Let e be a "combinatorial category"
Ex:

- $e=F I$: the category of finite sets and injections
- $e=V I_{L}:$ finite dime vector space /L and linear injections
- $e=V I C_{\dot{L}}$: finite dime vector space /L and split injections
- $e=F S^{\text {op }}$: the apposite of the catty's of finite sets and surjections

Def: A e-module over a commutative ring k is a functor $M: E \rightarrow$ Mod k :

$$
\begin{aligned}
& M_{x} \quad \forall x \in C \\
& M_{f}: M_{x} \longrightarrow M_{y} \quad \forall \quad f: x \rightarrow y \in e
\end{aligned}
$$

Def: M is finitely generated if there is a finite list of ells $m_{i} \in M_{x_{i}}$ that generate $M_{y} \forall y \in e \quad$ under the action of transition maps and linear combos.

$$
M_{f}, \quad f: y \rightarrow x_{i} \in C
$$

In our examples, every e mole M has an underlying sequence of representations:

$$
M_{n} \int G_{n} \quad \forall n \in \mathbb{N} \text {, where }
$$

G_{n} is the automorphism gray of the nth object of e. $G=\operatorname{Aut}(n)$

Question: If M is a finitely generated e module, what does that imply about the sequence of representations $M_{n}, n \in \mathbb{N}$?

- FI modules in char 0:

Church-Ellenberg-Farb, Sam-Snowden
A finitely generated FI mole is representation stable:

-•,

- Many other results for: $V I, V I C, \mathrm{FI}_{G}$ $F I_{d}$, positive characteristic etc.

Results on Dimensions:
Let k be a field. Use $\left(\operatorname{dim}_{n} M_{n}\right)_{n \in \mathbb{N}}$ to build a function
Def: The Hilbert series of M is

$$
h_{M}(t):=\sum_{n \in \mathbb{N}} \operatorname{dim} M_{n} t^{n}
$$

Often $\quad h_{M}(t)$ is rational:

$$
h_{M}(t)=\frac{f(t)}{g(t)} \text { for } f, g \text { polynomial, }
$$

g taking a specific form.
Ex:

- $e=F I: \quad(-E-F, S-(S), C-E-F-N$
$h_{M}(t)$ is rational $w /$ denominator $(1-t)^{d}$ ($\operatorname{dim} M_{n}$ is eventually polynomin))
- $e=V_{I_{q}}$: Nagual in non-describing characteristic
$h_{M}(t)$ is rational $w /$ denominator $\prod_{j=0}^{d-1}\left(1-q^{j} t\right)$
($\operatorname{dim} M_{n}$ is eventually q-polynomin))
- $e=F S^{o p}: \operatorname{Sam}-$ Snowdon
$h_{M}(t)$ is rational $w /$ denominator a power of

$$
\prod_{j=0}^{d-1}(1-j t)
$$

In general, Sam-Snowden Groaner theory is the most general method for proving "vationality This."

Drawback: Breaks symmetry, so only tells is ablaut the dimension sequence

Goal for today: Introduce a construction that helps to unify these results, and that is able to pore equivariant versions

A coincidence:
Thum: (Arold) The Poincaré polynomial of

$$
\operatorname{Conf}_{d} \mathbb{C}=\left\{\left(x_{i}\right) \in \mathbb{C}^{d} \mid x_{i} \neq x_{j} \text { if } i \neq j\right\}
$$

$$
\text { is } \prod_{j=0}^{d-1}(1+j t)
$$

Goresky - Macpherson: inteppret this vesult in terms of posets / poset humology.

