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Abstract. Notes from the second meeting of the algebraic K-theory seminar at UMich,
Winter 2015. Note taker was Takumi Murayama.

Motivation

One reason we would like to define higher K-groups is that with K0, we get certain
“half-exact” sequences that seem to be analogues of the Mayer-Vietoris or the localization long
exact sequences, that we would like to actually turn into long exact sequences. Historically,
Atiyah and Hirzebruch applied K0, which was first defined in algebraic geometry, to topology.
It was realized that in this context, K0 was π0 of a space K(X), and so Atiyah and Hirzebruch
defined Ki(X) as πi(K(X)). This construction has since been reincorporated into algebraic
geometry via the work of Quillen.

There are two constructions of higher K-groups that are useful. We first define the “Plus-
construction,” which works well with affines and is useful computationally, but has some
drawbacks. The second construction is the “Q-construction,” which is better suited for theory.
It is not known if “Q” stands for Quillen.

1. The Plus-construction

The definition is purely algebro-topological.

Definition 1.1. Let X be a connected topological space. Let a perfect normal subgroup

N 6 π1(X) be given. Then, X
ϕ→ X+ is a plus-construction (relative to N) if it satisfies the

following:

(1) ϕ induces an isomorphism π1(X+) = π1(X)/N .
(2) H•(fib(ϕ),Z) = H•(pt,Z), where fib(ϕ) is the homotopy fibre of the map ϕ.

Remark. We can assume ϕ is a Serre fibration, we can compute the homotopy fibre as an
actual fibre, and the Serre spectral sequence gives that H•(X,Z) ' H•(X

+,Z).

We will keep in mind the following two examples:

Example 1.2.

(1) Let R be a (unital, associative) ring, and let X = BGL(R), where B− denotes
the classifying space, and GL(R) is the infinite general linear group. Note that
π1(BGL(R)) = GL(R), while its higher homotopy groups vanish. We can then let
N = E(R), the subgroup of elementary matrices, which we saw were a perfect normal
subgroup of GL(R) last time.
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(2) Let X = BΣ∞, the classifying space for the infinite symmetric group, defined as

Σ∞ := colim(Σ1 ↪−→ Σ2 ↪−→ Σ3 ↪−→ · · · )

and N = A∞ is the infinite alternating group, which is a perfect normal subgroup of
S∞, with quotient Z/2.

Our first goal is to actually show X+ exists.

Theorem 1.3 (Quillen). Let X, N as before. Then,

(1) There exists a plus construction ϕ : X → X+.
(2) If ψ : X → Y induces a map on π1 that kills N , then ψ factors uniquely (up to pointed

homotopy) through ϕ.

Note that (2) quantifies the uniqueness statement in Definition 1.1(1).
We proceed in two steps. First, we assume that N = π1(X), and that in particular, π1(X)

is perfect. Note this holds for E(R) but not for GL(R). We then deduce the full result by
passing to covering spaces X̃ corresponding to N .

Step 1. Assume N = π1(X); in particular, this means that π1(X) is perfect. Then, set

X1 := colim



∨
α∈N

S1 X

∨
α∈N

D2

α


i.e., glue two-cells along the one-cells in X in order to kill the subgroup N in π1. Note H1 is
unaffected since all elements in N are commutators, hence are 0 in H1 already. Then, by the
Seifert-van Kampen theorem,

π1(X1) = π1(X) ∗π1(∨S1) π1

(∨
D2
)

= π1(X)/N = 0

by assumption on N .
Next, attaching two-cells affects H2, so we have to fix our construction. By the Eilenberg-

Steenrod axioms, we get the following short exact sequence on (reduced) singular chain
complexes:

0 −→ C•

(∨
α∈N

S1

)
−→ C•(X) −→ C•(X1) −→ 0.

