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1. K-theory of schemes

1.1. Definitions. Let X be a scheme. We define P(X) to be the category of locally free
sheaves on X of finite rank, regarded as an exact category. We define Ki(X) to be Ki(P(X)).

Suppose that X is noetherian. Then the category M(X) of coherent sheaves on X is
abelian, and we define Gi(X) = Ki(M(X)). The inclusion P(X) ⊂ M(X) induces a map
Ki(X) → Gi(X). If X is regular, then this map is an isomorphism (since every coherent
sheaf then admits a finite length resolution by locally free sheaves).

Give a locally free coherent sheaf E on X, we have an exact functor [E ] = − ⊗OX
E on

M(X) and P(X). If

0→ E1 → E2 → E3 → 0

is an exact sequence of locally free sheaves, then we have an exact sequence

0→ [E1]→ [E2]→ [E3]→ 0

of functors. It follows that [E2] = [E1] + [E3] on Ki(X) and Gi(X). This gives K0(X) a ring
structure and Ki(X) and Gi(X) the structure of a module over K0(X).

1.2. Pull-back maps. Let f : X → Y be a map of schemes. Then there is an exact functor
f ∗ : P(Y ) → P(X), which induces a homomorphism f ∗ : Ki(Y ) → Ki(X). In this way, Ki

is a contravariant functor from schemes to abelian groups.
Now suppose that f is flat and X and Y are noetherian. Then f ∗ : M(Y ) → M(X) is

an exact functor, and so there is an induced map f ∗ : Gi(Y ) → Gi(X). In this way, Gi is a
contravariant functor on the category of noetherian schemes with flat morphisms.

More generally, letM(Y, f ∗) ⊂M(Y ) be the category of sheaves M such that Lif
∗(M) =

0 for i > 0. Then f ∗ induces an exact functorM(Y, f ∗)→M(X), and thus homomorphisms
Ki(M(Y, f ∗))→ Gi(X). If f has finite Tor dimension (i.e., Lif

∗ = 0 for i� 0, which holds
if Y is regular) and every coherent sheaf on Y is a quotient of a vector bundle (e.g., Y is
projective over an affine scheme) then every coherent sheaf on Y admits a finite resolution
by sheaves in M(Y, f ∗), and so Ki(M(Y, f ∗)) = Gi(Y ). In this case, f ∗ induces a map
Gi(Y )→ Gi(X). For i = 0, this is an Euler characteristic construction: for a coherent sheaf
M on Y we have

f ∗([M ]) =
∑
i≥0

(−1)i[Lif
∗(M)],

where [−] denotes the class in G0. The sum is finite due to the finiteness of Tor dimension.

1.3. Push-forward maps. Let f : X → Y be a finite morphism of noetherian schemes.
Then f∗ induces an exact functorM(X)→M(Y ), and we get homomorphisms f∗ : Gi(X)→
Gi(Y ).

More generally, suppose that f is proper. Then Rif∗ = 0 for i � 0, and each Rif∗ takes
coherent sheaves to coherent sheaves. LetM(X, f∗) ⊂M(X) be the category of sheaves M
on which Rif∗(M) = 0 for i > 0. Then f∗ induces homomorphisms Ki(M(X, f∗))→ Ki(Y ).
If every coherent sheaf on X embeds into a sheaf in M(X, f∗) (which is automatic if X

1



2

admits an ample line bundle) then Ki(M(X, f∗)) = Ki(M(X)) = Gi(X), and we get a
homomorphism f∗ : Gi(X)→ Gi(Y ). For i = 0, this is an Euler characteristic:

f∗(M) =
∑
i≥0

(−1)i[Rif∗(M)].

Proposition 1. Let X and Y be noetherian schemes admitting ample line bundles, and let
f : X → Y be a proper map of finite Tor dimension. Then f∗ induces a map Ki(X)→ Ki(Y ),
and the diagram

Ki(X) //

f∗
��

Gi(X)

f∗
��

Ki(Y ) // Gi(Y )

commutes.

Proof. Let P(X, f∗) be the category of vector bundles E on X such that Rif∗(E) = 0 for all
i > 0. Using the ample line bundle on X, every vector bundle on X embeds into one in
P(X, f∗) such that the quotient is also a vector bundle. Thus Ki(P(X, f∗)) = Ki(P(X)) =
Ki(X).

