Connections between commutative algebra and representations of categories

Andrew Snowden

Utah, July 17, 2015

Andrew Snowden

Repns. of categories

Utah, July 17, 2015 1 / 43

Definition

A representation of a category C over a ring k is a functor $C \to Mod_k$.

We also use the terminology $\mathbf{k}[\mathcal{C}]$ -module.

Two observations from recent years:

- Representations of categories are a useful tool to study a wide range of stability problems in algebra, topology, representation theory, statistics, and more.
- ► In many cases, k[C]-modules behave like modules over a commutative ring, and so ideas from commutative algbera and algebraic geometry are useful in studying them.

Examples

Basic finiteness properties

 $M = \mathbf{k}[\mathcal{C}]$ -module, $m \in M(x)$

 $ightarrow \langle m
angle =$ smallest submodule containing m

Definition

M is **finitely generated** if $M = \langle m_1 \rangle + \cdots + \langle m_n \rangle$.

Definition

 $\mathbf{k}[\mathcal{C}]$ is **noetherian** if any submodule of a finitely generated module is finitely generated.

 $\underline{\mathbf{N}}$ = category associated to the poset \mathbf{N} .

Objects are the non-negative integers and there is exactly one morphism $n \rightarrow m$ when $n \leq m$.

 $\begin{array}{lll} \mathsf{k}[\underline{\mathsf{N}}]\text{-module} & \Longleftrightarrow & \mathsf{k}\text{-module} \ V_n \text{ for each } n \in \mathsf{N} \text{ with linear maps} \\ & V_n \to V_{n+1} \end{array}$

 \iff **N**-graded **k**[t]-module

Theorem (Hilbert)

 $k[\underline{N}]$ is noetherian if k is left-noetherian.

 $\mathbf{FI} = \mathsf{category} \text{ of finite sets with injections.}$

 $\mathbf{k}[\mathbf{FI}]\text{-module} \iff \begin{cases} \text{representation } V_n \text{ of } S_n \text{ for each } n \in \mathbf{N} \text{ with} \\ S_n\text{-equivariant maps } V_n \to V_{n+1} \text{ satisfying } \dots \end{cases}$

Remark

k[FI]-modules are like k[t]-modules, but much more complicated.

Theorem

k[**FI**] is noetherian if **k** is left-noetherian.

Proved by:

- Snowden (char. 0)
- Church–Ellenberg–Farb (char. 0)
- Church–Ellenberg–Farb–Nagpal
- Sam–Snowden

Example 2: FI

X = topological space

 $\operatorname{Conf}_{S}(X) = \operatorname{space} \operatorname{of} \operatorname{injections} S \to X$

 $S \mapsto \operatorname{Conf}_{S}(X)$ is a contravariant functor $\operatorname{FI} \to \operatorname{Top}$

 \implies $S \mapsto \mathrm{H}^{i}(\mathrm{Conf}_{S}(X), \mathbf{k})$ is a $\mathbf{k}[\mathbf{FI}]$ -module (*i* fixed)

Theorem (Church–Ellenberg–Farb–(Nagpal))

Under suitable hypotheses, this k[FI]-module is finitely generated.

Remark

The noetherianity result for k[FI] is crucial for this application.

Vec^{Δ} is the following category (**k** a field):

- An object is a finite family of **k**-vector spaces $\{V_i\}_{i \in I}$.
- A morphism {V_i}_{i∈I} → {W_j}_{j∈J} consists of a surjection f : J → I and for each i ∈ I a linear map V_i → ⊗_{f(j)=i} W_j.

A Δ -module is a $k[Vec^{\Delta}]$ -module satisfying a technical condition.

Example 3: Vec^{Δ}

Associating to $\{V_i\}_{i \in I}$ the (affine cone on the) Segre embedding

$$\prod_{i\in I} \mathbf{P}(V_i^*) \to \mathbf{P}\left(\bigotimes_{i\in I} V_i^*\right)$$

defines a contravariant functor

 $\textbf{Vec}^{\Delta} \rightarrow \{ \text{closed embeddings of varieties} \}.$

⇒ associating to $\{V_i\}_{i \in I}$ the space of *p*-syzygies of the Segre embedding (for *p* fixed) defines a Δ -module.