Möbius functions
Let P be a paly posintet, we can consider P as a category:

- objects $\quad p \in P$
- movphims: 7! morphism $p \rightarrow q$ if $p \leqslant q$

Def: Let P have a top element $\hat{\imath} \in P$. The Möbius function, $\mu: P \longrightarrow \mathbb{Z}$, is the unique function satisfying

$$
\sum_{p \geqslant q} \mu(p)= \begin{cases}1 & \text { if } q=\hat{\imath} \\ 0 & \text { otherwise }\end{cases}
$$

(more properly $N(p, \hat{\jmath})$

The: (Hall) $\mu(p)=\sum_{i}(-1)^{i} \#\left\{\hat{\imath}>p_{1}>\cdots>p_{i}=p\right\}$

Def: When P is grad, we let $r(p)$ be the length of a maximal chain chain $p=p_{0}<p_{1}<\cdots<p_{r(p)}=\hat{\imath}$

$$
\sum^{\text {or "characteristic" }}
$$

The Whitney polynomial of P is

$$
W_{p}(t):=\sum_{p \in p} \mu(p) t^{r(p)}
$$

(when it exists)

Def: Given $d \in e$, the orercatgray,l / d, is the category with

Objects: $\quad f: x \rightarrow d, x \in C$

Morphisms:

In Rep Stability often e / d is equivalent to a graved posset.

Examples:

- $e^{\prime}=F I$
$F I / X \simeq$ posit of subset, of $X+$ containenent
Whitney poly: $(1-t)^{\# x}=\sum_{s \leq x}(-t)^{\# x-s}$
- $e=V I_{\mathbb{F}_{q}}$
$V I_{F_{V}} \simeq$ poses of subspaces of ω
Whitney Poly:

$$
\begin{aligned}
& \prod_{j=0}^{\operatorname{dim} w-1}\left(1-q^{j} t\right)=\sum_{v \leq w} q^{(\operatorname{cosim} v)}(-t)^{\operatorname{codim} v} \\
& \cdot C=F S^{o p}
\end{aligned}
$$

$F S^{o s} / X^{\simeq}(X / F S)^{\Delta 4} \simeq$ poet of set partitions of X. + refinement
Whitney poly:

$$
\prod_{j=0}^{\# x-1}(1-j t)=\sum_{\substack{\text { pa set partition } \\ \text { of } x}}(r(p)-1)!(-t)^{n(p)}
$$

- $C=V I C$
$V I C / \omega \simeq$ poset of subspaces + splittings (introduced by Charney)
Whitney poly:?

Main Construction: Let e be one of the categories above, $d \in \mathbb{N} \leftrightarrow e$
Let $e / d=P$.
Build a complex $K_{d}(M), \forall M \in \operatorname{Mod}(e)$

$$
\Sigma_{0}^{d} M \leftarrow \underset{\substack{p \in p \\ r(p)=1}}{ } \Sigma_{1}^{d-1} M^{\oplus M(p)} \leftarrow \cdots \leftarrow \underset{r(p)=d}{\oplus} \leftarrow M^{\oplus(p)}
$$

Where $\left(\left.\Sigma^{i} M\right|_{x}:=M_{x+i}\right.$.
Prop: If $K_{d}(M)_{m}$ is exact $\forall_{m} \gg 0$, $h_{M}(t)$ is rational $w /$ denominator $W_{p}(t)$.

Pf: Write $W_{p}(t)=\sum_{i} c_{i}(-t)^{i}$. In degree $m=n+d$ we have $K_{d}(M)_{m}$

$$
\begin{aligned}
& M_{n} \leftarrow M_{n-1}^{\oplus c_{1}} \leftarrow M_{n-2}^{\oplus c_{2}} \leftarrow \cdots \leftarrow M_{n-d}^{\oplus c_{d}} \\
& \sum(-1)^{i} c_{i} \operatorname{dim} M_{n-i}=0 \quad \forall n \gg 0 \\
& \Rightarrow \sum_{n}(-1)^{i} c_{i} \operatorname{dim} M_{n-i} t^{n}=w_{p}(t) h_{M}(t)
\end{aligned}
$$

is a polynomial, $f(t) . \quad \Rightarrow \quad h_{M}(t)=\frac{f(t)}{w_{p}(t)}$ 勾

