CLASSICAL K-THEORY

SPEAKER: WEI HO

Abstract. Unedited live-texed notes from the first meeting of the algebraic K-theory seminar at UMich, Winter 2015. Note taker was Cameron Franc.

1. K_{0} OF A RING

Let R be an associative ring with a unit. Recall that a (left) R-module is projecitve if there exists a module Q such that $P \oplus Q$ is free. Equivalently, for every diagram

with $M \rightarrow N$ surjective, there exists a map $P \rightarrow M$ making a commutative triangle. Equivalently, $\operatorname{Ext}_{R}^{1}(P, \bullet)=0$.

The set of isomorphism classes of finitely generated projective R-modules has the structure of an abelian monoid under direct sum. Then $K_{0}(R)$ is the group completion of this monoid. That is, it is the free-abelian group on the isomorphism classes of finitely generated projective R-modules mod the obvious relations: $[P \oplus Q]-[P]-[Q]$. It is not hard to check that $[P]=\left[P^{\prime}\right]$ in $K_{0}(R)$ if and only if there exists a finitely generated projective R-module Q such that $P \oplus Q \cong P^{\prime} \oplus Q$. Even more conretely, this is equivalent to having $P \oplus R^{n} \cong P^{\prime} \oplus R^{n}$ for some $n \geq 0$.
Example 1. If R is a local ring then $K_{0}(R)=\mathbf{Z}$ since finitely generated projective R-modules are free.
Example 2. If R is a PID then $K_{0}(R)=\mathbf{Z}$ by the classification of finitely generated modules over a PID.

Example 3. If R is a Dedekind domain then $K_{0}(R)=\mathbf{Z} \oplus \mathrm{Cl}(R)$. To see this, note that a finitely generated projective module over R breaks up into a direct sum of fractional ideals (prove this by induction). Next note that $I_{1} \oplus I_{2} \cong R \oplus I_{1} I_{2}$, so that if P is finitely generated and projective, $P \cong R^{n-1} \oplus I$ for some ideal I. This decomposition yields the decomposition of $K_{0}(R)$.

Example 4. Eilenberg-Mazur Swindle: Let R^{∞} be an infinitely generated free module. If $P \oplus Q \cong R^{n}$ then

$$
P \oplus R^{\infty} \cong(P \oplus Q) \oplus(P \oplus Q) \oplus \cdots=R^{\infty}
$$

Thus, if we allow non-finitely generated modules then we obtain a trivial K_{0}.
We record the following properties:

- K_{0} is a covariant functor from rings to abelian groups;
- it respects finite direct products and filtered direct limits.

2. K_{0} OF AN EXACT CATEGORY

Definition 5. An exact category is a pair $(\mathcal{C}, \mathcal{E})$ where \mathcal{C} is an additive category that is a full subcategory of an abelian category \mathcal{A}, and \mathcal{E} is the family of sequences in \mathcal{C} of the form $0 \rightarrow B \rightarrow C \rightarrow D \rightarrow 0$ that are exact in \mathcal{A}. Further, we assume that if B and D lie in \mathcal{C}, then C is also in \mathcal{C} (that is, \mathcal{C} is closed under extensions). We'll usually say \mathcal{C} is an exact category unless we wish to specify the exact sequences in \mathcal{E}.

Definition 6. Let \mathcal{C} be a small exact category. Then $K_{0}(\mathcal{C})$ is the abelian group generated by the objects of \mathcal{C}, and with relations given by the exact sequences.

Example 7. Let \mathcal{C} be the category of finitely generated projective R-modules contained in the category of all R-modules. Then $K_{0}(\mathcal{C})=K_{0}(R)$ because exact sequences of projective modules split.

Example 8. Let X be a quasi-projective scheme over a commutative ring R. Then one is interested in $K_{0}(\mathrm{VB}(X))=K_{0}(X)$, where $\mathrm{VB}(X)$ is the exact category of vector bundles on X, which is a full subcategory of the category of quasicoherent modules on X.

Remark 9. If X is a noetherian scheme, then let $G_{0}(X)=K_{0}(\operatorname{Coh}(X))$. There exists a morphism

$$
K_{0}(X) \rightarrow G_{0}(X)
$$

called the Cartan homomorphism, which Serre proved is an isomorphism when X is regular and quasiprojective over a noetherian ring.

