
TATE UNIFORMIZATION OF DRINFELD MODULES AND COMPACTIFICATIONS

OF DRINFELD MODULAR VARIETIES

1. Review

Let us fix the usual notation

• C is a geometrically connected smooth projective curve over a finite field Fq.
• ∞ ∈ C is a closed point.
• F = Fq(C) is the function field of C.
• A = H0(C − {∞},OC) is the ring of functions on C that are regular outside ∞.

• Â = lim0 6=I⊂AA/I and Af = Â⊗A F .
• F∞ is the completion of F at ∞ with valuation ring O∞. The ring A is discrete inside F∞, and the

absolute value of F∞ is normalized via |a|∞ = #|A/a| for any 0 6= a ∈ A.
• C∞ is the completed algebraic closure of F∞.
• For a ring R of characteristic p, R{τ} ' EndG(Ga,R) is the Frobenius twisted polynomial arising.

The main objects under consideration are:

Definition 1.1 (Drinfeld modules). Let S be a scheme of characteristic p. A Drinfeld module X = (L, φ)
of rank d on S is a line bundle L on S equipped with a ring homomorphism φ : A → EndS(L) such that,
locally over open subsets of S trivializing L, we can write

φ(a) =

m∑
i=0

aiτ
i

where pm = |a|d and the coefficient am is a unit. Taking the derivative (i.e., setting τ = 0) gives a map
S → Spec(A) that is called the characteristic of S.

If X = (L, φ) is a Drinfeld module over S, then we can view S as an A-scheme, and L as an A-module
valued functor on S-schemes. This permits us to define the notion of level structure:

Definition 1.2 (Level structure). Let X/S be a Drinfeld module of rank d. Let I ⊂ A be a nonzero ideal.
A level I structure on X is a homomorphism

ψ : (I−1/A)d → X(S)

of A-modules such that for any m ∈ V (I), we have

Xm =
∑

α∈m−1/A

ψ(α)

as divisors on X. When im(S) ∩ Spec(A/I) = ∅, then this is the same as specifying as isomorphism

(I−1/A)d ' X[I]

of A/I-module schemes over S.

We have seen the following:

thm1 Theorem 1.3 (Existence of moduli spaces). (1) Fix an ideal 0 6= I ⊂ A with #V (I) ≥ 2. The functor
that sends an A-scheme S to the set of Drinfeld A-modules X of rank d over S equipped with a level
I-structure ψ (up to isomorphism) is represented by a flat affine A-scheme Md

I of relative dimension
d − 1 that is smooth outside V (I). Moreover, Md

I is itself a smooth Fq-scheme, and there is an
obvious action of GLd(A/I) on this A-scheme.

(2) For J ⊂ I, there is a forgetful mad Md
J → Md

I that is finite, flat, étale outside V (J), that is
compatible with group actions.

(3) The inverse limit Md = lim06=I⊂AM
d
I acquires an action of GLd(Af )/F ∗.
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2. Tate uniformization
Tate

In this section, V denotes a complete dvr over A, m ⊂ V is the maximal ideal, K = Frac(V ), and Ks is
a separable closure. The norm | · | always refers to the norm on K.

Definition 2.1 (Good and stable reduction). Let X be a Drinfeld A-module of rank d > 0 over K. We say
that X has stable reduction of rank d1 > 0 is it can be represented by a map φ : A → O{τ} such that φ
modulo m gives a Drinfeld A-module of rank d1 over O/m; if we can take d1 = d, we say that X has good
reduction.

In other words, if we represent X by an action of A on Ga,O, then having stable reduction means that at
least some a ∈ A acts by a non-scalar Ga,O/m.

Example 2.2 (Non-stable reduction). Taking A = Fp[T ], O = FpJT K, and φ : A → O{τ} given by
T 7→ T + T · τ gives a Drinfeld module of rank 1 over O[ 1T ], but does not give a Drinfeld module over
Fp = O/(T ). From the proof of the proposition below, it follows that this Drinfeld module acquires stable
reduction after extracting a (p− 1)-st root of T .

The following is an analog of the stable reduction theorem for abelian varieties.

propGR Proposition 2.3. Every Drinfeld A-module X over K has potentially stable reduction.