Exactiness categorifies rationality
Proto-Thm: (T.) Let $e=F I, V I_{\mathbb{F}_{q}}$, or $F S^{\circ p}$.
Let M be a f.g. e modle.
Then $\exists d, s \in \mathbb{N}$ such that $K_{d}{ }^{0 s}(M)_{n}$ is exact $\forall n \gg 0$.
$h_{M}(t)$ has devor

$$
w_{p}(t)^{5}
$$

Construction of Chain Complexes
Let (e, θ) be a monoidal category. Suppose that e / d is equivalent to a poet.

$$
\oplus: e \times e / d \longrightarrow e
$$

induces a functor

$$
\operatorname{Res}{ }^{\theta}: \operatorname{Mod} e \longrightarrow \operatorname{Mod}(e \times e / d)
$$

Chose a functor

$$
F: \quad \operatorname{Mod}(e / d) \longrightarrow C h(\operatorname{Mod} k)
$$

Then "applying F in the second factor" we get

$$
\begin{array}{r}
\text { FoRes }{ }^{\oplus}: \operatorname{Mod} e \rightarrow C h(\operatorname{Mod} e) \\
F_{0} \operatorname{Res}^{\oplus}(M)=\left(c \mapsto F\left(M_{c \theta-}\right)\right)
\end{array}
$$

What is F?

Poses homdogy w/ coefficients (after Bacalawski):
Let P be a poses with top element $\hat{\imath}$
Let M be a P-module

Def: $B_{p}(M)$ is the following Bar complex

- In handegial degree s :

$$
\begin{gathered}
B_{p}(M)_{s}=\bigoplus_{\hat{\imath}>p_{1}>\cdots>p_{s} \in p} M_{p_{s}} \\
\sum_{i=0}(-1)^{i} \partial_{i}: B_{p}(M) \longrightarrow B_{p}(M)_{s} \\
\partial_{i}\left(\hat{\imath}>\cdots>p_{s}, m\right)= \\
\begin{cases}0 & \text { if } i=0 \\
\hat{\imath}>\cdots p_{1-1}>p_{i+1}>\cdots>p_{s, m} & \text { if } i=1, \ldots, s-1 \\
\hat{\imath}>\cdots>p_{s-1}, M_{p_{s} p_{1-1}}(m) & \text { if } i=s\end{cases}
\end{gathered}
$$

$B_{p}(M)$ is closely related to the order, complex NP, whose simplices ave chains of ells of P.

Def: When P is graved, and the order complex $N(p, \hat{\imath})$ is $r(p)-3$-connected $\quad \forall p \in P$,
then $K_{p}(M)$ is the subamplex

$$
\begin{aligned}
& K_{p}(M)_{s} \subseteq \underset{\hat{T}>p_{1}>\cdots>p_{s}, n\left(p_{p}\right)=s}{\bigoplus} M_{p_{s}} \\
& \operatorname{Ker}\left(\sum_{i=0}^{s-1}(-1)^{i} \partial_{i}\right)
\end{aligned}
$$

By definition:

$$
K_{p}(M)_{s} \cong \bigoplus_{p \in p, r(p)=s} \widetilde{H}_{s-2}\left(N(p, \hat{p}), M_{p}\right)
$$

$$
\begin{aligned}
& \text { Halls } \\
& \text { theorem } \\
& \bigoplus \\
& p \in p, r(p)=s \\
&
\end{aligned} M_{p}^{\oplus \mu(p)}
$$

Prop: $K_{p}(M) \rightarrow B_{p}(M)$ induces an isomorphism on homology.

Pf: Use the spectral sequence for the rank filtration 㚿

Example:

$$
F S^{\circ p} / 3 \simeq P(3)=12 \mid 3 \prod_{123}^{1312} 23 / 1
$$

basis the three

$$
\int^{\text {couth }} \text { chins }
$$

$$
\underset{P(2)}{B}(M)=M_{||2| 3} \leftarrow \underset{|1| 3}{ } \leftarrow M_{B \mid 2} \oplus M_{23 \mid 1} \longleftarrow M^{\oplus} \longleftarrow M_{\mid 23}^{\oplus 3}
$$ $P(3)$

