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In short, a formal module is to a commutative formal group as a module is to its underlying
abelian group. For the purpose of developing the moduli theory of elliptic modules, which are
instances of formal modules, they will provide a more flexible context for the deformation arguments
required to show that the modular schemes Md

I constructed in §5B are in fact smooth, hence
“manifolds”, which fact is required for the proof of their uniformisation in §6 and subsequent
compactification in §9, which is then required for the connection with automorphic forms in §10,
which was our original motivation (Goal 1.1) in the first talk by (the other) Andrew.

1 Formal Group Laws

Let O be any commutative ring with unity and B a O-algebra.

Definition A formal group law over B is a power series F (x, y) ∈ B[[x, y]] satisfying the properties

1. F (X, 0) = X, F (0, Y ) = Y

2. F (X,F (Y, Z)) = F (F (X,Y ), Z)

Often F is just called a formal group. If F (X,Y ) = F (Y,X) then F is said to be commutative.
Note that the composition in (2) makes sense only by virtue of (1), which implies that F (0, 0) = 0.
Also note that condition (1) implies that

F (X,Y ) = X + Y mod (X,Y )2

and that non-linear terms are always mixed with powers of X and Y . One may also define formal
group laws of higher dimension (ours is one dimensional) in a straightforward fashion.

Example The simplest group law is given by F (X,Y ) = X + Y , which is known as the additive
formal group law. It is also one of the most important formal group laws. One also has the
multiplicative formal group law given by F (X,Y ) = X + Y +XY . More on these to come.

Proposition 1.1. For any formal group law F there exists a unique power series i(X) = −X+· · · ∈
B[[X]] such that F (X, i(X)) = F (i(X), X) = 0.

Proof. Exercise.
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Corollary 1.2. Suppose B is a complete local ring and let m = {x ∈ B : |x| < 1} be its maximal
ideal (i.e., the open unit disk about 0). Then for any formal group law F , (m, F ) is a group with
composition defined by x · y = F (x, y) ∈ m.

Proof. Immediate.

The corollary shows that F (X,Y ) may be interpreted as an analytic function giving a law of
group composition which may be realized on any ring where it is defined so long as the context allows
one to make sense of convergence. In particular, when F (X,Y ) and i(X) are both polynomials we
may make sense of the group law for any ring whatsoever.

For the additive group, i(X) = −X and we recover the original additive structure even without
the assumption of completeness. For the multiplicative group, i(X) is no longer finite so that
completeness becomes necessary in general:

(m, F )× (m, F ) 1 + m× 1 + m

1 + m(m, F )

X + 1× Y + 1

XYF (X,Y )

X − 1

This diagram both explains why F (X,Y ) = X +Y +XY is called the multiplicative group law
as well as giving an explicit isomorphism of groups (not formal groups!) between (m, F ) and 1 +m,
the 1-units of B under multiplication. It also explains why i(X) must be an infinite series: Clearly
i(X) must correspond to 1/X on the right (recall uniqueness of i(X) for F ). We “change bases”
to find i(X) = 1

1+X − 1 = −X + X2 −X3 + · · · . One may now plug i(X) into the multiplicative
group law to check its validity, whence by uniqueness one has the expression for i(X).

It turns out that when B has no nilpotent elements which are also (additive) torsion that one-
dimensional formal group laws over B are always commutative. For example, any (one-dimensional)
formal group law over a reduced ring in characteristic zero is commutative. From here on out we
will always assume our formal group laws are one-dimensional and commutative.

A homomorphism of formal group laws F,G over B is a power series f ∈ B[[X]] with zero
constant term such that f(F (X,Y )) = G(f(X), f(Y )). HomB(F,G) is naturally an abelian group
where we define

(f +G g)(X) = G(f(X), g(X)) = f(X) +G g(X)

We check:

(f +G g)(F (X,Y )) = G(f(F (X,Y )), g(F (X,Y )))

= G(G(f(X), f(Y )), G(g(X), g(Y )))

= (f(X) +G f(Y )) +G (g(X) +G g(Y ))

= (f(X) +G g(X)) +G (f(Y ) +G g(Y ))

= G((f +G g)(X), (f +G g)(Y ))

from which it follows that EndF is a ring under composition. We thus have a natural map

Z→ EndF : n 7→ [n]F
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where [1]F (X) = X, [−1]F (X) = i(X), and [n + 1]F (X) = F ([n]F (X), X). Let us define the map
D : EndF → B that sends the endomorphism f to f ′(0). D is a ring homomorphism.

