Let
$$C$$
 be a "combinatorial category"
Ex:
• $C = FI$: the category of finite sets
and injections
• $C = VIL$: finite diml vector spaces / L
and lineor injections
• $C = VIC$: finite diml vector spaces / L and
split injections
• $C = FS^{\circ P}$: the apposite of the category
of finite sets and surjections
Def: A C -module over a commutative ring K
is a functor $M: C \longrightarrow Mod$ K:
 M_{Z} $\forall x \in C$
 $M_{f}: M_{X} \longrightarrow M_{Y}$ $\forall S: x \longrightarrow y \in C$

Def: M is finitely generated if there is
a finite list of elts
$$m_i \in M_{\chi_i}$$
 that
generate My type under the action of
transition maps and linear combos.
Mf, f:g $\rightarrow \chi_i \in C$

In our examples, every C module M
has an underlying sequence of representations:
$$M_n \mathcal{O} G_n$$
 $\forall n \in \mathbb{N}$, where
 G_n is the automorphism group of the nth object
of C. $G = Aut(n)$

.

Question: IF M is a finitely generated
C module, what does that imply about
the sequence of representations Mn, n t N?
• FI modules in Choir 0:
Church - Ellenberg-Farb, Som - Snowden
A finitely generated FI module is
representation stable:
$$\square, \square, \square, \dots, \square$$

FId, positive characteristic etc.

$$h_{M}(t) \text{ is rational } w/ \text{ denominator } \prod_{j=0}^{d-1} (1-q^{j}t) \\ (\text{dim Mn is eventually } q-polynomin))$$

• $C = FS^{op}$: Sam-Snowdon
 $h_{M}(t)$ is rational $w/$ denominator a power of
 $\prod_{j=0}^{d-1} (1-jt) \\ j=0$
In general, Sam-Snowdon Gröbner theory
is the most general method for proving "varionality Thms."

Möbius functions
Let P be a poset, we can consider
P as a category:
• Objects
$$p \in P$$

• morphisms: $\exists!$ morphism $p \rightarrow q$ if $p \leq q$

Def: Let P have a top element
$$\hat{T} \notin P$$
.
The Möbius Function, $\mu: P \longrightarrow \mathbb{Z}$, is the
Unique function satisfying
 $\sum \mu(p) = \begin{cases} 1 & \text{if } q = \hat{1} \\ 0 & \text{otherwise} \end{cases}$
 $1 & (\text{more properly } M(P, \hat{1}))$

$$Thm: (Hall) \qquad P(p) = \sum_{i} (-1)^{i} \# \{\widehat{1} > p_{i} > \cdots > p_{i} = p \}$$

Def: When P is graded, we let

$$r(p)$$
 be the length of a maximal chain
Chain $p = p_0 < p_1 < \dots < p_{r(p)} = 1$
 $\int_{0}^{0} r^{2} characteristic^{2}$
The Whitney polynomial of P is
 $W_p(t) := \sum_{p \in P} \mu(p) t^{r(p)}$
 $p \in P$
(where it exists)

Def: Griven
$$d \in C$$
, the overcategory, C/d ,
is the category with
Objects: $f: x \rightarrow d$, $x \in C$
Morphisms: $x \rightarrow f$
 $f \rightarrow f'$
In Rep Stability often C/d is
equivalent to a graded paset.
 $E \times camples:$
• $C = FI$
 $FI/X \simeq poset of subsets$
 $ot X + containment$
Whitney poly: $(1-t)^{\#X} = Z (-t)^{\#X-S}$

sεx

•
$$C = VI$$
 For $VI_{F_{1}}/W \cong Poset of subspaces
of W
Whitney Poly:
 $\lim_{J \to 0} (I - q^{j}t) = \sum_{V \subseteq W} q^{(minV)} (t)^{codim_{V}}$
• $C = FS^{op}$
 $FS^{of}/X \cong (X/F_{3})^{of} \cong Poset of set partitions of X.$
Whitney poly:
 $\lim_{V \to W} (I - jt) = \sum_{V \subseteq W} (r(p) - 1)! (t)^{n(p)}$
 $F \cong VIC$
 $VIC/W \cong Poset of subspaces + splittings (introduced by Channey)$
Whitney poly: ?$

$$M_{n} \leftarrow M_{n-1}^{\oplus c_{1}} \leftarrow M_{n-2}^{\oplus c_{2}} \leftarrow \cdots \leftarrow M_{n-d}^{\oplus c_{d}}$$

$$\Xi (-1)^{i} \quad c_{i} \quad \dim M_{n-i} = 0 \quad \forall \quad n \gg 0$$

$$\Longrightarrow \quad \sum_{i \in (-1)^{i} = c_{i} \quad \dim M_{n-i} \quad t^{n} = W_{p}(t) \quad h_{M}(t)$$

$$n \quad (4)$$

is a polynomial, f(t). $\Rightarrow h_{M}(t) = \frac{f(t)}{W_{p}(t)}$

Exactness categorifies rationality
Proto-Thm: (T.) Let
$$C = FI$$
, $VI_{H_{q}}$, or FS^{op} .
Let M be a f.g. C module.
Then $\exists d, s \in IN$ such that $K_d^{os}(M)_n$ is
exact $\forall n \gg 0$.