$$
\begin{aligned}
& \oplus \\
& M_{123}
\end{aligned}
$$

$$
\begin{array}{lll}
\left(\begin{array}{lll}
12 \mid 3 & 1|2| 3 & 1|2| 3
\end{array}\right) \\
K_{P(3)}(M)= & \left(\begin{array}{cc}
12 \mid 3 & 0 \\
-13 \mid 2 & 13 \mid 2 \\
0 & -12 \mid 3
\end{array}\right) \\
\leftarrow M_{|2| 3} \oplus M_{B \mid 2} \oplus M_{23 \mid 1} \longleftarrow & M_{123}^{\oplus 2}
\end{array}
$$

Ways to think about $B_{p} K_{p}$:

- $B_{p}(M)$ computes $\operatorname{Tor}_{0}^{P}(S(\hat{\imath}), M)$ Where $S(\hat{1})$ is the $P^{\circ \rho}$ representation $0 \begin{gathered}L \\ 0 \\ 0 \\ L_{0} \\ 0\end{gathered}$
(when K is a field, this is the same as

$$
\begin{aligned}
& \left.\operatorname{Ext}\left(M, S(\hat{\imath})^{*}\right)^{*}\right) \\
& -B_{p}(M)=\operatorname{cone}\left(\underset{p \in P_{-} \uparrow}{\underset{p}{\text { hocolim}}} M_{p} \rightarrow M_{\uparrow}\right)
\end{aligned}
$$

so it "measures the difference between $\left[M_{p}\right\}_{p<\hat{\imath}}$ and $M_{\uparrow}{ }^{\prime \prime}$.

- $K_{p}(M)$ is a "Koszul complex" in the sense of Koszul duality theory.

By taking $F=B_{e / d}$ or $K_{e / d}$,
We obtain functors

$$
B_{d}, K_{d}: \operatorname{Mod}(e) \longrightarrow C h\left(M_{o d} e\right)
$$

K_{d} is defined for $F I, V I_{L}, V I C_{L}, F S^{\Phi p}$ $F I_{r}, \ldots$

Examples: For a monoidal cat e, \oplus let $\Sigma^{x} M$ denote $\operatorname{Res}^{x \theta-}(M)=M_{x \theta-}$

- For $e=F I: \quad K_{d}(M)$ is

$$
\Sigma^{d} M \leftarrow \Sigma^{d-1} M^{\oplus d} \longleftarrow \Sigma^{d-2} M^{\oplus\left(\frac{d}{2}\right)} \longleftarrow \ldots \leftarrow M
$$

the complex obtained by iterating cone $(M \rightarrow \Sigma M) \quad d$-times

- For $e=V I_{\dot{L}}: \quad K_{w}(M)$ is

$$
\Sigma^{w} M \leftarrow \underset{\substack{V \leqslant W \\ c \operatorname{cosin} 1}}{\bigoplus} \Sigma^{v} M \leftarrow \underset{\substack{v \leq w \\ c \operatorname{cosin} 2}}{\oplus} \Sigma^{v} M \otimes \operatorname{Stan}(w / v) \leftarrow \cdots
$$

$$
\Sigma^{d} M \leftarrow \sum^{d-1} M^{\oplus\left(\frac{1}{2}\right)} \leftarrow \cdots \leftarrow \sum^{d-i} M \stackrel{\sin (d,-i)}{\leftarrow} \cdots
$$

- For $e=\cdots \cdot \frac{x}{\vec{\jmath}} \cdot \frac{x}{\vec{\jmath}} \cdot \frac{x}{\vec{\jmath}} \cdot \cdots \cdot$

$$
\operatorname{Mod} e \simeq \operatorname{Gr} \operatorname{Mod}(k[x, y])
$$

and $\forall d$
$K_{d}(M)$ is the Koscol complex:

One interpretation of K_{d} / B_{d} : when E is an EI category, we can define e-module homology $H_{0}(e)_{d} \quad \forall d \in e$

Then $H_{i}\left(B_{d}(-)\right)$ equals

Case of $\mathrm{FS}^{\text {op }}$ modules

Background on $F S^{o p}$
Proved Noetherion by Sam-Srowden, and used to prove the Lannes-Schwarz Artinian conjecture.