Proof. Choose a representative φ : A→ O{τ} for X; one can show that this is always possible (and is clear
from the formula for the conjugation by c action given below). Choose some non-constant a ∈ A and write
φa =

∑
i aiτ

i. It will be enough to show that, after replacing φ with φ′ : A→ O{τ} obtained by a change of
variables on Ga given by some scalar c ∈ K, the polynomial φ′a is non-constant modulo m; equivalently, we
want to ensure φ′(yi) has some non-constant coefficient being a unit.

Unwinding definitions, one finds that φ′a is given by

c · (
∑
i

aiτ
i) · c−1 =

∑
i

c1−p
i

aiτ
i.

The constant coefficient has not changed, so it lies in O. We need to ensure that all coefficients appearing
above lie in O, and that some non-constant coefficient is a unit. Now if we had some c ∈ K with

val(c) = min
i>0

val(ai)

pi − 1
,

then we would be done: all coefficients would lie in O as the RHS is the minimum, and the index i attaining
the minimum would give the unit coefficient. We might not be able to find such a c in K, but we can always
find it after extending scalars. This proves the potential stable reduction. �

There is also a classification of of Drinfeld modules with arbitrary reduction types in terms of Drinfeld
modules with good reduction equipped with certain lattices (Tate data), akin to p-adic uniformization of
abelian varieties. We need the following definition:

Definition 2.4 (Lattices). Let X be a Drinfeld module over K. A lattice in X is a Galois invariant A-
submodule Γ ⊂ X(Ks) that is finite projective as an A-module and discrete as a subspace of X(Ks), i.e.,
its intersection with every residue disc is finite. Each lattice determines a representation GK → Aut(Γ).

Proposition 2.5 (Tate uniformization). There is an equivalence of categories between Drinfeld modules X
of rank d over K and the category of pairs (Y,Γ) where Y is a Drinfeld module of rank d1 (d1 ≤ d) over K
with potentially good reduction, and Γ ⊂ Y (Ks) is a lattice of rank d− d1.

Note that Γ need not be a subset of Y (Ks). We shall see later that in rank 1, the level structure forces
Γ to lie in Y (K).

Proof sketch. We sketch how to construct the correspondence between Drinfeld modules X of rank d over K
with stable reduction and the category of pairs (Y,Γ) where Y is a Drinfeld module of rank d1 (d1 ≤ d) over
K with good reduction, and Γ ⊂ Y (Ks) is a lattice of rank d − d1. The general case is deduced by Galois
descent.
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Given (Y,Γ), one can construct X by passage to a quotient, as in the classification of Drinfeld modules
over F∞ seen earlier.

Conversely, fix an X of rank d with stable reduction of rank d1, represented by a map φ : A→ O{τ}. The
hypothesis ensures that φ mod m is a Drinfeld module of rank d1. This means that for any 0 6= a ∈ A, the
coefficient ad1·logp |a|d of φ(a) =

∑
i aiτ

i is a unit in O, and all higher coefficients are topologically nilpotent

(i.e., lie in m). By the lemma on bringing Drinfeld modules to “standard form” from Haoyang’s talk, modulo
each mn, we can find a unique pair (ψm, um) where ψ : A → O/mn{τ} is a Drinfeld module of rank d1 in
standard form (i.e., the highest coefficient of ψ(a) is in degree d1 · logp |a| and is a unit) and u has constant
coefficient 1 such that u ·ψ(a) = φ ·u(a) for all a ∈ A. By uniqueness, these patch to give similar (ψ, u) over
O. The Drinfeld module attached to ψ gives us our Y . One checks (by a difficult but elementary calculation)
that u provides a homomorphism Y → X of Drinfeld modules, and that the kernel Γ of the induced map
Y (Ks)→ X(Ks) is a lattice of rank d− d1. �

Cons1 Construction 2.6 (Weak analog of j-invariants). Let φ : A → R{τ} be a Drinfeld module of rank 2 over
a characteristic p ring R. Fix some 0 6= a ∈ A with |a| > 0, and let s = logp |a|. As in the definition of
Drinfeld modules, locally on Spec(R), we can write

φ(a) =
2d∑
i=0

aiτ
i

with highest coefficient a2d being a unit. The ratio

t =
a
|a|+1
s

a2s

is a well-defined global section ti ∈ R (i.e., is independent of the choice of φ). Thus, we have constructed a
map

M2
I

fa−→ Spec(A[t])

depending on a. (There is a similar construction in any rank.)