Let H(Y ) ⊂M(Y ) be the category of sheaves of finite Tor dimension. We claim that for
E ∈ P(X, f∗), we have f∗(E) ∈ H(Y ). This is local on Y , so we can assume Y is affine. Let
{Ui} be a finite open cover of X. Then the Cech complex

0→ H0(X, E)→
⊕
i

H0(Ui, E)→
⊕
ij

H0(Ui,j, E)→ · · ·

is exact (since E ∈ P(X, f∗)) and of finite length, and its terms have finite Tor dimension
(since f does). This shows that H0(X, E) = f∗(E) has finite Tor dimension.

Since Y admits an ample line bundle, every coherent sheaf on Y is a quotient of a vector
bundle, and every sheaf in H(Y ) admits a finite length resolution by vector bundles. Thus
Ki(H(Y )) = Ki(P(Y )) = Ki(Y ). We have thus obtained our map f∗ : Ki(X)→ Ki(Y ). �

Proposition 2 (Projection formula). Let f be above. Then the equation

f∗(x · f ∗(y)) = f∗(x) · y
holds in the following cases: (i) x ∈ K0(X), y ∈ Gi(Y ); (ii) x ∈ K0(X), y ∈ Ki(Y ); (iii)
x ∈ Gi(X), y ∈ K0(Y ).

1.4. Open and closed subschemes.

Proposition 3. Let X be a noetherian scheme. Let Xred be the reduced subscheme of X.
Then the map f∗ : Gi(Xred)→ Gi(X) induced by the finite map f : Xred → X is an isomor-
phism.

Proof. Every coherent sheaf on X has a finite length filtration (given by powers of the
nilradical) where the graded pieces belong to M(Xred). �

Proposition 4. Let X be a noetherian scheme and let Z and Z ′ be closed subschemes with
the same underlying topological space. Then there is a natural isomorphism Gi(Z) = Gi(Z

′).

Proof. We have Zred = Z ′red. Now use the previous proposition. �

We can therefore define Gi(Z) for a Zariski closed subspace Z of X.
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Proposition 5. Let X be a noetherian scheme, let Z be a closed subscheme, and let U be
its complement. Then there is a long exact sequence

· · · → Gi(Z)→ Gi(X)→ Gi(U)→ Gi−1(Z)→ · · ·

Proof. Give Z the reduced scheme structure. Let MZ(X) ⊂ M(X) be the category of
sheaves supported on Z. IdentifyM(Z) with the subcategory ofM(X) on objects killed by
the ideal sheaf IZ . Then every object ofMZ(X) admits a finite length filtration (by powers
of IZ) where the quotients belong to M(Z), and so Ki(MZ(X)) = Ki(M(Z)) = Gi(Z). It
is a standard fact that M(U) is the Serre quotient M(X)/MZ(X). The result now follows
from the localization sequence. �

1.5. Limits. Let {Xi}i∈I be a filtered inverse system of schemes where the transition maps
Xi → Xj are affine. Then the inverse limit X exists as a scheme. We have the following
result in this situation:

Proposition 6. The natural map lim−→Kq(Xi) → Kq(X) is an isomorphism. If X and the
Xi are noetherian and the transition maps are flat, the same is true for Gq.

Proof. We have an equivalence P(X) = lim−→P(Xi), and the Q-construction and πi commute
with filtered colimits. Similarly for M. �

2. Homotopy invariance

2.1. Graded modules over polynomial rings. Let A be a noetherian ring, and let B =
A[t1, . . . , tn] be the graded ring where deg(ti) = 1. Let Mgr(B) be the category of finitely
generated non-negatively graded B-modules. This has a functor (−1) (shift the grading),
which gives Ki(Mgr(B)) the structure of a Z[t]-module. There is an exact functorM(A)→
Mgr(B) given by M 7→M⊗AB, which induces group homomorphism Gi(A)→ Ki(Mgr(B)),
and therefore a Z[t]-module homomorphism Gi(A)⊗ Z[t]→ Ki(Mgr(B)).