Applications to:

- Kazhdan-Lusztig polynomials of braid matroids (Prooffoot-Yang)
- Homology of the mod): space of stable corves $\overline{M_{g, w}}$ (T.) and Konterich mapping spaces (T. -Petrine)
- Resonance arrangements (Pradfot-Rames)

Analogy/Comection (Joint w/ Sam-Snouden)
FI modules: $\mathbb{C}[x]$ modules
$F S^{\text {op }}$ modules : g-modules for g^{n} the
Witt lie algebra of formal vector fields on unit diss.
In general, they are not well understood.

Example of an FS mod le
Consider

$$
M_{X}=\begin{aligned}
& Q\{\text { set partitions of } X \\
& \text { into } 2 \text { blacks }\}
\end{aligned}
$$

Then M is an $F S^{\text {ap }}$ module, via pullback of set partitions:

$$
f: y \rightarrow x^{p}
$$

In fact M is generated in degree $\leqslant 2$

$$
\begin{aligned}
& \operatorname{Tr}(\sigma)=\# \text { of partitions fixed by } \sigma \\
& \sigma: X \rightarrow X
\end{aligned}
$$

- If σ has a cycle of odd length then σ mut fix each block

$$
\operatorname{Tr}(\sigma)=\frac{2^{X_{1}(\sigma)+X_{2}(\sigma)+\cdots}}{2}
$$

where

$$
X_{i}(\sigma):=\text { \# of i-cyles of } \sigma
$$

- If all of the cycles of σ have even length, then

$$
\operatorname{Tr}(\sigma)=\underbrace{\frac{2^{X_{2}}(\sigma)+X_{4}(\sigma)+\cdots}{2}}_{\text {preserving bloke }}+\frac{2^{X_{2}(\sigma)+X_{4}(\sigma)+\cdots}}{\underbrace{2}_{\text {swapping blocs }}}
$$

Can iterate $K_{l}(M)$ by taking total complex.

Thu: (T.) Let M be an $F S^{o p}$ module, which is a submodile of one generated in degree d. Then $\exists s \in \mathbb{N}$ such that

$$
\begin{array}{r}
\forall l_{1}, \cdots, l_{s} \in \mathbb{N} \quad l_{i}>d \\
K_{l_{1}} \circ K_{l_{2}} \cdots \cdot K_{l_{r}}(M) \text { is exact. }
\end{array}
$$

- Key ingredient is Sam-Snowden Gribner theory
- Taking Frobenius characters, this translates into a system of linear differential equations for $c h(M)$.

Def: An Fop module is of class (d, s) if the hypothesis + condusion of the previous theorem apply to it,

To describe the character of a class (d, s) module we need the following functions.

Character Exponentials
Def Let $A=1^{a_{1}} 2^{a_{2}} \cdots$ be an integer partition.

$$
\begin{aligned}
& A^{X}:=\prod_{n}\left(\sum_{d \mid n} d a_{d}\right)^{X_{n}} \longleftrightarrow P_{A}\left[\sum_{m \geqslant 0} h_{m}\right] \\
& \text { Ex: } \cdot A=1^{2}: \quad A^{x}=\prod_{n} 2^{x_{n}}=2^{\sum_{n} x_{n}} \\
& \text { - } B=\begin{aligned}
& 2^{1}: \quad B^{X}=\prod_{n \text { odd }} O^{X_{n}} \prod_{n \text { event }} 2^{X_{n}} \\
& 0 \text { wrests } \\
& \text { all gat of } \sigma \text { ave iron }
\end{aligned}
\end{aligned}
$$

The example above had character function

$$
\frac{A^{x}+B^{x}}{2}
$$

Def:
Let $v=1^{m_{1}} 2^{m_{2}} \cdots$ be another integer partition.

$$
\binom{X}{V} A^{X-v}:=\prod_{n}\left(\begin{array}{c}
X-m_{n} \\
X_{n} \\
m_{n}
\end{array}\right)\left(\sum_{d \mid n} d a_{d}\right) \leftrightarrow \frac{P_{v}}{z_{\nu}} \cdot\left(\mathbb{P}_{A}\left[\sum_{m \geqslant 0} h_{m}\right]\right)
$$

Ex: If $A=0, \quad \prod_{n}\binom{X_{n}(\sigma)}{m_{n}} 0^{X_{n}(\sigma)-m_{n}}$
is nonzero iff $\sigma \in S_{n}$ has cycle type v.

