Recall the following well-known fact:

Proposition 0.1. If A is a perfect k-algebra, then $L_{A/k} \simeq L_A \simeq 0$.

Proof. The Frobenius $F : A \to A$ induces the 0 map $F_* : L_A \to L_A$ (which is true for any \mathbf{F}_p -algebra A). On the other hand, since A is perfect, F is an isomorphism, so F_* is also an isomorphism, and thus $L_A \simeq 0$. Finally, since k is perfect, $L_A \simeq L_{A/k}$ as $L_k = 0$.

The goal of this note is to record a counterexample to the converse statement; the idea of forcing variables to become products, rather than powers, used below was suggested to me by Gabber, and I grateful to him for this suggestion.

Proposition 0.2 (Gabber). There exists a non-reduced k-algebra A such that $L_{A/k} \simeq L_A \simeq 0$.

Proof. For $i \ge 0$, let $B_i = k[x_{i,1}, x_{i,2}, \dots, x_{i,2^i}]$ be be the polynomial algebra on the displayed 2^i generators. Write $I_i \subset B_i$ for the ideal spanned by the variables, and set

$$A_i := B_{i, \text{perf}} / J_i,$$

where $B_{i,\text{perf}}$ is the perfection of B_i (i.e., the direct limit along Frobenius), and $J_i = I_i \cdot B_{i,\text{perf}}$. Then $L_{B_{i,\text{perf}}} = 0$. As J_i is defined by a regular sequence, it is standard to see that

$$L_{A_i} \simeq J_i / J_i^2 [1]$$

is a free module on 2^i generators, placed in homological degree 1. Now define maps $A_i \rightarrow A_{i+1}$ given by

$$x_{i,j}^{\frac{1}{p^n}} \mapsto (x_{i+1,2j} \cdot x_{i+1,2j+1})^{\frac{1}{p^n}}$$

In other words, each variable in A_i becomes a product of two variables in A_{i+1} . Set $A = \operatorname{colim} A_i$. Then we claim that $L_A = 0$, and yet A is non-reduced. To see $L_A = 0$, note that

$$L_A \simeq \operatorname{colim} L_{A_i} \simeq \operatorname{colim} J_i / J_i^2[1]$$

as the formation of the cotangent complex commutes with filtered colimits. Now it is enough to observe that the natural map

$$J_i/J_i^2 \rightarrow J_{i+1}/J_{i+1}^2$$

is the 0 map, since each variable in J_i becomes a product of two variables in J_{i+1} . To see that A is not perfect, set $\alpha := x_{0,1}^{\frac{1}{p}} \in A_0$. Then $\alpha^p = 0$ (since $x_{0,1} \in J_0$). On the other hand, the image of α in A_i is given by

$$\prod_{j=1}^{2^i} x_{i,j}^{\frac{1}{p}},$$

which is non-zero (as it does not lie in J_i). Thus, α gives a nilpotent non-zero element in A, so A is not reduced.

We end by raising a question about the characteristic 0 analog:

Question 0.3. Let *E* be a field of characteristic 0. Does there exist a *E*-algebra *A* such that $L_{A/E} \simeq 0$, yet *A* is not ind-étale over *E*?