Theorem (Snowden, Sam–Snowden)

Noetherianity holds for Δ -modules.

Theorem (Snowden, Sam–Snowden)

The Δ -module of p-syzygies of the Segre embedding is finitely generated.

Remark

Explicit generators for this Δ -module are known only for $p \leq 3$.

General results

Problem

Find a general condition on C that ensures $\mathbf{k}[C]$ is noetherian, for any left-noetherian ring \mathbf{k} .

Solution

Adapt the theory of Gröbner bases to $\mathbf{k}[\mathcal{C}]$ -modules.

For $x \in C$ define a $\mathbf{k}[C]$ -module P_x by $P_x(y) = \mathbf{k}[\operatorname{Hom}(x, y)]$.

 \rightarrow The modules P_x take the role of free modules.

For $f \in Hom(x, y)$, write e_f for the corresponding element of $P_x(y)$.

 \rightarrow The elements e_f take the role of monomials.

Define $e_f \mid e_{f'}$ if f' = gf for some g.

Define $e_f \sim e_{f'}$ if $e_f \mid e_{f'}$ and $e_{f'} \mid e_f$.

 $\mathcal{M}_x =$ set of monomials in P_x up to \sim . Partially ordered by divisibility.

An **admissible order** on \mathcal{M}_x is a well-order < such that $e_f < e_{f'}$ implies $e_{gf} < e_{gf'}$, whenever this makes sense.

Gröbner bases

Theorem (Richter, Sam-Snowden)

Suppose that:

- **1** k is left-noetherian.
- **2** C is **directed** (any self-map is the identity).
- **③** \mathcal{M}_{x} is well partially ordered under divisibility.
- \mathcal{M}_{x} admits an admissible order.

Then any submodule N of P_x is finitely generated.

Idea of proof:

- Admissible order \rightarrow initial submodule in(N).
- Well partial order \implies in(N) finitely generated.
- Standard Gröbner basis argument $\implies N$ finitely generated.

Definition

A category C is **Gröbner** if it is directed and M_x is well partially ordered and admits an admissible order for all $x \in C$.

Theorem

If ${\mathcal C}$ is Gröbner then $k[{\mathcal C}]$ is noetherian, for any left-noetherian ring k.

Definition

A category C is **quasi-Gröbner** if there exists a Gröbner category C' and a functor $C' \to C$ that is essentially surjective and satisfies a certain technical finiteness condition (property F).

Theorem

If C is quasi-Gröbner then $\mathbf{k}[C]$ is noetherian, for any left-noetherian ring \mathbf{k} .

Example: FI

 $\mathbf{OI} = \mathsf{category} \text{ of totally ordered finite sets with order-preserving injections.}$

Theorem OI *is Gröbner*.

Theorem

FI is quasi-Gröbner, via the natural functor $\textbf{OI} \rightarrow \textbf{FI}.$

Corollary

k[FI] is noetherian for any left-noetherian ring k.

FS = category of finite sets with surjections.

Theorem

 $\mathsf{FS}^{\mathrm{op}}$ is quasi-Gröbner, via a functor $\mathsf{OS}^{\mathrm{op}} \to \mathsf{FS}^{\mathrm{op}}$.

Remark

The noetherianity of Δ -modules is deduced from this.

VA_q = category of finite dimensional vector spaces over F_q .

Theorem

 VA_q is quasi-Gröbner, via a functor $\mathsf{OS}^{\mathrm{op}} \to \mathsf{VA}_q$.

Corollary (Lannes-Schwartz artinian conjecture)

 $\mathbf{k}[\mathbf{VA}_q]$ is noetherian.

Can often define a "Hilbert series" H_M of a $\mathbf{k}[\mathcal{C}]$ -module M.

Problem

Find a general condition on C that ensures H_M is "rational" for any finitely generated $\mathbf{k}[C]$ -module M.

Solution

Connect to the theory of formal languages.

We define a condition on \mathcal{C} called **lingual**.

 $\mathcal C$ lingual and M finitely generated $\implies \exists$ formal languages $\mathcal L$ and $\mathcal L'$ s.t.

$$\mathrm{H}_{\mathcal{M}}(t) = \mathrm{H}_{\mathcal{L}}(t) - \mathrm{H}_{\mathcal{L}'}(t),$$

where $H_{\mathcal{L}}(t)$ is the generating function for \mathcal{L} .