Proposition 7. The canonical homomorphism ψ : Gi(A) ⊗ Z[t] → Ki(Mgr(B)) is an iso-
morphism.

Proof. Let N ⊂ Mgr(B) be the category of modules M where TorBi (M,A) = 0 for i > 0.
The functors ToriB(−, A) = 0 for i > n (since A is the quotient of B by a regular sequence
of length n), and so Ki(N ) = Ki(Mgr(B)).

Let Np ⊂ N be the subcategory consisting of modules generated in degrees ≤ p. There
are exact functors

M(A)
a→ Np

b→M(A)p+1

give by

a(M0, . . . ,Mp) =

p⊕
i=0

B(−i)⊗A Mi

and

b(N) = ((N/B+N)0, . . . , (N/B+N)p).

Note that N/B+N = N ⊗B A is exact on N . Clearly, b ◦ a is the identity functor, and thus
induces the identity on K-theory.

For a graded B-module N , let FqN be the submodule generated by elements of degree
≤ q, and let F−1N = 0. Regarding Fq as a functor Np → Np, the chain F0 ⊂ · · · ⊂ Fp
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is a filtration of the identity functor I. One shows that for N ∈ N , there is a canonical
isomorphism

FqN/Fq−1N = B(−p)⊗ (N/B+N)p,

and so N 7→ FqN/Fq−1N is exact as well. Thus
∑p

i=0(Fq/Fq−1)∗ = I∗ induces the identity
on Ki(Np). However, from the above identification, we see that

∑p
i=0(Fq/Fq−1)∗ induces ab

on K-thoery. Thus a and b are isomorphisms.
Taking the limit as p→∞, we see that the functor

M(A)
⊕
∞ → N , (M0,M1, . . .) 7→

∞∑
i=0

B(−i)⊗A Mi

induces an isomorphism on K-theory. But this map is exactly ψ, after identifying Ki(N )
with Ki(Mgr(B)). �

2.2. Modules over polynomial rings. Let A be a noetherian ring. We aim to prove the
following result:

Proposition 8. The functor M 7→M ⊗A A[x] induces an isomorphism Gi(A)→ Gi(A[x]).

Proof. The idea is to reduce to the case of graded modules over polynomial rings. To do
this, we use the following observation: an A[x]-module is the same as a Gm-equivariant
module on A2

A \A1
A, where A1

A is the y-axis in A2
A. Via the localization sequence, we can

understand the Gm-equivariant K-theory of A2
A \ A1

A from that of A2
A and A1

A, which is
simply the K-theory of graded modules over polynomial rings over A.

Let us now translate this to ring theory. We have A2
A = Spec(A[t, u]), A1

A = Spec(A[t])
and A2

A \A1
A = Spec(A[t, u, u−1). We have an equivalence of categories Mgr(A[t, u, u−1]) =

M(A[x]), and so the localization sequence gives a long exact sequence [fix: need to use
Z-graded modules, not just Z≥0-graded ones. doesn’t change much]

· · · → Ki(Mgr(A[t]))→ Ki(Mgr(A[t, u]))→ Ki(M(A[x]))→ · · · ,
which translates to

· · · → Gi(A)⊗ Z[t]→ Gi(A)⊗ Z[t]→ Gi(A[x])→ · · · ,
The result now follows from the following lemma. �

Lemma 9. The following diagram commutes:

Ki(Mgr(A[t])) // Ki(Mgr(A[t, u]))

Ki(A)⊗ Z[t]
t−1 // Ki(A)⊗ Z[t]

Here the top horizontal map comes from treating A[t]-modules as A[t, u]-modules where u
acts by 0.

Proof. Let i : M(A) → Mgr(A[t]) be i(M) = M ⊗A A[t], and let j : M(A) → Mgr(A[t, u])
be j(M) = M ⊗A A[t, u]. Tensoring the exact sequence

0→ A[t, u](−1)
u→ A[t, u]→ A[t]→ 0

over A with M , we obtain an exact sequence of functors

0→ j(−1)→ j → i→ 0.
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Thus i = (t− 1)j on K-theory. �

2.3. Affine bundles.

Proposition 10. Let X be a noetherian scheme and let f : E → X be a flat map whose
fibers are affine spaces. Then f ∗ : Gi(X)→ Gi(E) is an isomorphism.