We now explain how to detect reduction behaviour in terms of the classifying map to the moduli space
using the map fa constructed above. In the process, this gives a good way to probe the moduli space itself.

Cor1 Corollary 2.7. Let 0 6= I ⊂ A with #V (I) ≥ 2. Let X be a Drinfeld module of rank 2 over K with level I
structure. Then:

(1) If X has potentially good reduction, then it has good reduction.
(2) X has good reduction if and only if the classifying map cX : Spec(K) → M2

I carries the section
t ∈ OM2

I
from the preceding construction into O ⊂ K.

(3) The map fa constructed above is finite surjective and flat.

Proof. (1) is clear from the representability of M2
I .

For (2), if X has good reduction, then cX extends to a map Spec(O) → M2
I , so one direction is clear.

Conversely, if X does not have good reduction, then it must have stable reduction of rank 1 over some
extension L/K. But, from the definition (and well-definedness) of the function t, this means that the
pullback of t to L does not lie in OL: the numerator is a unit, while the denominator is topologically
nilpotent. As O = OL ∩K, the claim follows.

For (3), as both sides are regular affine schemes of dimension 2, it is enough to check fa is proper: this
will imply that fa is finite (Zariski’s main theorem), thus flat (miracle flatness lemma), and thus surjective
(it is open by flatness, and closed by properness). But (2) gives exactly the valuative criterion of properness,
so we are done. �

3. Complex multiplication

In rank 1, Drinfeld’s moduli space M1 explicitly realizes an abelian extension of F totally split at∞ whose
Galois group is A∗f/F

∗; the congruence relation and class field theory then show that this space “realizes”
class field theory for F .
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Theorem 3.1. The A-scheme M1 is the spectrum of the ring of integers in a maximal abelian extension
of F that is totally split at ∞. The action of A∗f/k

∗ constructed above coincides with the action from class
field theory.

Proof sketch. Let 0 6= I ⊂ A with #V (I) ≥ 2. The d = 1 analog of Corollary 2.7 says that the map
M1
I → Spec(A) is finite; more simply, this map is proper as any rank 1 Drinfeld module has potentially good

reduction by Proposition 2.3. Thus, by Theorem 1.3, M1
I is a smooth curve, and the map M1

I → Spec(A) is
a finite surjective map ramified only over V (I).

For a point v ∈ Spec(A)− V (I), pick a uniformizer π ∈ Av. By the congruence relation from Haoyang’s
talk, the action of π on the fibre M1

I,v of M1
I over v coincides with the Frobenius over the field Av/(π). But

then each connected component of M1
I is also left invariant by this action. As this is true for almost all v’s,

it follows that each connected component of M1
I is invariant under the A∗f -action, and thus the same holds

true for the infinite level version M1.
On the other hand, by the adelic description from Matt’s talk, we have M1(F∞) = M1(F s∞) = A∗f/k

∗,

compatibly with the group action. As the A∗f/k
∗-action on this set is simply transitive, it follows from Galois

theory thatM1 is a connected generically Galois cover of Spec(A) with group A∗f/k
∗. The congruence relation

and class field theory then gives the desired identification. �

4. Compactification

The main theorem about compactifications is:

thmc Theorem 4.1. Let 0 6= I ⊂ A with #V (I) ≥ 2.

(1) There exists a unique smooth surface M
2

I over A containing M2
I as a dense open such M

2

I → Spec(A)

is proper and ∆2
I := M

2

I −M2
I → Spec(A) is finite. The group action extends.

(2) If J ⊂ I, then M2
J →M2

I extends to a finite morphism M
2

I →M
2

J . The group action also extends.

(3) The completion of M
2

I along the boundary ∆2
I can be explicitly described in terms of Tate data. In

particular, the map M
2

I → Spec(A) is smooth outside V (I).