Can then appeal to results about generating functions of formal languages to obtain results about H_M .

Example: FI

For an $\mathbf{k}[\mathbf{FI}]$ -module M, with \mathbf{k} a field, define the Hilbert series by

$$\mathrm{H}_{M}(t) = \sum_{n \geq 0} \dim M([n]) \cdot t^{n}.$$

Theorem

Let *M* be a finitely generated $\mathbf{k}[\mathbf{FI}]$ -module. Then $\mathrm{H}_{M}(t) = \frac{f(t)}{(1-t)^{n}}$ for some polynomial *f* and some $n \ge 0$. Equivalently, $n \mapsto \dim M([n])$ is eventually a polynomial in *n*.

Corollary (Church–Ellenberg–Farb)

Fix a topological space X and an index i. Then $n \mapsto \beta_i(\text{Conf}_n(X))$ is eventually a polynomial of n. ($\beta_i = ith$ Betti number)

Example: **FS**^{op}

Define Hilbert series for $\textbf{FS}^{\mathrm{op}}$ modules as for FI-modules.

Theorem

Let *M* be a finitely generated $\mathbf{k}[\mathbf{FS}^{op}]$ -module. Then $H_M(t)$ is a rational function whose poles have the form 1/n with $n \in \mathbf{N}$.

Example

Let $M = P_2$. Then

$$H_M(t) = \frac{1}{1-2t} - \frac{2}{1-t} + 1.$$

Specific results: FI

From now on: \mathbf{k} is a field of characteristic 0.

Structure theorem

Structure theorem for $\mathbf{k}[t]$: every finitely generated module M is a sum of a torsion module T and free module F.

Analogous result for **k**[**FI**]:

Theorem

Let *M* be a finite length complex of finitely generated k[FI]-modules. Then there is an exact triangle

$$T \rightarrow M \rightarrow F \rightarrow$$

where T is a finite length complex of torsion k[FI]-modules and F is a finite length complex of projective k[FI]-modules.

Projective resolutions

Consider the projective resolution of a finitely generated k[FI]-module M:

$$\cdots \rightarrow P_2 \rightarrow P_1 \rightarrow P_0 \rightarrow M \rightarrow 0$$

If M is not projective, the resolution is necessarily infinite.

Define the *i*th linear strand $L_i(M)$ by $L_i(M)([n]) = \operatorname{Tor}_{n-i}(M, \mathbf{k})_n$.

 $\rightarrow L_i(M)$ has the structure of a **k**[**FI**]-module.

Theorem (Hilbert syzygy theorem)

Each linear strand is finitely generated as a k[FI]-module. Only finitely many linear strands are non-zero (i.e., regularity is finite).

Proof: structure theorem.

Theorem

The category of finitely generated k[FI]-modules has enough injectives, and every object has finite injective dimension.

Remark

In fact, all projective modules are injective.

Local cohomology

 $\mathrm{H}^{0}_{\mathfrak{m}}(M) =$ torsion submodule of M.

 $\mathrm{H}^{i}_{\mathfrak{m}}(-) = i$ th right derived functor of $\mathrm{H}^{0}_{\mathfrak{m}}(-)$.

 $\rightarrow \mathrm{H}^{i}_{\mathfrak{m}}(-)$ is called **local cohomology**.

Theorem

If M is finitely generated then $\mathrm{H}^{i}_{\mathfrak{m}}(M)$ is finite dimensional for all *i*, and vanishes for *i* sufficiently large.

Proof: theorem on injective resolutions.

Remark

There is a vanishing theorem for local cohomology similar to the one in commutative algbera.

Local cohomology

P = Hilbert polynomial of M

$$\rightarrow \dim M([n]) = P(n) \text{ for } n \gg 0.$$

Theorem

$$\dim M([n]) - P(n) = \sum_{i \ge 0} (-1)^i \dim \operatorname{H}^i_{\mathfrak{m}}(M)_n$$

Corollary

dim M([n]) = P(n) if n is large enough so that $\operatorname{H}^{i}_{\mathfrak{m}}(M)_{n} = 0$ for all i.