The associated long exact sequence on homology gives that Hi(X) ' Hi(X1) for all i > 2,
and for i = 1 we have the exact sequence

Z⊕N
0−→ H1(X) −→ H1(X1) −→ 0

where Z⊕N denotes the direct sum of Z with itself, indexed by the elements of N . Then, the
map Z⊕N → H1(X) is the zero map by the fact that N is perfect, hence every element α ∈ N
is 0 in homology. Thus, the long exact sequence at i = 2 gives the short exact sequence

(1) 0 −→ H2(X) −→ H2(X1) −→ Z⊕N −→ 0.
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π1(X1) = 0 by construction, hence X1 is simply connected, and the Hurewicz theorem implies
π2(X1) = H2(X1). We then set

X+ := colim



∨
α∈N

S2 X1

∨
α∈N

D3

α


to kill the elements of H2 generated by the two-cells corresponding to Z⊕N in the exact
sequence (1). By the Seifert-van Kampen theorem, 0 = π1(X1)

∼→ π1(X
+), since attaching

higher dimensional cells does not affect π1, hence X+ has property (1). By the Eilenberg-
Steenrod axioms, we also have the short exact sequence

0 −→ C•

(∨
α∈N

S2

)
−→ C•(X1) −→ C•(X

+) −→ 0

which maps the elements of C•
(∨

α∈N S
2
)

generating H2 to the generators of H2(X1) we want
to kill in (1). The associated long exact sequence then gives that Hi(X1) ' Hi(X+) for all
i 6= 2, and for i = 2, we have the short exact sequence

0 −→ Z⊕N −→ H2(X1) −→ H2(X
+) −→ 0.

Thus, the composite map X → X1 → X+ is a plus construction, where we note we can use
the Serre spectral sequence to deduce C•(fib(ϕ)) = C•(pt). �

Step 2. Now consider a general perfect normal subgroup N 6 π1(X), and let X̃ be the
covering space of X corresponding to the subgroup N . Then, X̃ → X is a (π1(X)/N)-cover,
so π1(X̃) = N is perfect. By the previous step, there exists a plus-construction X̃+ for X̃.
We then set

X+ = colim

X̃ X̃+

X


and we claim this defines a plus-construction for X. By the Seifert-van Kampen theorem,

π1(X
+) = π1(X) ∗N 0 = π1(X)/N.

By the Eilenberg-Steenrod axioms, the isomorphism C•(X̃)
∼→ C•(X̃

+) induces an isomor-

phism C•(X)
∼→ C•(X

+). Finally, to get that fib(ϕ) is H•-acyclic, we can use the same
argument as before using L ∈ Loc(X+), a local system of coefficients on X+. �

While homologically X+ does not differ from X, its higher homotopy groups somewhat
magically contain a wealth of information.

Example 1.4. Let R be a ring, X = BGL(R), and N = E(R), the subgroup of elementary
matrices from before in Example 1.2(1). By Theorem 1.3, we then get a plus-construction
BGL(R)+. Then, π1(BGL(R)) = GL(R)/E(R) = K1(R) by definition from last time. To
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calculate π2(BGL(R)+), we first note

BE(R) BE(R)+

BGL(R) BGL(R)+

f
y

is a pushout diagram in the category of based topological spaces. The issue is that while
pushouts are useful for computing homology, we need to instead use pullbacks to compute
homotopy. So instead, we replace BE(R)+ with another space Y = BE(R)+′, which is defined
to be the iterated plus-construction relative to π1(BE(R), x) for all x ∈ f−1(base point).
This gives an explicit construction of an E(R)-covering space for BGL(R)+, hence we get the
pullback diagram

BE(R) Y

BGL(R) BGL(R)+

p
f f+

where both f and f+ are covering spaces with group E(R). Note that π1(Y ) = 0 since it was
obtained by attaching higher dimensional cells to BE(R)+. By the same argument as before,

we also have C•(BE(R))
∼→ C•(Y ). Since this diagram is a pullback, we get a map of fibre

sequences

F (R) BE(R) Y

F (R) BGL(R) BGL(R)+

where the equality on the left denotes an isomorphism in the homotopy category. The
corresponding maps on the long exact sequences for homotopy give the commutative diagram

