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In addition to [Dri75, §4], we also list [Mat12i; Mat12ii] and [HG94] as references.
Throughout the talk, we fix the following:

Notation 0.1. Let O be the ring of integers of a local non-Archimedean field with uniformizer π. Let
p = charO/(π), and let q = pk = #O/(π). We denote by Onr a maximal unramified extension of O, and by

Ônr the completion of Onr. We denote by κ the field Ônr/(π) = O/(π).
We also denote by (G, g) a formal O-module over κ, i.e., G ∈ κJx, yK is a formal group, and g : O → End(G)

is a homomorphism such that ga = g(a) = ax+ · · · . We denote by C the category of complete, local Ônr-
algebras with residue field κ.

1 Motivation

We start with some motivation from the theory of elliptic curves over a ground field k of characteristic p > 0.
Let M1,1 be the moduli space of elliptic curves, so that

M1,1(k) =
{

elliptic curves E/k
}
.

One philosophy of moduli theory is that subspaces of a moduli space should also have geometric meaning. In
our case, if T is any k-scheme, then

M1,1(T ) = Homk(T,M1,1) =

{
families of elliptic curves

E

T

}
.

One can then ask the following:

Question 1.1. What is the local structure of M1,1? E.g., if [E] ∈M1,1(k), then what is “O∧M1,1,[E]”?

Recall that if X = SpecR is an affine scheme, and x = m ∈ SpecR is a closed point, then

O∧X,x = lim←−
n

R/mn.

In our case, the relevant ring is

(OM1,1
)∧[E] = lim←−

SpecA→M1,1

extending [E],
A Artin local k-alg,

A/mA=k

M1,1(A),

where

M1,1(A) =

{
elliptic curves

E

SpecA

∣∣∣∣∣ E|Spec k = E

}

is the set of deformations of E over A. In this way, the local structure of M1,1 at [E] is determined by
infinitesimal deformations of E, and so we are led to ask the following:

∗Notes were typed by Takumi Murayama, who is responsible for any and all errors. Please e-mail takumim@umich.edu with
any corrections. We thank Angus Chung and Emanuel Reinecke for their notes from the talk. Compiled on November 10, 2017.
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Question 1.2. What are the infinitesimal deformations of E?

One can determine them directly using methods we’ve already seen in Bhargav’s course, but here we’ll
take an approach that we can adapt to Drinfel′d modules.

Suppose that E is supersingular, and let Ê be the completion of E at the identity, which is a formal
group as Andy described last time. In this case, we can answer Question 1.2 with the following:

Theorem 1.3 (Serre–Tate). Let A be an Artin local k-algebra with residue field k. Then, there is an
equivalence of categories {

deformations of E
over A

}
'
{

deformations of Ê
over A

}
.

Theorem 1.4 (Lubin–Tate). The functor

A 7−→
{

deformations of Ê
over A

}
is pro-representable by kJtK.

We will see a version of the Lubin–Tate theorem for formal modules soon. Although kJtK is a limit of Artin
rings, it is not itself Artin. Thus, the functor is not representable, but only “pro-representable”. For us, it
will be a bit more convenient to work in a slightly larger category of complete local rings.

These results combined show, roughly speaking, that M1,1 is smooth of dimension 1 at [E].

2 Deformations of formal modules [Dri75, §4A]

With notation as in Notation 0.1, we have the following:

Goal 2.1. Describe deformations of (G, g) over all R ∈ C , i.e., formal O-modules (F, f) over R which reduce
to (G, g) modulo mR.

We can break this down into three parts:

(i) Determine all automorphisms of a given deformation,
(ii) Parametrize all possible deformations, and

(iii) Find obstructions to the existence of deformations.

The solutions to all three problems are usually found in certain cohomology groups. In our case, we can also
deal with (i) explicitly. Moreover, there are no obstructions in (iii) by Cor. 2.9 in Andy’s notes, which can be
interpreted as a statement about formal smoothness of the moduli space.