Characters
Thu: (T.) Let M be an $F S^{o p}$ moll of class (d, s). Then the character of M is of the form:

$$
\sum_{v, A} c_{v, A}\binom{x}{v} A^{X-v}
$$

for $|A| \leqslant d, \quad \operatorname{rank}(v) \leqslant d, \quad C_{v, A} \in Q$.

$$
\uparrow
$$

\# of rows in Young
Finite dimensionality
Thu (T.) There is a finite dimensional space of class functions $U_{d, s}$ containing the character functions of FSop modules of class (d, s)

$$
\operatorname{dim} u_{d, s}=\binom{d+s-1}{s-1} \sum_{i \leqslant d} \# \text { int partitions of } i .
$$

Multiplicity polymmiality
Thu (T.) Let $(n, x)=n \geqslant \lambda_{1} \geqslant \lambda_{2} \geqslant \ldots$
Then for M an $F^{\text {es }}$ module of class (d, s)
multi $_{(n, \lambda)}\left(M_{n+\mid \lambda \lambda)}\right)$ is eventually qunsi-phtymonic of period $\leqslant d$ and degree $\leqslant d s$.

Questions:

- For which categories does M finitely generated $\Rightarrow K_{d}^{o r}(M)$ exact?
e.g. $V I_{q}$ in describing characteristic
- How does the class of an $F^{o p}$ module behave in short exact sequences?
- What is the representation theory of FJ? Can the complexes $K_{d}(M)$ be used analogously to $M \rightarrow \sum M$ for $F I$ modules?

Thanks!

Thanks Andrew + Jenny!

Idea of proof for FS9 madles.
(1) Use $O S^{\circ p} \longrightarrow F S^{p}$ where

OSS" is the category of bidaly ordered sets and "ordered surjection"

$$
f: x \rightarrow y \text { s.t. } \quad i \leqslant j \Rightarrow \min \left(f^{-1}(i) \mid \leqslant \min \left(f^{-1}()\right)\right.
$$

Redke to $\operatorname{OS}^{\circ p}$ submades of $k O S(-, n)$
(2) Grobner therry: redue to $O S^{\circ p}$ subsets of $\operatorname{OS}(-, T)$

Sam-Snowder showed using Higmans lemma that these are classified by certain DFAs

Ex: If $T=\{a, b\}$ and aba describes the surjection $\begin{aligned} & {[3] } \rightarrow T \\ & 1 \mapsto a \\ & 21 \mapsto b \\ & 3 \mapsto a\end{aligned}$
then aba generates the OS op subset accepted by

(3) Associate $P(d)^{x r}$-sets to $D F A ' s$
and prove that they yield exact complexes

$$
\begin{aligned}
& I(w, A) \subseteq P(d)^{x r} \\
& =\left\{\text { partitions } p \left\lvert\, \begin{array}{ll}
w \text { factors through } p, \\
w / p \text { accepted by } A
\end{array}\right.\right\}
\end{aligned}
$$

Prove that the $P(d)^{r}$ set associated to $I(\omega, A)$ is exact.

Arnold:

$$
\sum_{i} \operatorname{dim} H_{i}\left(\operatorname{conf}_{n} \mathbb{C}\right) t^{i}=\prod_{j=0}^{n-1}(1+j
$$

Goresky - Macpherson:
Cont $\mathbb{C} \subseteq \mathbb{C}^{n}$ is a hyperplane complement, w/ associated posit the lattice of set partition.