Example 10. One can show that $K_{0}\left(\mathbf{P}^{1}\right)=\mathbf{Z}^{2}$. More generally, there is a surjective map

$$
\operatorname{rk} \oplus \operatorname{det}: K_{0}(X) \rightarrow H^{0}(X, \mathbf{Z}) \oplus \operatorname{Pic}(X)
$$

which is an isomorphism for nonsingular curves.

3. K_{1} OF A RING

As above, R is an associative ring with unit.
Definition 11. First define $\mathrm{GL}(R)=\underset{\longrightarrow}{\lim } \mathrm{GL}_{n}(R)$ where $\mathrm{GL}_{n}(R) \rightarrow \mathrm{GL}_{n+1}(R)$ is defined by $g \mapsto\left(\begin{array}{ll}g & 0 \\ 0 & 1\end{array}\right)$. Then $K_{1}(R):=\mathrm{GL}(R) /[\mathrm{GL}(R), \mathrm{GL}(R)]$.

Note that $K_{1}(R)$ is an abelian group. It satisfies the following universal property: every homomorphism $\mathrm{GL}(R) \rightarrow A$ factors through $K_{1}(R)$. As with K_{0}, the association $R \mapsto K_{1}(R)$ is functorial.

In order to understand $K_{1}(R)$ it's useful to get a grip first on the commutator subgroup of $\mathrm{GL}(R)$. Define $E_{n}(R) \subseteq \mathrm{GL}_{n}(R)$ to be the group generated by the elementary matrices $e_{i j}(r)$ where $r \in R, i \neq j$, and $e_{i j}(r)$ is the usual matrix with all entries 0 save for the (i, j) th, which contains r, and the diagonal entries, which are 1 . Set $E(R)={\underset{\longrightarrow}{\lim }}_{n} E_{n}(R)$. This is the same as the group generated by the images of the $e_{i j}(r)$ in $\operatorname{GL}(\vec{R})$.

Lemma 12 (Whitehead). One has $E(R)=[\mathrm{GL}(R), \mathrm{GL}(R)]$.

Proof. First show that $E(R)=[E(R), E(R)]$ by proving the same thing for $E_{n}(R)$ for $n \geq 3$ using a bunch of identities which we'll write down:

$$
\begin{aligned}
e_{i j}(r) e_{i j}(s) & =e_{i j}(r+s) \\
{\left[e_{i j}(r), e_{k l}(s)\right] } & = \begin{cases}1 & j \neq k, i \neq l \\
e_{i k}(r s) & i \neq k\end{cases}
\end{aligned}
$$

If $A, B \in \mathrm{GL}_{n}(R)$ then

$$
\left(\begin{array}{cc}
A B A^{-1} B^{-1} & 0 \\
0 & 1_{n}
\end{array}\right)=\left(\begin{array}{cc}
A B & 0 \\
0 & (A B)^{-1}
\end{array}\right)\left(\begin{array}{cc}
A^{-1} & 0 \\
0 & A
\end{array}\right)\left(\begin{array}{cc}
B^{-1} & 0 \\
0 & B
\end{array}\right) .
$$

For any $M \in \mathrm{GL}_{n}(R)$,

$$
\left(\begin{array}{cc}
M & 0 \\
0 & M^{-1}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
M^{-1}-1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
M-1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -M^{-1} \\
0 & 1
\end{array}\right),
$$

and each of these is in $E_{n}(R)$. So $K_{1}(R)=\mathrm{GL}(R) / E(R)$.
Definition 13. Define $\mathrm{SL}(R)=\underline{\longrightarrow} \lim _{n}(R)$.
One has $\mathrm{GL}(R)=\mathrm{SL}(R) \nVdash R^{\times}$and there is a determinant map det: $K_{1}(R) \rightarrow R^{\times}$. Define $\mathrm{SK}_{1}(R)$ to be the kernel of this map.
Example 14. If F is a field then $K_{1}(F)=F^{\times}$. To see this, note that Dickson showed $\mathrm{SL}_{n}(F)=\left[\mathrm{GL}_{n}(F), \mathrm{GL}_{n}(F)\right]$ in 1899 except for two specific cases. Or, use elementary row operators to show $E_{n}(F)=\mathrm{SL}_{n}(F)$ for all $n \geq 1$.
Example 15. In 1941, Dieudonne proved that if D is a division ring then $K_{1}(D)=$ $D^{\times} /\left[D^{\times}, D^{\times}\right]$. This isomorphism is given by the so-called Dieudonne determinant $\operatorname{GL}(D) \rightarrow\left(D^{\times}\right) /\left[D^{\times}, D^{\times}\right]$.
Example 16. Since GL commutes with products, one can show $K_{1}\left(R_{1} \times R_{2}\right)=$ $K_{1}\left(R_{1}\right) \oplus K_{1}\left(R_{2}\right)$.
Example 17. One has $\mathrm{GL}(R) \cong \mathrm{GL}\left(M_{n}(R)\right)$ so that $K_{1}(R) \cong K_{1}\left(M_{n}(R)\right)$.
Example 18. Bass-Milnor-Serre proved that if R is euclidean or a maximal order in a number field K, then $\mathrm{SK}_{1}(R)=0$ and $K_{1}(R)=K^{\times}$.

