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Representations of categories

Definition

A representation of a category C over a ring k is a functor C — Mody.

We also use the terminology k[C]-module.
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Representations of categories

Two observations from recent years:

» Representations of categories are a useful tool to study a wide range
of stability problems in algebra, topology, representation theory,
statistics, and more.

> In many cases, k[C]-modules behave like modules over a commutative
ring, and so ideas from commutative algbera and algebraic geometry
are useful in studying them.
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Examples
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Basic finiteness properties

M = k|C]-module, m € M(x)

— (m) = smallest submodule containing m

Definition
M is finitely generated if M = (my) + - - - + (mp).

Definition
k[C] is noetherian if any submodule of a finitely generated module is
finitely generated.
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Example 1: N

N = category associated to the poset N.

Objects are the non-negative integers and there is exactly one morphism
n— mwhen n < m.

k[N]-module <= k-module V, for each n € N with linear maps
Vn — V,H_]_

<= N-graded k[t]-module

Theorem (Hilbert)

k[N] is noetherian if k is left-noetherian.
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Example 2: FI

Fl = category of finite sets with injections.

representation V,, of S, for each n € N with

k[Fl}-module < {Sn—equivariant maps V,, — Vj41 satisfying ...

k[Fl]-modules are like k[t]-modules, but much more complicated.
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Example 2: FI

k[F1] is noetherian if k is left-noetherian. \

Proved by:

» Snowden (char. 0)
» Church—Ellenberg—Farb (char. 0)
» Church—Ellenberg—Farb—Nagpal

» Sam-Snowden
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Example 2: FI

X = topological space
Confs(X) = space of injections S — X
S — Confg(X) is a contravariant functor FI — Top

— S+ H/(Confs(X),k) is a k[FI]-module (i fixed)

Theorem (Church—Ellenberg—Farb—(Nagpal))

Under suitable hypotheses, this k[Fl]-module is finitely generated.

The noetherianity result for k[FI] is crucial for this application. \
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Example 3: Vec”

Vec? is the following category (k a field):

» An object is a finite family of k-vector spaces {V;}ic;.
» A morphism {V;}ic; = {W,};cs consists of a surjection f: J — [ and
for each i € | a linear map V; — ®f(j):i W;.

A A-module is a k[Vec?]-module satisfying a technical condition.

Andrew Snowden Repns. of categories Utah, July 17, 2015 10 / 43



Example 3: Vec”

Associating to {V;};c; the (affine cone on the) Segre embedding

et e (@)
i€l i€l
defines a contravariant functor

Vec® — {closed embeddings of varieties}.

—  associating to {V;};c/ the space of p-syzygies of the Segre
embedding (for p fixed) defines a A-module.
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Example 3: Vec”

Theorem (Snowden, Sam-Snowden)

Noetherianity holds for A-modules.
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Example 3: Vec”

Theorem (Snowden, Sam-Snowden)

The A-module of p-syzygies of the Segre embedding is finitely generated.

Explicit generators for this A-module are known only for p < 3. \
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General results
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Noetherianity

Find a general condition on C that ensures k[C] is noetherian, for any
left-noetherian ring k.

Adapt the theory of Grébner bases to k[C]-modules.
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Monomials

For x € C define a k[C]-module P, by P«(y) = k[Hom(x, y)].
— The modules P, take the role of free modules.
For f € Hom(x, y), write ef for the corresponding element of Py(y).

— The elements ef take the role of monomials.
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Monomials

Define ef | ef if f' = gf for some g.
Define ef ~ €fr if er | €f! and €f! | €r.
M = set of monomials in Py up to ~. Partially ordered by divisibility.

An admissible order on M, is a well-order < such that er < ef implies
egr < €gf’, Wwhenever this makes sense.
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Grobner bases

Theorem (Richter, Sam-Snowden)
Suppose that:

@ k /s left-noetherian.

@ C is directed (any self-map is the identity).
© M is well partially ordered under divisibility.
Q@ M, admits an admissible order.

Then any submodule N of Py is finitely generated.

Idea of proof:

» Admissible order — initial submodule in(/N).
» Well partial order = in(N) finitely generated.

» Standard Grobner basis argument = N finitely generated.
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Grobner categories

Definition

A category C is Grobner if it is directed and M is well partially ordered
and admits an admissible order for all x € C.

If C is Grébner then k[C] is noetherian, for any left-noetherian ring k. \
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Quasi-Grobner categories

Definition
A category C is quasi-Grobner if there exists a Grobner category C’ and a
functor C’ — C that is essentially surjective and satisfies a certain technical
finiteness condition (property F).

If C is quasi-Grébner then k[C] is noetherian, for any left-noetherian ring k.
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Example: FI

Ol = category of totally ordered finite sets with order-preserving injections.

Ol is Grébner. \

Fl is quasi-Grobner, via the natural functor Ol — FL.

k[Fl] is noetherian for any left-noetherian ring k.
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Example: FS

FS = category of finite sets with surjections.

FSP s quasi-Grébner, via a functor OS°? — FS°P. \
The noetherianity of A-modules is deduced from this. \
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Example: VA,

VA, = category of finite dimensional vector spaces over F,.

VA, is quasi-Grobner, via a functor OS°? — VA.

Corollary (Lannes=Schwartz artinian conjecture)
k[VA,] is noetherian.
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Hilbert series

Can often define a “Hilbert series” Hy of a k[C]-module M.

Problem

Find a general condition on C that ensures Hy, is “rational” for any finitely
generated k[C]-module M.

Connect to the theory of formal languages.
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Lingual categories

We define a condition on C called lingual.