The strategy of the proof is the following:

(1) Build the formal completion M̂
2

I of M
2

I along the boundary ∆2
I (none of these exist yet) directly in

terms of Tate data. This part is analogous to the construction of the Tate curve at the cusp in the
modular curve X(1), except that one must also use the group action to cover all the cusps. The
output is a formal affine scheme; the affineness is specific to d = 2, as that ensures ∆2

I is finite over
Spec(A), and thus affine. We shall view it as an actual affine scheme.

(2) Define the “punctured formal neighbourhood” M̂
2

I −∆2
I =: M2,◦

I . If the theorem were true, then we

would have a structure map M2,◦
I →M2

I ; one builds this map by hand.

(3) Glue M̂
2

I with M2
I along M2,◦

I . This is analogous to constructing P1
A by glueing Spec(A[t]) with

Spec(AJ 1
t K) along Spec(A(( 1

t ))). In fact, there is a very general glueing theorem of Artin that says
that

Coh(P1
A) ' Coh(A[t])×Coh(A(( 1

t )))
Coh(AJ

1

t
K).

In other words, specifying a coherent sheaf F on P1
A is the same as specifying a triple (F1, F2, φ),

where F1 is a finitely generated A[t]-module, F2 is a finitely generated AJ 1
t K-module, and φ is an

identification of their pullbacks to A(( 1
t )). This equivalence is symmetric monoidal, so it implies a

similar equivalence for categories of commutative algebras in coherent sheaves. Applying Spec gives
a similar glueing statement for finite morphisms:

FinSchP1
A
' FinSchA[t] ×FinSch

A(( 1
t
))

FinSchAJ 1
t K.

The scheme M
2

I will be constructed as a finite cover of P1
A using this statement: using the weak

analog of the j invariant from Construction 2.6, one shows that the constructions from steps (1) and
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(2) fit together to give a triple (M2
I , M̂

2

I , φ) on the right hand side above, and the corresponding

finite scheme over P1
A is defined to M

2

I .

The above strategy outlines the proofs of Theorem 4.1 (1) and (3). To see (2) (which is crucial for
applications), one uses the following general lemma in algebraic geometry:

Lemma 4.2. Let X1 and X2 be two normal surfaces that are proper over Spec(A). Assume we are given
closed subschemes D1 ⊂ X1 and D2 ⊂ X2 that are fine over Spec(A) and an A-morphism f : X1 −D1 →
X2 −D2. Then f extends to a finite A-morphism X1 → X2.

Proof. By taking closures, there is some proper birational map π : Y → X1 that is an isomorphism outside
a closed subscheme supported in D1 and a morphism f : Y → X2 extending f . Moreover, the map

X1 −D1
π−1

−−→ Y → X2 agrees with f , and thus has image in X2 −D2. As this map is finite and X1 −D1 is
dense in Y , it follows that π−1(X2 −D2) = X1 −D1.

On the other hand, by normality of X1, if π were not an isomorphism, there would be a π-exceptional
irreducible curve C ⊂ X1 that is not collapsed by f . As C is π-exceptional, it lies in a fibre over a point
a ∈ Spec(A). Then π(C) ⊂ X2 is a non-constant curve in the fibre over a. As D2 is finite over A, we have
π(C) 6⊂ D2. But then C∩π−1(X2−D2) would be non-empty. Now we know that π−1(X2−D2) = X1−D1, so
we get C∩ (X1−D1) 6= ∅. But this means π : Y → X does not kill C, which contradicts the π-exceptionality
of C. �

4.1. An idea of the construction of M
2

I . Let us assume for a moment that theorem has been proven, and

study M
2

I via valuations. Fix (K,O) as in §2. Fix an A-algebra structure on O, and an A-map Spec(K)→M2
I

corresponding to a Drinfeld module X over K with level I structure γ. By properness of M
2

I over A, the

classifying map cX : Spec(K) → M2
I extends to a map cX : Spec(O) → M

2

I . Then there are exactly two
possibilities:

(1) (X, γ) has good reduction. By definition of the moduli problem, this happens exactly when the map

cX factors through M2
I ⊂M

2

I . In this case, the compactification plays no role.
(2) (X, γ) does not have good reduction. This happens exactly when the map cX factors through

M̂
2

I as there are no other possibilities. By Tate uniformization, there is a corresponding rank 1
Drinfeld module Y over O (i.e., with good reduction) and a rank 1 lattice Γ ⊂ Y (Ks) with a K-
isomorphism Y/Γ ' X. In particular, Γ is Galois stable, and thus corresponds to a character1

GK → Aut(Γ) ' A∗ ' F∗q . But the level structure on X then tells us that the Galois action on

I−1Γ/Γ, which means that the character has image in (1 + I) ⊂ A∗; as (1 + I)∩F∗q = {1} ⊂ A, this
character is trivial. Thus, Γ ⊂ Y (K) is actually K-rational.