Proposition 1.3. If B is an integral domain, then EndF is a (non-commutative) integral domain,
and HomB(F,G) is a torsion-free left EndF and right EndG module.

Proof. See Fröhlich [1, III.1, Prop. 2, p58].

Historically formal group laws were introduced in 1946 by Bochner as an abstraction of the
analytic group laws of Lie groups. Bochner there showed that one may prove direct analogues of
Lie’s theorems using only the group laws. Meanwhile the necessity of restricting to the maximal
ideal in order to assure convergence in complete generality shows that these formal group laws
should be thought of as being of a local nature, as suggested by their historical origin. In fact
in characteristic zero the study of a Lie algebra and the formal group law associated with its Lie
group are essentially equivalent, the commutator being recovered from the formal group law via its
quadratic terms [X,Y ] = F2(X,Y )− F2(Y,X).

2 Formal O-Modules and the Ring ΛO

Let B be an O-algebra and write O i−→ B for its structure map. We now consider formal groups
whose ring of endomorphisms is (potentially) larger than expected:

Definition A formal O-module over B is a pair (F, ρ), where F is a commutative formal group
over B, and ρ is a ring homomorphism from O to EndF such that D ◦ ρ = i. In other words,
ρ(a)(X) = i(a)X + · · · .

Remark. It will be important for us later to consider O-algebras for which the structure map is
not injective.

Examples • Any (commutative) formal group over B is a formal Z-module over B.

• The additive group law F = X + Y together with ρ(a)(X) = aX defines a formal O-module
over B for any ring O and any O-algebra B. This formal module is uncreatively called the
additive module.

• An elliptic O-module over K is defined as any formal O-module whose underlying group law is
the additive group law over K which is not the additive module over K, whose endomorphisms
are all defined with polynomials (as opposed to power series).

• Lubin-Tate Theory in local class field theory

• Z[τ ] = End(Fτ ), for Fτ the formal group law over associated to the elliptic curve Eτ : y2 =
4x3 − g2(τ)x− g3(τ), [Q(τ) : Q] = 2, τ /∈ R.

We now think of O as fixed and consider the problem of finding the most general formal O-
module. More specifically, we will look for a O-algebra ΛO and a formal O-module (Fu, ρu) over
ΛO such that for any formal O-module (G, ρG) over a O-algebra B, there exists a unique O-algebra

map ΛO
θ−→ B such that applying θ to the coefficients yields F θu = G and ρθu = ρG. In other words,

we want to represent the functor from the category of O-algebras to the category of sets given by
B 7→ set of formal O-modules over B.
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Let aij and bka, i, j ≥ 0, k ≥ 2, a ∈ O be indeterminates and consider the power series in
O[aij , bka][[X,Y ]] given by

F (X,Y ) =
∑
i,j≥0

aijX
iY j ρ(a)(X) = aX +

∑
k≥2

bkaX
k

where there is an individual power series ρ(a) for every a ∈ O. We now subject these symbols
to the relations that Fu should be a commutative formal group law and that ρ should be a ring
homomorphism:

F (F (X,Y ), Z) = F (X,F (Y, Z)), F (X,Y ) = F (Y,X)

F (ρ(a)(X), ρ(a)(Y )) = ρ(a)(F (X,Y ))

ρ(a)(ρ(b)(X)) = ρ(ab)(X), ρ(a+ b)(X) = F (ρ(a)(X), ρ(b)(X))

F (ρ(−a)(X), ρ(a)(X)) = 0, ρ(1)(X) = X, ρ(0)(X) = 0

Note that any relation on the coefficients in any of the above equations can be written using
only ring operations in O[aij , bka]. If I is the ideal of these relations then we set ΛA = O[aij , bka]/I
and write Fu and ρu for the images of F and ρ. We may also put a grading on this ring if we set
deg aij = i + j − 1, deg bka = k − 1 and degX = deg Y = −1. Note that deg aij ,deg bka ≥ 0 since
a00 = 0. Now all the equations above are homogeneous in degree −1 so that I is homogeneous and
ΛA will be graded.

It is immediate that HomO(ΛA,−) represents the functor above. In particular, when O = Z we
recover Lazard’s ring ΛZ. For the remainder of the talk we will study structural results on ΛO for
various O.

