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Today, we will discuss Carlitz modules, which are the first examples of Drinfel′d modules.

1 Motivation

We start with some motivation for what we will do today.
Recall from last time that we want an analogue for function fields of elliptic curves, which arise out of

studying the Langlands correspondence over Q. We had the following process for producing elliptic curves:

Q R C C/L E(C)
completion(

with respect to
standard metric

) algebraic closure ∼

where L ' Z2 ⊂ C is a lattice, and E(C) is a complex elliptic curve. The inclusion Z ⊂ Q gives E(C) the
structure of an abelian group.

Today, we will consider the function field k = Fr(T ) of P1
Fr

, where r = pm0 is a power of a prime p.
Let v∞ denote the valuation which is the order of vanishing at infinity, so that v∞(1/T ) = 1. We will then
consider the following process analogous to the above:

k K C∞ C∞/L C∞
completion(

with respect to
the valuation v∞

) algebraic closure

and completion

∼

where L ⊂ C∞ is a lattice, and the last isomorphism will be defined later. The inclusion A := Fr[T ] ⊂ k
gives C∞ the structure of an A-module. The resulting C∞, with its extra A-module structure, is what is
called a Drinfel′d module.

In this talk, we will only give the first, simplest example of this process, when L = A. The Q-analogue
of this would be taking L = Z in the process above, in which case the last isomorphism is replaced by the
exponential map

exp(2πi · −) : C/Z
∼−→ C∗.

For n ∈ Z, the module structure z 7→ nz on C/Z translates to the n-power map z 7→ zn. In the function field
case, we take L = A, and will construct an isomorphism

eC : C∞/A
∼−→ C∞.

For a ∈ A, the map x 7→ ax on C∞/A translates to x 7→ Ca(x) for some map Ca to be defined later. This
mapping a 7→ Ca gives the A-module structure on C∞, which we will call the Carlitz module.

Our goal is therefore the following:

Goal 1.1. Construct a surjective map eC : C∞ � C∞ with kernel A.

The näıve idea is as follows: Take
x 7−→

∏
α∈A

(α− x),
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which has the required kernel. However, if you plug in x = 0, you get∏
α∈A

α,

which does not really make sense since it does not converge. Instead, a näıve fix is to consider the function

x 7−→ x
∏

α∈Ar{0}

(
1− x

α

)
,

which looks like a Weierstrass or Hadamard product, except we are working over a function field instead of
over the complex numbers. Surprisingly, this actually works! This is despite the fact that we can’t literally
define it this way; once we formalize this idea, though, it will work.

2 The Carlitz Exponential [Gos96, §§3.1–3.2]
Let us now go step by step. We first start with a finite product. In this case, we do not have to worry about
convergence, and we can just look at the resulting sum.

Definition 2.1 [Gos96, Def. 3.1.3]. Let A(d) := {f(T ) ∈ A | deg f(T ) < d}. Then,

ed(x) :=
∏

α∈A(d)

(x− α),

which is a finite product. Expanding out the product, we obtain a polynomial that defines a map C∞ → C∞.

Note that although any polynomial of degree > 1 is not linear in characteristic zero, the polynomial ed(x)
does define an Fr-linear function, since we are working in positive characteristic. To check this linearity
property, just use the defining formula, or see [Gos96, Cor. 1.2.2].

Notation 2.2 [Gos96, Def. 3.1.4]. Let i > 0. We set

[i] :=
∏

f monic, prime
deg f |i

f = T r
i

− T ∈ A,

which we think of as the A-analogue of i ∈ Z. The equality is by [Gos96, Prop. 3.1.6.1].
We also define A-analogues of factorials. We set

Li := [i]Li−1 and L0 := 1,

and to play nicely with Fr-linearity, we also consider only r-powers by setting

Di := [i]Dr
i−1 and D0 := 1.

We can then write down an expression for ed(x) as a sum.

Theorem 2.3 (Carlitz [Gos96, Thm. 3.1.5]). We have

ed(x) =

d∑
i=0

(−1)d−ixr
i Dd

Di(Ld−i)r
i .

There are two proofs of this, of which we will do the easier one. The other proof uses Moore determinants;
see [Gos96, p. 45]. Note that the coefficients look a lot like binomial coefficients.

Proof [Gos96, pp. 46–47]. We will show the following recurrence relation:

ed(x) =
(
ed−1(x)

)r − (Dd−1)r−1 · ed−1(x). (2.1)
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Since both sides of this equation are monic polynomials of the same degree, it suffices to show that they have
the same set of zeroes. The left-hand side is

ed(x) =
∏

α∈A(d)

(x− α)

which has zeroes A(d). To check that the right-hand side also has zeroes A(d), we first note that any
α ∈ A(d− 1) is already a zero by definition of ed−1(x). One can check that plugging in α ∈ A(d) rA(d− 1)
makes the right-hand side vanish as well. Once we have the recurrence relation (2.1), the theorem follows by
induction on d.

So far, we had an expression with (x− α)’s. We saw before that we actually wanted factors like (1− x
α )

to show up, so it looks like we should just divide by the product of all α ∈ A(d) r {0} to obtain

x
∏

α∈A(d)r{0}

(
1 +

x

α

)
=

d∑
j=0

(−1)j
xr

j

Dj

Ld
(Ld−j)r

j , (2.2)

where we used the fact ed(x) =
∏

α∈A(d)

(x+ α) since α 7→ −α is a bijection on A(d), and the identity

∏
α∈A(d)r{0}

α = (−1)d
Dd

Ld
,

which follows from another calculation using recurrence relations [Gos96, p. 47].
We now pass to the limit d→∞ in (2.2). Essentially, what we need to do is to control the growth of the

coefficient Ld/(Ld−j)
rj to ensure the series actually converges. To simplify notation, we set

βd := [1]
rd−1
r−1 and ξd :=

βd
Ld

so that [Gos96, Lem. 3.2.3]

Ld
(Ld−j)r

j =
βj(ξd−j)

rj

ξd
.