π2(F (R)) 0 π2(Y ) π1(F (R)) E(R) 0

π2(F (R)) 0 π2(BGL(R)+) π1(F (R)) GL(R) GL(R)/E(R)

where π2(BE(R)) = π2(BGL(R)) = 0 since they are classifying spaces for discrete groups.
By the five lemma, we then have π2(BGL(R)+) = π2(Y ), which is in turn isomorphic to
H2(Y ) by the Hurewicz theorem. But H2(Y ) ' H2(BE(R)) = H2(E(R),Z) by construction,
which is isomorphic to K2(R) as we saw last time, since the extension

0 −→ K2(R) −→ St(R) −→ E(R) −→ 0

is the universal central extension of E(R). Note in particular that, looking at the top row of
the diagram above, we have π1(F (R)) ' St(R).

We therefore define the following:

Definition 1.5. We let K(R) := BGL(R)+×K0(R), where K0(R) has the discrete topology,
and Ki(R) := πi(K(R)).
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Remark. K(R) is an H-space, and is even a group object in the homotopy category, as well
as an infinite loop space. The fact that K(R) is a group object shouldn’t be too surprising,
seeing as a good generalization of K-theory should have some analogue of the direct sum
operation on projective modules we saw from last time.

We now mention the following example due to Quillen, which was part of the original
motivation to define higher K-groups.

Example 1.6 (Quillen). Let R = Fq. Quillen found the fibre sequence

BGL(Fq)
+ BU BU

1−ψq

where U is the infinite unitary group, and ψq is the qth Adams operation. The higher
homotopy groups of BU are controlled by Bott periodicity, and so Quillen calculated the
higher K-groups for Fq as follows:

Ki(Fq) =

 Z/(qn − 1) for i = 2(n− 1)
0 for i = 2n
Z for i = 0

We return to our other main example.

Example 1.7. Let X = BΣ∞, and N = A∞. We have the following

Theorem (Baratt-Priddy-Quillen). X+ ' Ω∞(Σ∞(S0)) = colim Ωn(Σn(S0)).

This implies πi(X
+) = πst

i . In particular, π1(X
+) = πst

1 = Z/2 from the Hopf fibration, as
expected. This can be interpreted as follows. First, there is a natural map

Σ∞ GL(Z)

A∞ E(R)

⊆ ⊆

so there is an induced map on plus-constructions X+ → BGL(Z)+. Then, we get the
commutative diagram

π1(X
+) π1(BGL(Z)+)

πst
1 K1(Z)

Z/2 Z/2

In this way, we can get elements of K-groups from stable homotopy groups of spheres.

Before we move on to the Q-construction, we note a few defects of the plus-construction:

(1) π0(K(R)) = K0, but π0(K(R)) does not have a natural group structure.
(2) K(R) hence Ki(R) is only defined for rings R—how would we define K-groups for

P1, for example?
(3) There are no exact sequences relating the different Ki’s.

This motivates the Q-construction, which gives another construction for higher K-groups
that ends up matching the plus-construction from before.
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2. The Q-construction

2.1. Classifying spaces. In the plus-construction, we used repeatedly the fact that to a
group G, we can associate a classifying space BG such that π1(BG) = G. This is in fact a
special case of a more general construction: a group is a special case of a groupoid, and a
groupoid is in turn a special case of a category. Our first goal is to define a space NC to a
category C that generalizes the construction of BG.

Definition 2.1. We define a functor

N : {categories} {simplicial sets}
C NC

associating a category C with its nerve NC , as follows. The n-simplices are defined to be
collections of “n-composable morphisms,” that is

NC0 = Fun([0],C ) = obj(C )

NC1 = Fun([0→ 1],C ) = ar(C )

...

NCn = Fun([0→ 1→ · · · → n],C )

where [n] := [0 → 1 → · · · → n] denotes the category with n + 1 objects with the spec-
ified arrows between the objects, together with face and degeneracy maps NCn → NCm

coming from the functors [m]→ [n]. By composing with the geometric realization functor
|−| : {simplicial sets} → {spaces}, we also denote the geometric realization of this simplicial
set as NC when no confusion can arise.