$$h_{M}(t)$$
 has down $w_{p}(t)$

Construction of Chain Complexes Let (e, Φ) be a manoidal category. Suppose that C/d is equivalent to a poset. $\Theta: \mathcal{C} \times \mathcal{C}/_{d} \longrightarrow \mathcal{C}$ induces a functor Res Mod C ---- Mod (C× C/A) Choose a functor F: $M_{od}(e/a) \longrightarrow Ch(M_{od} k)$ Then "applying F in the second factor" we get Fo Res[®]: Mod e → Ch(Mod e) $F_{\circ} \operatorname{Res}^{\bullet}(M) = (c \mapsto F(M_{c \circ -}))$ What is F?

Poset homdagy w/ coefficients (after Baclawski): Let P be a poset with top element T Let M be a P-module

Def:
$$B_p(M)$$
 is the following Bar complex

.

$$B_p(M)$$
 is closely related to the order complex NP , whose simplices are chains of elts of P .

Def: When P is graded, and the order complex
$$N(p, \hat{T})$$
 is $r(p) - 3 - connected \forall p \in P$,
then $K_p(M)$ is the subcomplex $f(M) = (M)_{p} \subseteq \bigoplus_{p \in P} M_{p}$

$$H_{p}(\Pi)_{s} = \Pi$$

$$\Pi = \Pi = \Pi = \Pi = \Pi = \Pi$$

$$H_{s}(\Pi)_{s} = \Pi = \Pi = \Pi = \Pi$$

$$H_{s-2}(N(p, \pi), M_{p})$$

$$H_{s}(\Pi)_{s} = \Pi = \Pi = \Pi$$

By taking
$$F = B_{e/a}$$
 or $K_{e/d}$,
We obtain functors
Bd, Kd: Mod(e) \longrightarrow Ch(Mod e)
Kd is defined for FI, VIL, VICL, FS^{*}
FIr,...

Examples: For a monoidal cat
$$C, \Theta$$

let $Z^{\times}M$ denote $\operatorname{Res}^{\times \Phi^{-}}(M) = M_{\times \Theta^{-}}$
• For $C = FI$: $K_{d}(M)$ is
 $Z^{d}M \leftarrow Z^{d+1}M^{\Theta d} \leftarrow Z^{d+2}M^{\Theta} \overset{(d)}{\leftarrow} \cdots \leftarrow M$
the complex obtained by iterating
cone $(M \rightarrow \Xi M)$ $d - times$
• For $C = VI_{L}$: $K_{w}(M)$ is
 $Z^{W}M \leftarrow \bigoplus_{\substack{V \leq W \\ colorel}} Z^{V}M \leftarrow \bigoplus_{\substack{V \leq W \\ colorel}} Z^{V}M \otimes \operatorname{Stein}(W_{V}) \leftarrow \cdots$
 $V \subseteq W$
 $V \subseteq W$
 $V \subseteq W$
 $Colorel} = FS^{\circ}$: $K_{d}(M)$ is
 $Z^{d}M \leftarrow Z^{d+2}M^{\circ} \leftarrow \cdots \leftarrow Z^{d-1} \otimes S(dA^{-1})$

• For
$$e = \cdots \frac{x}{y} \cdot \frac{x}{y} \cdot \frac{x}{y}$$

Mod $e \simeq Gr Mod (k[x,y])$
and $\forall d$
 $K_d(M)$ is the toszel complex:
 $(x y)$
 $M(d) \leftarrow M(d-1)^{\oplus 2} \leftarrow M(d-2)$

Case of FS^{op} modules

Example of an FS^{op} module
Consider

$$M_{X} = \substack{\emptyset \{ \text{ set partitions of } X \\ \text{into } 2 \text{ blocks } \} \qquad \text{unordered}}$$
Then M is an FS^{op} module, via pullback
of set partitions:

$$f: Y \longrightarrow X. \qquad \{a\}\}^{(1)}$$
In fact M is generated in degree ≤ 2

$$Tr(\sigma) = \# \text{ of partitions fixed by } \sigma$$

$$\sigma: X \longrightarrow X$$
• If σ has a cycle of odd length then σ must
fix each block

$$Tr(\sigma) = \frac{2^{X_1(\sigma)} + X_2(\sigma) + \cdots}{2}$$

where

$$X_{i}(\sigma) := \# \text{ of } i \text{-cycles of } \sigma$$

$$\text{If all of the cycles of } \sigma \text{ have even length}, \\ \text{then} \\ Tr(\sigma) = \frac{2^{X_{2}(\sigma) + X_{q}(\sigma) + \cdots}}{2} + \frac{2^{X_{2}(\sigma) + X_{y}(\sigma) + \cdots}}{2} \\ \text{preserving blocks} \\ \text{Can iterate } K_{q}(M) \text{ by } \text{taking total complex.} \end{cases}$$

