Problem 1. Give an example of a finite dimensional representation V of a group G such that V^G and V_G have different dimensions. For which coefficient fields does an example exist? For which fields does an example exist with G finite?

Problem 2. Let G be an infinite group. Show that some representation of G is not semi-simple.

Problem 3. Let H be a finite index subgroup of G. Show that induction and co-induction from H to G are naturally isomorphic.

Problem 4. Let H be an arbitrary subgroup of G. Show that induction and co-induction from H to G are exact functors (i.e., take exact sequences of H representations to exact sequences of G representations).

Problem 5. Let G be a finite group and let H be a subgroup.

(a) Let \mathcal{C} be the space of H-biinvariant functions on G. Thus an element f of \mathcal{C} is a function $G \to \mathbb{C}$ such that f(hgh') = f(g) for all $h, h' \in H$ and $g \in G$. For $f, g \in \mathcal{C}$, define f * g by

$$(f * g)(x) = \sum_{y \in G/H} f(y)g(y^{-1}x).$$

Show that * is well-defined and that C is a unital ring under pointwise addition and *.

- (b) (Gelfand's trick.) For $f \in C$, define $f^{\vee} \in C$ by $f^{\vee}(g) = f(g^{-1})$. Suppose that $f^{\vee} = f$ for all $f \in C$. Show that C is commutative.
- (c) Show that $\operatorname{End}_G(\mathbf{C}[G/H])$ is naturally isomorphic to \mathcal{C} .
- (d) Let V be a representation of G. Show that V is multiplicity free (i.e., each irreducible has multiplicity at most one) if and only if $\operatorname{End}_G(V)$ is commutative.
- (e) Let $G = S_{2n}$, let \mathcal{M} be the set of perfect matchings on 2n vertices, and let $V = \mathbb{C}[\mathcal{M}]$. Show that V is a multiplicity free representation of G.