मण्डलबेथ [maṇ̣̣alabeth] 3D fractals elizabeth r chen

¡we can construct मण्डलबेथ [maṇạalabeth] fractals of any dimension!
$\&$ any symmetry group G of a bouquet of unit circles.
this is the algorithm for 2D fractals living in 3D euclidean space. higher mathematically, $;$ this is a very beautiful \& elegant construction! the forest is the entire generating function, sum over the symmetry group. the trees are each term $T^{-1} f T\langle x, y, z\rangle$ of the matrix \& vector equation. the leaves are the individual scalar components, which are very messy.

0 (standard) unit circle
we consider the (standard) unit circle $\left[x^{2}+y^{2}=1\right] \wedge[z=0]$
with n equally spaced control points $\langle\cos 2 \pi / n, \sin 2 \pi / n, 0\rangle$.
the (standard) mandelbrot set has generating function
$f\langle x, y, z\rangle=\left\langle\right.$ real $(x+i y)^{n+1}$, imag $\left.(x+i y)^{n+1}, 0\right\rangle$.
the symmetry group is the dihedral group $D^{2 n}$.
any symmetry S permutes the control points,
but fixes the circle \& the generating function $f\langle x, y, z\rangle$.

1 (rotated) unit circle

now we generalize to any (rotated) unit circle, which is just a transformation T of the (standard) unit circle, rotated about the origin. the (rotated) mandelbrot set has generating function $T^{-1} f T\langle x, y, z\rangle$.
the symmetry group is also the dihedral group $T^{-1} D^{2 n} T \approx D^{2 n}$. any symmetry $T^{-1} S T$ permutes the control points, but fixes the circle \& the generating function $T^{-1} f T\langle x, y, z\rangle$.

2 bouquet of unit circles
now we consider a bouquet of unit circles \& control points, with symmetry group G. any symmetry can permute the circles \& control points, but fixes the bouquet. each circle contributes a term of the form $T^{-1} f T\langle x, y, z\rangle$. we add up all the terms from all the circles.
this is the generating function for the मण्डलबेथ [mandalabeth].
any symmetry can permute the terms, but fixes the sum.
so the मण्डलबेथ [maṇ̣alabeth] also has symmetry group $T^{-1} G T \approx G$.