Thm: (T.) Let M be an FS^{op} module, which
is a submodule of one generated in degree d.
Then
$$\exists s \in \mathbb{N}$$
 such that
 $\forall f_1, \dots, f_s \in \mathbb{N}$ $f_i > d$
 $f_i > d$
 $f_i = K_{f_2} \cdots K_{f_n} (M)$ is exact.

- · Key ingredient is Sam-Snowden Gröbner theory
- Taking Followius characters, this translates into a system of linear sifferential equations for Ch(M).

To describe the character of a class (d,s) module we need the following functions.

Def:
Let
$$V = 1^{m_1} 2^{m_2} \cdots$$
 be another integer partitude.
 $\begin{pmatrix} X \\ \nu \end{pmatrix} A^{X-\nu} = \prod_{n} \begin{pmatrix} X_n \\ m_n \end{pmatrix} \begin{pmatrix} \Xi \\ dad \end{pmatrix} \longleftrightarrow \frac{P\nu}{Z_{\nu}} \begin{pmatrix} R \begin{bmatrix} \Xi \\ h_m \end{bmatrix} \end{pmatrix}$
EX: If $A = 0$, $\prod_{n} \begin{pmatrix} X_n(\sigma) \\ m_n \end{pmatrix} O^{X_n(\sigma) - m_n}$
is nonzero iff $\sigma \in S_n$ has cycle type V .

Characters
Thun: (T.) Let M be an
$$FJ^{op}$$
 module of
clas (d,s). Then the character of M is of the
form:

$$\sum_{V,A} C_{V,A} \begin{pmatrix} X \\ V \end{pmatrix} A^{X-V}$$
for $|A| \leq d$, rank(v) $\leq d$, $C_{V,A} \in Q$.
for $|A| \leq d$, rank(v) $\leq d$, $C_{V,A} \in Q$.

$$\prod_{i=1}^{V} of rows in Young$$
diagon of v .
Finite dimensionality
Thun (T.) There is a finite dimensional space
of class functions Ud,s containing the
character functions of FS^{op} modules of class (9,5)
dim $U_{d,s} = \begin{pmatrix} d+s-1\\ S-1 \end{pmatrix} \sum_{i\leq d} \#$ interpretitions of i .

Questions: • For which categories does $M_{(mod tarin)}$ finitely generated $\Rightarrow K_d^{or}(M)$ exact? e.g. VI_q in describing characteristic

How does the class of an FS^{op} module
 behave in short exact sequences?

• What is the representation theory of $F5^{or}$? Can the complexes $K_d(M)$ be used analogously to $M \rightarrow \Xi M$ for FI modules?

Thanks!

Thanks Andrew + Jenny!

I dea of proof for
$$FS^{ep}$$
 modules.
(1) Use $OS^{ep} \longrightarrow FS^{ep}$ where
 OS^{ep} is the category of totally ordered sets
and "ordered surjection"
 $f: X \longrightarrow Y$ s.t. $i \leq j \Rightarrow \min(f^{-1}(i)) \leq \min(f^{-1}(i))$

2 Gröbner theory: reduce to
$$OS^{\circ p}$$

subsets of $OS(-, T)$

Ex: If
$$T = \{a, b\}$$
 and
aba describes the surjection $[3] \xrightarrow{} T$
 $11 \xrightarrow{} a$
 $21 \xrightarrow{} b$
 $3 \xrightarrow{} a$

(3) Associate P(d) - sets to DFA's

and prove that they yield exact complexes

$$I(w, A) = P(d)^{xr}$$

 $= \{ portitions p \} \ w \ factors \ through p, \}$
 w/p accepted by A

Prove that the
$$P(d)^{r}$$
 set
associated to $I(w, A)$ is exact.

$$\begin{array}{l} \text{Arndd:}\\ Z & \text{dim} \ H_{i}(Conf_{n}C) \ t^{\circ} = \prod_{j=0}^{n-1} (1+j) \\ \end{array}$$

Gorestry - Macpherson:
Contr
$$G \in \mathbb{C}^n$$
 is a hyperplane complement,
 $w/$ associated poset the lattice of set partitions.