We will make the following:

Additional Assumption 2.2. (G, g) is of finite height h, i.e.,

gπ(x) = uxq
h

+ · · · for some 0 6= u ∈ κ.

2.1 Automorphisms of deformations

We start by answering (i):

Proposition 2.3 [Dri75, Prop. 4.1]. Let R ∈ C , and suppose (F, f) and (F ′, f ′) are deformations of (G, g)
over R. If

φ : (F, f) −→ (F ′, f ′)

is a homomorphism such that φ ≡ 0 mod mR, then φ = 0.
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Proof. Since R = lim←−R/m
n
R, it suffices to show inductively that φ ≡ 0 mod mnR for all n. The case n = 1

follows by assumption, so consider the inductive case. Assume φ is a homomorphism that reduces to 0 modulo
mnR. Then,

φ ◦ fπ = φ(uxq
h

+ · · · )
while

f ′π ◦ φ ≡ 0 mod mn+1
R

since f ′π = πx+ · · · where the ellipses consist of degree ≥ 2 terms in X, and so all coefficients of f ′π ◦ φ are in
mn+1
R . Thus, φ ≡ 0 mod mn+1

R .

Corollary 2.4. If (F, f) is as in Proposition 2.3, and φ : (F, f) → (F, f) is a homomorphism such that
φ ≡ id mod mR, then φ = id.

Proof. Apply Proposition 2.3 to φ− id.

In other words, a deformation (F, f) of (G, g) has in fact no non-trivial automorphisms.

2.2 Parametrization of possible deformations via symmetric cohomology

We now answer (ii). Let M be a vector space over κ. We can then consider the following chain complex:

C1(G, g;M) MJxK ψ

C2(G, g;M)


(
∆, {δa}a∈O

)
∆ ∈MJx, yK
δa ∈MJxK

∣∣∣∣∣∣∣∣∣∣
∆(x, y) = ∆(y, x)

δa+b(x) = δa(x) + δb(x)

+ ∆
(
ga(x), gb(x)

)
δab(x) = aδb(x) + δa

(
gb(x)

)


(

∆(x, y) = ψ
(
G(x, y)

)
− ψ(x)− ψ(y)

δa(x) = ψ
(
ga(x)

)
− aψ(x)

)
(
∆, {δa}

)

C3(G, g;M)


(
Γ, {γa}a∈O

)
Γ ∈MJx, y, zK
γa ∈MJx, yK

∣∣∣∣∣∣∣ certain symmetry
conditions




Γ(x, y, z) = ∆(y, z)−∆
(
G(x, y), z

)
+ ∆

(
x,G(y, z)

)
−∆(x, y)

γa(x, y) = δa(x)− δa
(
G(x, y)

)
+ δa(y)

− a∆(x, y) + δ
(
ga(x), ga(y)

)



d1

d2

We then define the second symmetric cohomology group

H2(G, g;M)s :=
ker d2

im d1
,

which inherits an O-module structure.

Remark 2.5. If we define the chain complex more generally for a deformation (F, f) of (G, g) over some
R ∈ C and M = R, then the H1-group parametrizes automorphisms of (F, f). However, to our knowledge,
there is no full theory of symmetric cohomology—this would presumably require derived methods, reflecting
the fact that deforming commutative groups is hard!

We can now state the following:

Lemma 2.6 [Dri75, p. 571, Lem.]. Let R ∈ C such that mk+1
R = 0 for some k > 1, and let (F, f) be a

deformation of (G, g) over R. Then, there is a one-to-one correspondence

H2(G, g;mk)

{
deformations (F ′, f ′) of (G, g) over R

such that (F ′, f ′) ≡ (F, f) mod mk

}/
isomorphism

(∆, δ)

(
F ′(x, y) = F

(
F (x, y),∆(x, y)

)
f ′a(x) = F

(
fa(x), δa(x)

) )
1-1
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Proof. Tedious exercise. The conditions on (∆, δ) give exactly that F ′ is commutative and associative, that
f ′a is an endomorphism of F ′ for all a ∈ O, and that f ′ is a ring homomorphism.