Remark. When visualizing a nerve, it is often useful to instead picture the geometric realization
of that nerve; however, such a realization forgets some of the information contained in the face
and degeneracy maps of the nerve. In low-dimensional cases, we can at least label vertices
and edges with their corresponding objects and arrows, as we do below.

Example 2.2.

(1) The nerve associated to [1] is

N([1]) = N([0→ 1]) =
0 1

= I

In fact, N([n]) = N([0→ 1→ · · · → n]) is the n-simplex. For example, when n = 2
we get the 2-simplex

0

1

2

(2) If C = BG = [pt/G], the category BG, then the nerve NC is the space BG (Borel).

We have the following (functorial) properties of N(−).

Property 1. N(−) commutes with products: N(C1 × C2) = NC1 ×NC2.

Example 2.3. N(C × [0→ 1]) = NC × I.
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Property 2. If F and G are both functors C → D , and η : F ⇒ G is a natural transformation
of these functors, then η∗ : F∗

∼→ G∗, i.e., η induces a homotopy equivalence between F∗ and
G∗ as maps NC → ND .

Proof. Giving a natural transformation η is equivalent to giving a functor η̃ : C × [0→ 1]→ D
such that η̃|C×[0] = F and η̃|C×[1] = G. Thus, η̃ gives a homotopy F∗ ' G∗. �

Property 3. If F : C 
 D :G is an adjoint pair of functors, then F∗ and G∗ are mutually
inverse homotopy equivalences.

Proof. Given an adjoint pair of functors, we get two natural transformations: the unit
idC ⇒ G ◦ F and the counit F ◦G⇒ idD . Using Property 2, we are done. �

In particular, we have the following

Corollary 2.4. If C has an initial or final object, then NC is contractible.

Thus, most categories we consider normally have uninteresting nerves.

Remark. The proof above only needed the existence of natural transformations idC ⇒ G ◦ F
and F ◦G⇒ idD , and not anything about how they compose with F or G which is part of
the definition for an adjoint pair. This is one way in which a lot of information is lost when
working with nerves of categories instead of the categories themselves.

Property 4. If C is a filtered category, then NC is contractible.

Proof. We have the following equivalence of categories:

colim
x∈C

C /x
∼−→ C

where C /x is the slice category formed by taking objects and morphisms to be over a fixed
object x ∈ C . The colimit above is filtered since C is filtered. Then, we have that

NC ∼= N

(
colim
x∈C

C /x

)
∼= colim

x∈C
N(C /x)

since functors [n] → C factor through some C /x by the fact that C is filtered. Finally,
filtered colimits are exact, hence since N(C /x) is contractible for any x ∈ C by Corollary
2.4, we have that NC is contractible. �

Property 5. For a category C , associate to it another category G(C ), the universal groupoid
under C , defined to be C [ar(C )−1], i.e., the category obtained by formally inverting every
arrow in C . Then, we have the following

Theorem 2.5. There is an equivalence of categories{
covering spaces

of NC

}
' Fun(G(C ), Sets) = Fun(C , Sets'),

where Sets' denotes the category of sets with isomorphisms. In particular, if C is connected
and x ∈ C , then {π1(NC , x)-Sets} ' Fun(G(C ), Sets).

Proof idea. →. Let f : Y → NC be a covering space. We then get a functor

FY : C Sets'

Z f−1(Z)

(Z1 → Z2) (f−1(Z1)→ f−1(Z2))
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where the arrow on the right is given by the fact that a path in NC gives rise to a unique
path in Y by covering space theory; the uniqueness of this path implies the association above
indeed defines a functor.
←. Let a functor F : C → Sets' be given. Then, consider the category

C /F :=

{
(X, x)

∣∣∣∣ X ∈ C

x ∈ F (X)

}
with arrows being the obvious maps induced by F . We then have the forgetful functor
C /F → C , which induces a map N(C /F )→ NC of nerves; this map is a covering space. �

Remark. The construction C /F above is due to Grothendieck and was first defined in the
context of stacks.

We will continue our discussion of the Q-construction next time.
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