Elements of the form xy, where x, y ∈ ΛO are homogeneous of degree > 1, generate a homoge-
neous ideal. Everything in this submodule is a sum of “decomposable” elements. Write Λ̃O for the
quotient of ΛO by this ideal.

Proposition 2.1. Let n > 1. Then Λ̃O
n−1

as an O-module can be defined by the symbols d and
ha for all a ∈ O subject to the relations

d(an − a) = v(n)ha, for all a ∈ O
ha+b − ha − hb = dCn(a, b), for all a, b ∈ O

ahb + bnha = hab, for all a, b ∈ O
(1)

where

v(n) =

{
1, if n is not a power of a prime number

p, if n = pk

and for all n > 1 we define Cn(X,Y ) = v(n)−1((X + Y )n −Xn − Y n) ∈ Z[X,Y ]. So C2 = XY ,
C3 = X2Y +XY 2, C4 = 2XY 3 + 3X2Y 2 + 2X3Y .

We postpone the proof. The importance of the polynomial Cn(X,Y ) is demonstrated by the
following three lemmas:

Lemma 2.2. For all n > 1 the polynomial Cn(X,Y ) ∈ Z[X,Y ] is primitive (i.e., the greatest
common divisor of its coefficients is 1).

Proof. Simple argument: see Fröhlich [1, III.1, Lemma 1, p60].
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Lemma 2.3. Let F (X,Y ) and G(X,Y ) be two formal group laws over an O-algebra B which agree
up to degree n terms (i.e., F − G ∈ (X,Y )n), n > 1. Then there is a unique element a ∈ B such
that F (X,Y ) ≡ G(X,Y ) + aCn(X,Y ) mod (X,Y )n+1.

Proof. One has that F ≡ G + Γ for some homogeneous polynomial Γ(X,Y ) of degree n. I claim
that Γ satisfies

Γ(X,Y ) = Γ(Y,X)

Γ(X, 0) = Γ(0, Y ) = 0

Γ(X,Y ) + Γ(X + Y,Z) = Γ(Y, Z) + Γ(X,Y + Z)

(2)

The first two equations are easy. Let us write G(X,Y ) = X + Y +G2(X,Y ). Modulo degree n+ 1
terms we have

F (F (X,Y ), Z)) ≡ G(F (X,Y ), Z) + Γ(F (X,Y ), Z)

≡ F (X,Y ) + Z +G2(F (X,Y ), Z) + Γ(X + Y, Z)

≡ G(X,Y ) + Γ(X,Y ) + Z +G2(G(X,Y ), Z) + Γ(X + Y, Z)

≡ G(G(X,Y ), Z) + Γ(X,Y ) + Γ(X + Y, Z)

Similarly one shows that F (X,F (Y,Z)) ≡ G(X,G(Y,Z)) + Γ(X,Y +Z) + Γ(Y,Z). This proves the
third formula for Γ. It is now sufficient to prove the next lemma.

Lemma 2.4. Let Γ(X,Y ) ∈ O[X,Y ] be a homogeneous polynomial of degree n satisfying equations
(2). Then there is an a ∈ B such that Γ(X,Y ) = aCn(X,Y ).

Proof. Fröhlich [1, III.1, Theorem 1a, p62] proves it by making a series of reductions until it is
sufficient to show it in the case that B is a field. In that situation one shows that the subspace of
homogeneous polynomials of degree n satisfying equations (2) is at most one-dimensional. Since
Cn(X,Y ) satisfies them, it is sufficient to know that Cn 6= 0 in B for which one uses the first lemma.
Hazewinkel [2, I.4.3, Lemma 4.3.1, p23] proves it using facts about binomial coefficients.

We will now prove a version of Lemma 2.3 for formal modules.

Lemma 2.5. Let (F (X,Y ), ρF ) and (G(X,Y ), ρG) be two formal O-modules over an O-algebra B
and suppose they are congruent modulo (X,Y )n for some n > 1. Then there exist a unique element
d ∈ B and unique elements ca ∈ B, one for each a ∈ O, such that

F (X,Y ) ≡ G(X,Y ) + dCn(X,Y ) mod (X,Y )n+1

ρF (a)(X) ≡ ρG(a)(X) + caX
n mod (X,Y )n+1

where the elements d and ca satisfy the relations

d(an − a) = v(n)ca for all a ∈ O
ca+b − ca − cb = dCn(a, b) for all a, b ∈ O

acb + bnca = cab for all a, b ∈ O
(3)