Proof. Given T → X, we say that “the proposition holds for T” if the maps Gi(T )→ Gi(ET )
are isomorphisms for all i, where ET = E ×X T . Let Z be a closed subscheme of X with
complement U . We then obtain a diagram

· · · // Gi(Z) //

��

Gi(X) //

��

Gi(U) //

��

· · ·

· · · // Gi(EZ) // Gi(E) // Gi(EU) // · · ·

Thus if the proposition holds for two of Z, U , or X, then it holds for the third as well. By
noetherian induction, we can assume that the proposition holds for EZ → Z for all proper
closed subschemes Z of X. If X is reducible, say X = Z1 ∪ Z2, then the proposition holds
for Z1 and Z2 and Z1∩Z2, and thus for X \Z1 = Z2 \ (Z1∩Z2), and therefore for X. We can
therefore assume X is irreducible. Since Gi is insensitive to nilpotents, we can assume X is
integral. Now take the direct limit of the above diagram over all proper closed subschemes
of X, to obtain a diagram

· · · // lim−→Gi(Z) //

��

Gi(X) //

��

lim−→Gi(U) //

��

· · ·

· · · // lim−→Gi(EZ) // Gi(E) // lim−→Gi(EU) // · · ·

It thus suffices to show that the map

(11) lim−→Gi(U)→ lim−→Gi(EU)

is an isomorphism. We have

lim−→Gi(U) = Gi(lim←−U) = Gi(K),

where K is the function field of X. Similarly,

lim−→Gi(EU) = Gi(lim←−EU) = Gi(K[x1, . . . , xn]).

Thus (11) is an isomorphism by Proposition 8. �

3. Filtration by codimension and the BGQ spectral sequence

3.1. Preliminaries. If X → Y is a map of topological spaces with homotopy fiber F then
there is a long exact sequence of homotopy groups

· · · → πi(F )→ πi(X)→ πi(Y )→ πi−1(F )→ · · ·

If A is an abelian category and B is a Serre subcategory then the map N(Q(A)) →
N(Q(A/B)) has homotopy fiber N(Q(B)), and the resulting long exact sequence is the
localization sequence in K-theory.
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One can think of B ⊂ A as a 1-step filtration of A. There is a version of localization for
longer filtrations, where the long exact sequence is replaced by a spectral sequence. We now
explain how this works.

First, suppose that we have maps of topological spaces

Y = Yn → Yn−1 → · · · → Y0

Let X0 = Y0 and for 1 ≤ i ≤ n let Xi be the homotopy fiber of Yi → Yi−1. One would like to
say that there is a spectral sequence with Ep,q

1 = πp−q(Xq) that converges to πp−q(Y ). This
is essentially the case, except for the fact that π0 and π1 cause problems (because they’re not
abelian groups). However, if the Y ’s are all H-spaces, and the maps are maps of H-spaces,
then this problem goes away, and there is indeed such a spectral sequence.

Now suppose that A is an abelian category and

0 = F nA ⊂ · · · ⊂ F 0A ⊂ A
is a decreasing filtration by Serre subcategories. For 1 ≤ i ≤ n put Bi = F i−1A/F iA, and let
B0 = A/F 0A. For 0 ≤ i ≤ n, let Yi = N(Q(A/F iA)). Then for 1 ≤ i ≤ n the map Yi → Yi−1
has homotopy fiber Xi = N(Q(Bi)), and X0 = Y0 = N(Q(B0)). We thus have a spectral
sequence with Ep,q

1 = πp−q(Xq) = Kp−q−1(Bq) that converges to πp−q(Y ) = Kp−q−1(A).

4. Severi–Brauer varieties and projective bundles

[to add]


	1. K-theory of schemes
	1.1. Definitions
	1.2. Pull-back maps
	1.3. Push-forward maps
	1.4. Open and closed subschemes
	1.5. Limits

	2. Homotopy invariance
	2.1. Graded modules over polynomial rings
	2.2. Modules over polynomial rings
	2.3. Affine bundles

	3. Filtration by codimension and the BGQ spectral sequence
	3.1. Preliminaries