Summarizing, we have shown:

Lemma 4.3 (Valuative characterisation of M
2

I). Let c : Spec(O) → M
2

I be a map that restricts to a map
c : Spec(K) → M2

I carrying classifying a Drinfeld module X with level I-structure over K. Then the map

cX factors through the formal boundary M̂
2

I exactly when X has the form Y/Γ for a rank 1 Drinfeld module
Y with good reduction and a K-rational lattice Γ ⊂ X(K).

We now construct another space which has a similar universal property with respect to valuations as the
one formulated in the lemma above. This space will eventually be the formal completion of the boundary
at one point, and the entire formal boundary will be built by glueing multiple copies of this space using the
group action.

Construction 4.4 (Local model at the cusp). In addition to the ideal I, fix an ideal J ⊂ A. Let Xuniv

be the universal rank 1 Drinfeld module over M1
I . One can form the quotient XJ := Xuniv/X[J ] to a new

Drinfeld module on M1
1 , isogenous to the original one. Giving a map S → XJ is the same as specifying

a Drinfeld module (Y, γ) of rank 1 with level I structure over S (corresponding to the map down to M1
I )

1Here we use that Spec(A) is the complement of a single point on a complete curve, so there are no non-constant invertible
functions on it: any finite map π : C → P1 is surjective, so the preimage of Gm is an open subset whose complement has at

least two points.
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together with a point of YJ(S). Interpreting this point as a map A → YJ(S) of A-modules, it follows that
we can lift this to a map τ : J → Y (S) compatible with the isogeny Y → YJ . Moreover, this process is
reversible: there is a bijective correspondence between XJ(S) and triples (Y, γ, τ) where (Y, γ) ∈M1

I (S) and
τ is an A-module map J → Y (S).

As a scheme, XJ is a line bundle over M1
J . Write XJ for its 1-point compactification2. There is a section

s∞ : M1
J → XJ at infinity, write X̂J for the formal completion at the boundary; again, this is affine, and we

view it as an affine scheme instead of formal scheme.

Lemma 4.5. Let c : Spec(O)→ XJ be a morphism inducing a map c : Spec(K)→ XJ that corresponds to
a triple (Y, γ, τ) as above. Then τ : J → Y (S) gives a lattice (i.e., a discrete A-submodule of rank 1) if and

only if c factors through the boundary X̂J

Proof. Note that c factors through the boundary X̂J exactly when it does not factor through XJ ⊂ XJ .
Assume first that c factors over XJ . Then we have a map Spec(O) → XJ lifting c. This means that the

homomorphism τ : J → Y (K) classified by c actually has image in Y (O). But Y (O) is compact, so τ cannot
give a lattice: compactness forces any discrete subset to be finite.

Conversely, suppose c factors over the boundary X̂J . As c does not have image in XJ , the map τ :
J → Y (K) does not have image Y (O). Thus, there must be some a ∈ A such that τ(a) 6∈ Y (O), so
|τ(a)| > 1 (where the norm on Y (K) is defined by making Y (O) the unit ball). As τ is A-linear, we have
τ(A · a) = A · τ(a); as |τ(a)| > 1, one easily checks that A · τ(a) is a rank 1 lattice in Y (K). But the index
of A · a in J is finite, so τ(J) is also a lattice of rank 1. �

Thus, the triple XJ ⊂ XJ ⊃ X̂J has strong formal resemblance to M2
I ⊂M

2

I ⊃ M̂
2

J . To actually construct

the latter, we choose an ideal J which is A-isomorphic to I−1, glue together many copies of XJ ⊃ X̂J to

get M
2

I ⊃ M̂
2

J .

2For any line bundle bundle L, this P(L−1 ⊕ OS).
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