Proof. By Lemma 2.3 we have a d ∈ O such that F (X,Y ) ≡ G(X,Y )+dCn(X,Y ) mod degree n+ 1.
As for the second equation there are clearly such ca. To show the relations (3), we have the con-
gruences modulo degree n+ 1, for arbitrary a ∈ O:

ρF (a)(F (X,Y )) ≡ ρF (a)(G(X,Y )) + adCn(X,Y )

≡ ρG(a)(G(X,Y )) + ca(X + Y )n + adCn(X,Y )
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on the other hand

ρF (a)(F (X,Y )) = F (ρF (a)(X), ρF (a)(Y ))

≡ G(ρF (a)(X), ρF (a)(Y )) + dCn(aX, aY )

≡ G(ρG(a)(X), ρG(a)(Y )) + caX
n + caY

n + dCn(aX, aY )

= ρG(a)(G(X,Y )) + caX
n + caY

n + andCn(X,Y )

These two expressions show that cav(n)Cn(X,Y ) = d(an − a)Cn(X,Y ). By primitivity of Cn we
must have cav(n) = d(an − a).

To calculate the second and third identities of (3), calculate congruences relating ρF (a+ b)(X)
and ρG(a + b)(X), then ρF (a)(ρF (b)(X)) and ρG(a)(ρG(b)(X)), respectively. See Hazewinkel [2,
21.2.4, p204] for the details.

We now return to the proof of Proposition 2.1.

Proof of Proposition 2.1. For n > 1 define Jn−1 ⊂ ΛO to be the ideal generated by all elements of
degree < n − 1. Now we apply Lemma 2.5 using B = ΛO/J

n−1 to compare the additive module
over B, X +Y , with the formal O-module corresponding to the homomorphism Fu 7→ Fu +Jn−1 ∈
B[[X,Y ]]. These modules are equivalent modulo (X,Y )n:

Fu + Jn−1 ≡ X + Y mod (X,Y )n

ρu(a)(X) + Jn−1 ≡ aX mod (X)n

so that the Lemma guarantees the existence of a unique d ∈ B and unique ca ∈ B, one for each
a ∈ O, such that

Fu + Jn−1 ≡ X + Y + dCn(X,Y ) mod (X,Y )n+1

ρu(a)(X) + Jn−1 ≡ aX + caX
n mod (X)n+1

The key point is that the parts of these equations homogeneous in X and Y of (X,Y )-degree n is
independent of (X,Y )n+1 and Jn−1.

n∑
i=0

ai,n−iX
iY n−i = dCn(X,Y )

bnaX
n = caX

n

So we find that modulo Jn−1, the element d ∈ B generates all the ai,n−i of degree n−1 and ca ∈ B
equals bna for all a ∈ O. On the other hand, Jn−1 is trivial in degree n− 1. They do not generate
Λn−1A because we might have products of lower-degree terms which cannot be expressed in terms

of these generators, but they do generate Λ̃O
n−1

as was to be shown.

We will now specialize the general theorems stated above to a few cases of interest which will
be relevant for developing elliptic modules.

Proposition 2.6. If O is a field, then every formal O-module is isomorphic to an additive module.
If O is an infinite field, then there exists a unique isomorphism with an additive module, whose
derivative at zero equals 1. In this case ΛO ' O[g1, g2, . . .], where deg gi = i.

Proof. Omitted. See Drinfeld’s paper.
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Lemma 2.7. If O is the ring of integers of a local nonarchimedean field, then Λ̃O
n−1
' O.

Proof. Let π ∈ O be a prime element, p = char O/(π) and q = |O/(π)|. We will show that Λ̃O
n−1

is free as an O-module on a generator u. There will be two cases to consider:

1. If n is not a power of q, then ca = (an− a)u and d = v(n)u, where u is a generator of Λ̃O
n−1

.

2. If n = qk, then ca = (an − a)u/π and d = pu/π, where u is a generator of Λ̃O
n−1

.

1) If n is not a power of p, then ca may be expressed in terms of d by means of the relation
(an − a)d = ca; here we may take u = d. If n is a power of p, but not of q, then there exists a ∈ O
such that an − a /∈ (π) (n-th powering on the residue field does not fix everything). Now from the
relation acb + bnca = cab we get that (an − a)cb = (bn − b)ca; here we take u = (an − a)−1ca, so we
need to show that we may express d in terms of ca, which follows immediately from the relation
d(an − a) = pca.