C lingual and M finitely generated = 3 formal languages £ and £’ s.t.
Hu(t) = He(t) - Heo(t),

where H.(t) is the generating function for L.

Can then appeal to results about generating functions of formal languages
to obtain results about Hyy.
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Example: FI

For an k[Fl]-module M, with k a field, define the Hilbert series by

Hpy(t) =) dim M([n]) - t".

n>0

Theorem

Let M be a finitely generated k[FI]-module. Then Hy(t) = 55 for

1—t)
some polynomial f and some n > 0. Equivalently, n — dim M([n]) is
eventually a polynomial in n.

.

Corollary (Church—Ellenberg—Farb)

Fix a topological space X and an index i. Then n — [;(Conf,(X)) is
eventually a polynomial of n. (8; = ith Betti number)

A
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Example: FS°P

Define Hilbert series for FS°® modules as for FI-modules.

Theorem

Let M be a finitely generated k|FS°P]-module. Then Hpy(t) is a rational
function whose poles have the form 1/n with n € N.

Let M = P,. Then

A,
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Specific results: Fl
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From now on: k is a field of characteristic 0.
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Structure theorem

Structure theorem for k([t]: every finitely generated module M is a sum of
a torsion module T and free module F.

Analogous result for k[FI]:

Theorem

Let M be a finite length complex of finitely generated k[Fl]-modules.
Then there is an exact triangle

T—-M—=F—

where T is a finite length complex of torsion k[Fl]-modules and F is a
finite length complex of projective k[Fl]-modules.
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Projective resolutions

Consider the projective resolution of a finitely generated k[Fl]-module M:
o= P =P =P M—=0

If M is not projective, the resolution is necessarily infinite.

Define the ith linear strand L;(M) by L;(M)([n]) = Tor,_;(M, k)n.

— Li(M) has the structure of a k[FI]-module.

Theorem (Hilbert syzygy theorem)

Each linear strand is finitely generated as a k[Fl]-module. Only finitely
many linear strands are non-zero (i.e., regularity is finite).

Proof: structure theorem.
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Injective resolutions

The category of finitely generated k[Fl]-modules has enough injectives,
and every object has finite injective dimension.

In fact, all projective modules are injective. \
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Local cohomology

HY (M) = torsion submodule of M.
Hi (—) = ith right derived functor of H(-).

— Hi (—) is called local cohomology.

If M is finitely generated then Hi (M) is finite dimensional for all i, and
vanishes for i sufficiently large.

Proof: theorem on injective resolutions.

There is a vanishing theorem for local cohomology similar to the one in
commutative algbera.
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Local cohomology

P = Hilbert polynomial of M

— dim M([n]) = P(n) for n > 0.

dim M([n]) — P(n) =) (~1)"dim H,(M),

i>0

dim M([n]) = P(n) if n is large enough so that Hi (M), = 0 for all i.
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Specific results: Fly
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The category Fly

Fly is the category of finite sets where morphisms are injections together
with a d-coloring of the complement of the image.

k[FI] modules are analogous to k[t]-modules; k[Fl4]-modules are
analogous to k[ti, ..., tg]-modules.

Fly is quasi-Grébner, and so k[Fly] is noetherian.

Many results about Fl (e.g., the Hilbert syzygy theorem) carry over to Fl.

Interesting new behavior: continuous families of modules.
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Tensor products

M, N = k[Flg]-modules = can define a k[Fl4]-module M @ N:

(M ® N)(S) = quotient of @s_a 5 M(A) @ N(B) by relations
fi(x) ® y = x @ f(y), where f is a morphism in Flg.

The unit object for ® is the principal projective Py.

This construction applies to k[C]-modules whenever C has a symmetric
monoidal structure.
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Tannakian algebraic geometry

A = abelian category with tensor product ®
R = the unit object of ®

Ideal = subobject of R

IJ =image of | ® Junder R®& R — R

P is prime if IJ C P implies!/ C Por JCP

Spec(.A) = set of prime ideals with Zariski topology
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The spectrum of Fl,

d
Spec(k[Flg]) = [ ] Gr(i, d).
i=0

Even better: the category of k[Fly]-modules is filtered by Serre
subcategory Ap C --- C Ay and A;/A;_1 can be described as a category
of sheaves on Gr(/, d).

d
Ko(Modie, 1) = D) A ® Ko(Gr(i, d))
i=0

Here N is the ring of symmetric functions. In particular, the left side is free
of rank 29 over A.
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Specific results: UB
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The category UB

UB is the category of finite sets where morphisms are injections together
with a perfect matching on the complement of the image.

Theorem (Nagpal-Sam—Snowden)
k[UB] is noetherian (if k is a field of characteristic 0).

UB is not quasi-Grobner. There is a combinatorial approach to
noetherianity, but the combinatorics problem is unsolved!
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Applications of UB

Theorem (Dan-Cohen—Penkov—Verganova, Sam—-Snowden)

Finite length k[UB]-modules are equivalent to “algebraic” representations
of the infinite orthogonal group.
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The spectrum of UB

k[UB]-modules are equivalent to GL-equivariant modules over
Sym(Sym?(k>)) = k[x;] (via Schur-Weyl duality).

nth determinantal ideal in k[x; j| == a prime ideal P, in k[UB].
Surprise: Spec(k[UB]) = N2 U {o0}
— N2 is the set of super ranks.

The category of k[UB]-modules has a filtration indexed by N? so that the
(n, m) graded piece is (closely related to) the category of representations
of the orthosymplectic group O(n | m). (There is also a “generic piece”
that is related to representations of O(c0).)

Andrew Snowden Repns. of categories Utah, July 17, 2015 43 / 43