Computation of H2(G, g;κ)s In [Dri75, §1], we saw that we can always reduce to the case of normal
formal O-modules, in which case

G(x, y) ≡ x+ y + u · p
π
Cqh(x, y) mod deg qh+1

ga(x) ≡ ax+ u · a
qh − a
π

· xq
h

mod deg qh+1

(2.1)

for some 0 6= u ∈ κ, where we recall Cqh = 1
p

(
(x+ y)q

h − xqh − yqh).

We first compute im d1, for which it suffices to compute d1(xn) for all n ∈ Z>0. If n 6= qi, then

∆(x, y) = G(x, y)n − xn − yn

≡ (x+ y)n − xn − yn mod deg n+ 1

since G(x, y) = x+ y + · · · where the ellipses consist of degree ≥ 2 terms in x and y, and

δa(x) =
(
ga(x)

)n − axn
≡ (an − a)xn mod deg n+ 1

since ga(x) = ax+ · · · where the ellipses consist of degree ≥ 2 terms in x. If n = qi, then

∆(x, y) = G(x, y)q
i

− xq
i

− yq
i

≡ uq
i

· p
π
· Cqh(x, y)q

i

mod deg qh+i + 1

≡ uq
i

· p
π
· Cqh+i(x, y) mod deg qh+i + 1

using the form of G(x, y) given in (2.1) and some binomial coefficient arithmetic [Haz12, §4.2]. Likewise,

δa(x) ≡ uq
i aq

h+i − a
π

· xq
h+i

mod deg qh+i + 1.

To compute ker d2, it suffices to describe, for all n ∈ Z>0, those cocycles (∆, δ) for which (∆, δ) ≡ 0
mod deg n. This is essentially Prop. 2.10 from Andy’s talk. If n 6= qi, then

∆(x, y) ≡ v
(
(x+ y)n − xn − yn

)
mod deg n+ 1

δa(x) ≡ v(an − a)xn mod deg n+ 1

for some 0 6= v ∈ κ, and if n = qi, then

∆(x, y) ≡ v · p
π
Cqi(x, y) mod deg qi + 1

δa(x) ≡ v · a
qi − a
π

xq
i

mod deg qi + 1

again for some 0 6= v ∈ κ. Thus,

H2(G, g;κ) =
⊕

1≤i≤h−1

κ · (∆i, δi)

where each (∆i, δi) is in degree qi. We can then show the following:

Proposition 2.7 [Dri75, Prop. 4.2]. Let (G, g) be a formal O-module over κ of finite height h. Then, the
functor

Ψ: C Set

R

{
deformations of
(G, g) over R

}/
isomorphism

is represented by ÔnrJt1, . . . , th−1K.
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Sketch of Proof. The “tangent space”

Ψ
(
κ[ε]/(ε2)

)
= H2(G, g;κ)

has basis (∆i, δi) for 1 ≤ i ≤ h− 1. We can then “glue” the (∆i, δi) to form an element in

Ψ
(
κJt1, . . . , th−1K/(t1, . . . , th−1)2

)
;

this element maps to (∆i, δi) under the morphism Ψ
(
κJt1, . . . , th−1K/(t1, . . . , th−1)2

)
→ Ψ

(
κJεK/(ε2)

)
induced

by the projection κJt1, . . . , th−1K/(t1, . . . , th−1)2 � κJtiK/(ti)2. By formal smoothness, it lifts to an element

(F 0, f0) ∈ Ψ
(
ÔnrJt1, . . . , th−1K

)
.

By the Yoneda lemma, this corresponds to the natural transformation

Hom
(
ÔnrJt1, . . . , th−1K,−

)
Ψ(−)(

ϕ : ÔnrJt1, . . . , th−1K→ R
)

ϕ(F 0, f0).