Specific results: **FI**_d

 FI_d is the category of finite sets where morphisms are injections together with a *d*-coloring of the complement of the image.

k[**FI**] modules are analogous to **k**[t]-modules; **k**[**FI**_d]-modules are analogous to **k**[t_1, \ldots, t_d]-modules.

Theorem

 \mathbf{FI}_d is quasi-Gröbner, and so $\mathbf{k}[\mathbf{FI}_d]$ is noetherian.

Many results about **FI** (e.g., the Hilbert syzygy theorem) carry over to FI_d .

Interesting new behavior: continuous families of modules.

 $M, N = \mathbf{k}[\mathbf{FI}_d]$ -modules \implies can define a $\mathbf{k}[\mathbf{FI}_d]$ -module $M \otimes N$:

 $(M \otimes N)(S) =$ quotient of $\bigoplus_{S=A \amalg B} M(A) \otimes N(B)$ by relations $f_*(x) \otimes y = x \otimes f_*(y)$, where f is a morphism in \mathbf{Fl}_d .

The unit object for \otimes is the principal projective P_{\emptyset} .

Remark

This construction applies to $\mathbf{k}[\mathcal{C}]$ -modules whenever \mathcal{C} has a symmetric monoidal structure.

- $\mathcal{A}=$ abelian category with tensor product \otimes
- R= the unit object of \otimes
- **Ideal** = subobject of R
- $IJ = \text{image of } I \otimes J \text{ under } R \otimes R \rightarrow R$
- *P* is **prime** if $IJ \subset P$ implies $I \subset P$ or $J \subset P$

Spec(A) = set of prime ideals with Zariski topology

The spectrum of \mathbf{FI}_d

Theorem

$$\operatorname{Spec}(\mathbf{k}[\mathbf{FI}_d]) = \prod_{i=0}^d \mathbf{Gr}(i, d).$$

Even better: the category of $\mathbf{k}[\mathbf{FI}_d]$ -modules is filtered by Serre subcategory $\mathcal{A}_0 \subset \cdots \subset \mathcal{A}_d$ and $\mathcal{A}_i/\mathcal{A}_{i-1}$ can be described as a category of sheaves on $\mathbf{Gr}(i, d)$.

Corollary

$$\mathrm{K}_{0}(\mathsf{Mod}^{\mathrm{fg}}_{\mathsf{k}[\mathsf{Fl}_{d}]}) = \bigoplus_{i=0}^{d} \Lambda \otimes \mathrm{K}_{0}(\mathsf{Gr}(i, d))$$

Here Λ is the ring of symmetric functions. In particular, the left side is free of rank 2^d over Λ .

Specific results: **UB**

UB is the category of finite sets where morphisms are injections together with a perfect matching on the complement of the image.

Theorem (Nagpal–Sam–Snowden)

k[**UB**] is noetherian (if **k** is a field of characteristic 0).

Remark

UB is not quasi-Gröbner. There is a combinatorial approach to noetherianity, but the combinatorics problem is unsolved!

Theorem (Dan-Cohen–Penkov–Verganova, Sam–Snowden)

Finite length **k**[**UB**]-modules are equivalent to "algebraic" representations of the infinite orthogonal group.

The spectrum of $\boldsymbol{\mathsf{UB}}$

 $\mathbf{k}[\mathbf{UB}]$ -modules are equivalent to \mathbf{GL}_{∞} -equivariant modules over Sym $(\text{Sym}^2(\mathbf{k}^{\infty})) = \mathbf{k}[x_{i,j}]$ (via Schur–Weyl duality).

*n*th determinantal ideal in $\mathbf{k}[x_{i,j}] \implies$ a prime ideal P_n in $\mathbf{k}[\mathbf{UB}]$.

Surprise: Spec(k[UB]) = $N^2 \cup \{\infty\}$

 \rightarrow **N**² is the set of **super ranks**.

The category of $\mathbf{k}[\mathbf{UB}]$ -modules has a filtration indexed by \mathbf{N}^2 so that the (n, m) graded piece is (closely related to) the category of representations of the orthosymplectic group $\mathbf{O}(n \mid m)$. (There is also a "generic piece" that is related to representations of $\mathbf{O}(\infty)$.)