2) Let n be a power of q. In this case we have that an − a ∈ (π) for all a ∈ O (either a is
a unit or it’s not; in either case this is true). Hence there exists an epimorphism of O-modules

Λ̃O
n−1
→ O sending ca 7→ (an − a)/π and d 7→ p/π, as one easily verifies that the three relations

between the ca and d hold under the map. It is surjective because there is at least one a ∈ O such
that νπ(an − a) = 1 (namely any a with valuation 1). Under this O-module map, cπ 7→ πn−1 − 1

which is a generator for O. We take u = cπ, and claim that cπ generates Λ̃O
n−1

as an O-module.
This will show that the map above is an isomorphism. Note that in the case charO = p d 7→ 0,
but in that case d is zero in ΛO as well.

We consider M = Λ̃O
n−1

/(cπ). If x ∈ Λ̃O
n−1

write x̄ for the image of x in M . From the relation
acb + bnca = cab we get (πn − π)ca = (an − a)cπ, so that (πn − π)ca = 0, whence πca = 0 for any
a ∈ O since 1−πn−1 is a unit. The same relation also shows cπb = πcb+πncπ so that cπb = πcb = 0
in M for any b ∈ O. In particular, cp = 0. But cp = (pn−1 − 1)d and so d = 0 as well.

It follows that M is an O/(π)-module so that xn = x for all x ∈ O. Hence we have cab = acb+bca
so that c̄ : O/(π) → M is a derivation. But then for any a ∈ O we have ca = can = nan−1ca = 0.

Since Λ̃O
n−1

was generated by the ca and d, we’ve shown M = 0.
In the first case we took u = d or u = (an − a)−1ca for a certain a ∈ O, and in the second

case u = cπ. From the relations (3) defining d and the ca it is clear that neither d nor any ca are
non-zero torsion elements. The result follows.

Remark. It turns out to be true more generally that Λ̃O
n−1
' O whenever O is a PID, a result

due to Hazewinkel [2, Prop. 21.3.1, p207].

Proposition 2.8. If O is the ring of integers of a local nonarchimedean field, then we also have
that ΛO ' O[g1, g2, . . .], deg gi = i.

Proof. There exists an epimorphism of O-algebras O[g1, g2, . . .]→ ΛO consistent with the gradation

simply by mapping cn to the generator u of Λ̃O
n

which is guaranteed by Lemma 2.7. Meanwhile
Proposition 2.6 implies that ΛO⊗K ' K[g1, g2, . . .] (where K = FracO) and deg gi = i. Therefore
the epimorphism above is an isomorphism.

Corollary 2.9. 1) Every formal O-module defined modulo (X,Y )n arises from a formal O-module.
2) If B → C is an epimorphism of O-algebras, then every formal O-module over C arises from an
O-module over B.
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Proof. Both assertions follow from the fact that ΛO is a polynomial algebra on the gi. As they
are algebraically independent one may extend a formal O-module defined in low degree in any way
which is consistent with the relations (3).

We also have a more specific version of the lemma comparing formal modules agreeing modulo
some degree:

Proposition 2.10. Let O be the ring of integers of a local nonarchimedean field. For statements
(1) and (2) suppose (F, ρF ) and (G, ρG) are formal O-modules over B such that (F, ρF ) ∼= (G, ρG)
mod deg n.

1. If n is not a power of q, then for a unique v ∈ B

F (X,Y ) ≡ G(X,Y ) + v[(X + Y )n −Xn − Y n] mod (X,Y )n+1

ρF (a)(X) ≡ ρG(a)(X) + v(an − a)Xn mod (X,Y )n+1

2. If n is a power of q, then for a unique v ∈ B

F (X,Y ) ≡ G(X,Y ) + v
p

π
Cn(X,Y ) mod (X,Y )n+1

ρF (a)(X) ≡ ρG(a)(X) + v
an − a
π

Xn mod (X,Y )n+1

3. Let ψ ∈ B[[X]], ψ(X) ≡ X − vXn mod (X)n+1, and suppose that for all a ∈ B

G(ψ(X), ψ(Y )) = ψ(F (X,Y )), ψ(ρF (a)(X)) = ρG(a)(ψ(X))

In other words, that ψ : (F, ρF )→ (G, ρG) is a map of formal O-modules. Then

F (X,Y ) ≡ G(X,Y ) + v[(X + Y )n −Xn − Y n] mod (X,Y )n+1

ρF (a)(X) ≡ ρG(a)(X) + v(an − a)Xn mod (X,Y )n+1

Proof. For (1) and (2) take v to be the image of u ∈ ΛO from Lemma 2.7. (3) may be checked
directly. The idea is that the assumed form of ψ implies that F ≡ G in degree < n+ 1 so that one
may use (1).