We want this to be a bijection for every R. Since every (F, f) over R is the inverse limit of its reductions
modulo mkR, it suffices to show that

Hom
(
ÔnrJt1, . . . , th−1K, R

)
−→ Ψ(R)

is a bijection for every Artin algebra R ∈ C .
First, consider the case when `(R) = 1, i.e., when R = κ[ε]/(ε2). In this case, we have

Hom
(
ÔnrJt1, . . . , th−1K, R

)
Ψ(R)

Hom
(
κJt1, . . . , th−1K/(t1, . . . , th−1)2, R

)
⊕
i

Hom
(
κ[ti]/(ti)

2, R
) ⊕

i

κ · (∆i, δi)(
ϕi :

ti 7→ ε

tj 7→ 0

)
(∆i, δi)

which is a bijection by construction.
We now consider the inductive case when `(R) = n+ 1. The key observation, which we have already used,

is that we can glue deformations. More precisely, since deformations have no nontrivial automorphisms by
Corollary 2.4, Ψ is product-preserving: for every cartesian diagram

R×T S S

R T

of local Artin algebras, we have
Ψ(R×S T ) = Ψ(R)×Ψ(S) Ψ(T ).

Choose x ∈ R such that mR · x = 0, and consider the commutative diagram

R× κ[ε]/(ε2) ' R×R/x R R

R R/x
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where the top-left isomorphism maps (r, ε) to (r, r + x). Applying Ψ, we obtain the following cartesian
diagram:

Ψ(R)×Ψ
(
κ[ε]/(ε2)

)
Ψ(R)

Ψ(R) Ψ(R/x)

We get a similar cartesian diagram for Hom(ÔnrJt1, . . . , th−1K,−) and a map between these two diagrams.

Then a diagram chase shows that Hom
(
ÔnrJt1, . . . , th−1K, R

)
−→ Ψ(R) is bijective.

The cartesian-ness of the last diagram implies that Ψ(R) is naturally a torsor over Ψ(R/x) for Ψ
(
κ[ε]/(ε2)

)
.

3 Level structures [Dri75, §4B]

We now discuss level structures, which are a way to remove automorphisms in moduli problems so that the
resulting moduli space is more manageable.

We first recall the classical case. Let E/C be an elliptic curve, so that E = C/(Z + Z · τ). Adding level
structure remembers the lattice Z + Z · τ modulo n, that is, it is an isomorphism

(Z/nZ)2 ' E[n].

Definition 3.1. Let R ∈ C , and let (F, f) be a formal O-module over R. In particular, (F, f) imposes
an O-module structure on m. Assume (F, f) modulo m has finite length h. Then, for n ∈ Z≥0, a level-n
structure on (F, f) is an O-module homomorphism

ψ :
(

1
πnO/O

)h −→ m

such that fπ(x) is divisible by ∏
a∈( 1

πO/O)h

(
x− φ(a)

)
(3.1)

when n > 0.

In fact, fπ(x) and (3.1) will divide each other. The domain of ψ is the analogue of (Z/nZ)2, and the
condition on divisibility is a condition similar to being n-torsion.

Example 3.2. If R = κ and fπ(x) ≡ u ·Xqh mod deg qh + 1, then φ must be trivial.

Definition 3.3. Let (G, g) be a formal O-module over κ of finite height h. A deformation of (G, g) of level
n is a deformation of (G, g) with level-n structure.

Proposition 3.4 [Dri75, Prop. 4.3].

(1) The functor

Ψn : C Set

R

{
deformations of level n

of (G, g) over R

}/
isomorphism

is represented by a ring Dn.
(2) Dn is regular. Moreover, suppose n ≥ 1 and ei, for i = 1, . . . , h, is a basis for ( 1

πnO/O)h. Then, the
universal deformation of level n induces a map

φn :
(

1
πnO/O

)h −→ mDn

under which the ei map to a regular system of parameters.
(3) If m ≤ n, the natural map Dm → Dn is finite and flat.
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We note that the map in (3) makes sense since every level-n structure induces a level-m structure.