One can show [Gos96, Lem. 3.2.1]

ξd =

d−1∏
j=0

(
1− [j]

[j + 1]

)
.

The limit of this as d→∞ is
∞∏
j=0

(
1− [j]

[j + 1]

)
=: ξ∗ ∈ K.

Theorem 2.4 Carlitz [Gos96, Lem. 3.2.5, Cor. 3.2.6]. For any x ∈ C∞, the series

1

ξ∗

∞∑
j=0

(−1)j
xr

j

Dj
βjξ

rj

∗

converges to an element in C∞, and is equal to

x
∏

α∈Ar{0}

(
1− x

α

)
.
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Sketch of Proof. By Theorem 2.3 and (2.2), we have

x
∏

α∈A(d)r{0}

(
1 +

x

α

)
=

d∑
j=0

(−1)j
xr

j

Dj
βj

(ξd−j)
rj

ξd

=
1

ξd

d∑
j=0

(−1)j
xr

j

Dj
βj
(
(ξd−j − ξ∗)r

j

+ ξr
j

∗
)

=
1

ξd

d∑
j=0

(−1)j
xr

j

Dj
βj(ξd−j − ξ∗)r

j

+
1

ξd

d∑
j=0

(−1)j
xr

j

Dj
βjξ

rj

∗ .

By calculating v∞-norms of these two terms, one can show that as d→∞, the first sum tends to zero [Gos96,
Lem. 3.2.4] and the second sum tends to what we wanted.

We now define the analogue of the exponential function exp: C→ C∗.

Definition 2.5. The Carlitz exponential is

eC(x) :=

∞∑
j=0

xr
j

Dj
.

Note that eC(x) is Fr-linear.

Note that the Dj play the role that factorials play in the series expression

exp(x) =

∞∑
j=0

xj

j!
.

We will next show that eC(x) is an entire function. This will follow from Theorem 2.4 by putting all the

coefficients inside xr
j

. There is a clean way to do this: letting ξ := λξ∗ for λ the (r − 1)st root of −[1] in
K ⊂ C∞, we have

ξr
j−1 = λr

j−1 · ξr
j−1
∗ =

(
−[1]

) rj−1
r−1 ξr

j−1
∗ = (−1)j · βjξr

j−1
∗ ,

where we note

(−1)
rj−1
r−1 = (−1)r

j−1+rj−2+···+1 = (−1)j

trivially in characteristic two (since 1 = −1), and otherwise since there are j terms in rj−1 + rj−2 + · · ·+ 1,
each of which is odd. Now the expression in Theorem 2.4 can be rewritten using eC(x) as

x
∏

α∈Ar{0}

(
1− x

α

)
=

∞∑
j=0

xr
j

Dj

(
(−1)jβjξ

rj−1
∗

)
=

1

ξ
eC(ξ · x).

This is the map we were seeking from the very start.

3 The Carlitz Module [Gos96, §3.3]
We have defined a map

C∞ −→ C∞

x 7−→ 1

ξ
eC(ξ · x)

which is entire, hence surjective [Gos96, Rem. 3.3.6.2]. Thus, we get the isomorphism

C∞/A
∼−→ C∞
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that we were looking for. For a ∈ A, there is an action x 7→ ax, which gives an action on the other side:

eC(ax) = Ca(eC(x)).

We want to write down Ca explicitly. We first write down what eC(Tx) is.

Proposition 3.1 [Gos96, Prop. 3.3.1]. For all x ∈ C∞, we have eC(Tx) = TeC(x) + (eC(x))r.

Proof. We have

eC(Tx)− TeC(x) =

∞∑
j=0

(T r
j

− T )
xr

j

Dj
=

∞∑
j=0

[j]

Dj
xr

j

=

∞∑
j=1

xr
j

(Dj−1)r
=
(
eC(x)

)r
.

Using this, one can show the following:

Corollary 3.2 [Gos96, Cor. 3.3.2]. For x ∈ C∞ and a ∈ A where deg a = d, we can write

eC(ax) = aeC(x) +

d∑
j=1

C(j)
a eC(x)r

j

for some C
(j)
a ∈ A.

Definition 3.3. Let C
(j)
a be as in Corollary 3.2. Let τ(x) = xr be the generating Fr-linear polynomial.

Then, we set

Ca(τ) := aτ0 +

d∑
j=1

C(j)
a τ j .

Finally, we state the following:

Theorem 3.4 [Gos96, Thm. 3.3.4]. The map

A −→ k{τ}
a 7−→ Ca

where k{τ} is a (non-commutative) ring under + and composition, is an injective map of Fr-algebras.

Proof. The map is injective since the coefficient of τ0 is a. To check that Cab = Ca ◦Cb, one uses the relation
eC(ax) = Ca(eC(x)).

Finally, we can do what we advertised at the beginning:

Definition 3.5. The Carlitz module is the map

A −→ k{τ}
a 7−→ Ca

Next week, we will talk about how to compute these things and how to work with them more explicitly.
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