Corollary 2.11. The formal O-module (F, ρ) is isomorphic to an additive module if and only if
the coefficients of ρ(π) are divisible by π.

For the remainder of the talk we will assume that O is the ring of integers of a local nonar-
chimedean field with a field E given over O (i.e., there is a given map i : O → E) such that
(π) ⊂ ker(i) (E is of “finite characteristic”); for instance, O = Aν ⊂ kν , k = Fq(T ). Our applica-

tions later will take E = Ânrν /ν, where ν is some finite place of A. We now introduce the height of
such a formal module, which is the most important invariant it has:

Theorem 2.12 (Theorem-Definition). Let φ be a homomorphism of formal group laws over E. If

φ 6= 0 then φ(X) = a1X
ph + a2X

2ph + · · · where a1 6= 0, h > 0, and p = char(E). The number h
is uniquely determined by φ and is defined to be its height: htφ = h. By definition, ht 0 =∞. The
height of a formal O-module over E is the height of the endomorphism of multiplication by π.
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Proof. We prove that D(φ) = 0 if and only if φ = 0 or φ 6= 0 and φ = ψ(Xph), where D(ψ) 6= 0.
Consider the defining relation

φ(F (X,Y )) = G(φ(X), φ(Y ))

and partial differentiate with respect to Y to get

φ′(F (X,Y ))FY (X,Y ) = GY (φ(X), φ(Y ))φ′(Y )

then set Y = 0
φ′(X))FY (X, 0) = GY (φ(X), 0)φ′(0)

Now FY (X, 0) = 1+X+ · · · so is invertible in E[[X]] and φ′(0) = D(φ). Assuming D(φ) = 0 means
φ′(X) = 0. (Note that if E were characteristic 0 then this shows φ = 0, so that the notion of height

is only interesting in positive characteristic.) As E is characteristic p this shows φ = ψ(Xph) for
some h > 0. Take h to be maximal.

I now claim that ψ(X) is non-zero in X-degree 1 so that D(ψ) 6= 0. Let q = ph and set
H(X,Y ) to be the power series obtained by raising all of F ’s coefficients to the qth power. Then
ψ(H(X,Y )) = ψ(F (X,Y )q) = φ(F (X,Y )) = G(φ(X), φ(Y )) = G(ψ(Xq), ψ(Y q)) so that ψ is a
homomorphism of formal group laws from H to G. Now if D(ψ) = 0 we could repeat the argument
above which contradicts maximality of h.

Remark. In the case of the height of a homomorphism φ of formal O-modules with pk = q =
|O/(π)|, the O-linearity of φ makes it so that k|htφ. For convenience, Drinfeld takes htφ/k as his
definition of the height. For consistency we will use Drinfeld’s convention from here on out.

Proposition 2.13. 1) There exist modules of arbitrary (finite) height.
2) There exist homomorphisms only between modules of the same height.
3) A formal O-module of height h is isomorphic to the additive module mod deg qh.

Proof. 1) Consider any O-algebra map λ : ΛO → E such that λ(gqh−1) 6= 0 and λ(gi) = 0 when

i < qh − 1 (the higher-degree generators can be mapped in an arbitrary way). From the universal
property of ΛO, we get a formal O-module over E given by applying λ to Fu and ρu. In this degree
we map λ(gqh−1) to the corresponding d and we have the relation (an − a)d = ca for all a ∈ O. In

particular cπ 6= 0 so that ρλu(π)(X) = cπX
qh + · · · shows this module is of height h.

2) A basic property of the height is that the height of a composition of homomorphisms equals
the sum of their heights. Hence isomorphisms have height 0, so that the heights of the isomorphic
modules must be the same.

3) Follows from Proposition 2.10.

Proposition 2.14. 1) All formal O-modules of a finite height h <∞ become isomorphic over the
separable closure of E.
2) The ring of endomorphisms of such a module over the separable closure of E is isomorphic to
the ring of integers of a central division algebra over K with invariant 1/h.

Proof. The proof of this is rather long. It is a formal O-module version of an analogous statement
for formal groups. Fröhlich attributes the formal group version to Dieudonne and Lubin; see [1,
III.2, Theorem 3, p72]. For the proof, see Drinfeld’s paper.
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