Proof. We proceed by induction on n. If n = 0, then D0 = ÔnrJt1, . . . , th−1K and we denote by (F 0, f0) the
universal deformation over D0.

We now assume we have constructed D1, and prove inductively that Dn+1 exists satisfying the statement
of the Proposition assuming the existence of Dn. Let b1, . . . , bn ∈ Dn be the regular system of parameters
that is induced by the basis for ( 1

πnO/O)h. Then, given the universal level-n structure φn we want to be
able to construct φn+1 : ( 1

πn+1O/O)h → mDn+1
such that φn = φn+1 ◦ π = fπ ◦ φn. We therefore set

Dn+1 =
DnJy1, . . . , yhK(

fπ(y1)− b1, . . . , fπ(yh)− bh
) ,

which is regular with regular system of parameters y1, . . . , yh, and such that Dn → Dn+1 is finite flat.
It remains to construct D1, for which we need another inductive argument, in the form of the following:

Lemma 3.5 [Dri75, p. 572, Lem.].

(i) For 0 ≤ r ≤ h, the functor

Φr : R 7−→

φ :
(

1
πO/O

)r → mR

∣∣∣∣∣∣∣
fπ(x) divisible by∏

a∈( 1
πO/O)r

(
x− φ(a)

)
for R ∈ C a D0-algebra, is representable by a ring Lr.

(ii) Lr is regular with a regular system of parameters given by the images of a basis ei, i = 1, . . . , r of
( 1
πO/O)r.

(iii) Lr−1 → Lr is finite and flat.

We omit the proof of this Lemma, noting that the case r = 0 is easy, and the case r = h gives the desired
construction of D1.

4 Divisible O-modules [Dri75, §4C]

Before, we were in the situation of E a supersingular elliptic curve, for which the completion Ê of E at 0 is
a formal group of height 2. If E is ordinary instead, then Ê does not give the full picture, and one has to
consider the p-divisible groups

E[p∞] = lim−→
n

E[pn] ' lim−→
n

(Z/pn × µpn) = Qp/Zp × µp∞ ,

where the first factor is the divisible part, and the second factor is the completion of E at 0. This is still a
formal group, i.e., a group object in the category of formal schemes. For all formal groups G, we still have
the connected-étale sequence

0 −→ G◦ −→ G −→ Gét −→ 0,

where G◦ is the connected part and Gét is the étale part. For example, for the elliptic curve E,

0 −→ µp∞ −→ E[p∞] −→ Qp/Zp −→ 0.

In the setting of formal modules, we make the following:

Definition 4.1. Let R ∈ C . A divisible O-module over R is a formal group F over R together with a
homomorphism f : O → End(F ) such that F ◦ is a formal O-module and F ét ' Spf R × (K/O)j for some
j <∞,

Now assume F ◦ mod mR has finite height. A level-n structure on (F, f) is a homomorphism(
1
πnO/O

)j+h −→ Hom(Spf R,F )
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which induces a commutative diagram

0
(

1
πnO/O

)h (
1
πnO/O

)j+h (
1
πnO/O

)j
0

0 Hom(Spf R,F ◦) Hom(Spf R,F ) Hom(Spf R,F ét)

m (K/O)j

level-n structure
for (F◦, f◦)

inclusion

first h factors

projection

last j factors

' '
where the isomorphism on the bottom-left follows from the fact that F ◦ ' Spf RJxK.

We can generalize Proposition 2.7 in the following manner:

Proposition 4.2 [Dri75, Prop. 4.5]. Let (G, g) be a divisible O-module over κ with level-n structure such
that G◦ has height h, and G/G◦ ' (K/O)j. Let n ∈ Z≥0. Then, the functor

Ψn : C Set

R

{
deformations of level n

of (G, g) over R

}/
isomorphism

is represented by the regular ring En ' DJd1, . . . , djK. In particular, En is regular of dimension j + h, and

E0 is smooth over Ônr. If m ≤ n, then the homomorphism Em → En is finite flat.
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