Given $a, b \in R$ with $(a, b)=1$, choose b and c so that $a d-b c=1$. Then let $[a, b]$ denote the class of $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ in $\mathrm{SK}_{1}(R)$. This is well-defined and one has the relations

- $[a, b]=[b, a]$,
- $[a, b]=1$ for all $b \in R$ if $a \in R^{\times}$,
- $\left[a_{1} a_{2}, b\right]=\left[a_{1}, b\right]\left[a_{2}, b\right]$
- $[a, b]=[a+r b, b]$ for all $r \in R$.

These symbols generate $\mathrm{SK}_{1}(R)$ under certain conditions (e.g. R is noetherian of dimension ≤ 1, plus more).

4. K_{2} OF A RING

Definition 19. Let R be an associataive unital ring and let $n \geq 3$ be an integer. The Steinberg group $\mathrm{St}_{n}(R)$ is genereated by symbols $x_{i j}(r)$ with $1 \leq i \leq j \leq n, r \in R$,
modulo the relations $x_{i j}(r) x_{i j}(s)=x_{i j}(r+s)$ and

$$
\left[x_{i j}(r), x_{k l}(s)\right]= \begin{cases}1 & j \neq k, i \neq l \\ x_{i j}(r s) & j=k, i \neq l \\ x_{k l}(-s r) & j \neq k, i=l\end{cases}
$$

There exists a map $\phi_{n}: \operatorname{St}_{n}(R) \rightarrow E_{n}(R)$ sending $x_{i j}(r)$ to $e_{i j}(r)$. Define $\operatorname{St}(R)=$ $\xrightarrow{\lim } \operatorname{St}_{n}(R)$. There is a natural map $\phi=\underset{\longrightarrow}{\lim } \phi_{n}: \operatorname{St}(R) \rightarrow E(R)$. Set $K_{2}(R)=\operatorname{ker} \phi$.

There exists an exact sequence

$$
1 \rightarrow K_{2}(R) \rightarrow \mathrm{St}(R) \rightarrow \mathrm{GL}(R) \rightarrow K_{1}(R) .
$$

One can show:
Theorem 20. The group $K_{2}(R)$ is the center of $\operatorname{St}(R)$. In particular, $K_{2}(R)$ is abelian.
Proof. If $x \in Z(\operatorname{St}(R))$ then $\phi(x) \in Z(E(R))$, so $x \in \operatorname{ker} \phi$. Let $x \in K_{2}(R)$, so that $x \in \operatorname{St}(R)$ and $\phi(x)=1$. Note that for all elements $y \in \operatorname{St}(R)$ we have $\phi([x, y])=1$. Choose a large n such that x can be written as a word in $x_{i j}(r) \mathrm{s}$ with $i, j<n$. Then for all $y=x_{k n}(s)$ with $k<n$, the Steinberg relations give allow one to write $[x, y]$ as a word in $x_{i n}(r)$ s for $i<n$. But the subgroup generated by the $x_{i n}(r) \mathrm{s}$ wth $i<n$ maps injectively by ϕ into $E(R)$. Since $\phi([x, y])=1$, it follows that $[x, y]=1$. Hence x commutes with all $x_{k n}(s)$ s with $k<n$. An analogous argument allows one to show it commutes with all $x_{n k}(s)$. Then relations also allow one to show that x commutes with $x_{i j}(s)$ with both $i, j<n$. This is enough to show that x commutes with everything (make n even larger if necessary).

Example 21. One can show $K_{2}(\mathbf{Z})=\mathbf{Z} / 2 \mathbf{Z}, K_{2}(\mathbf{Z}[\sqrt{-7}])=\mathbf{Z} / 2 \mathbf{Z}, K_{2}(\mathbf{Z}[i])=1$, and there are a bunch of other examples in the literature. But in general it's pretty hard to compute $K_{2}(R)$.

Remark 22. The extension

$$
0 \rightarrow K_{2}(R) \rightarrow \mathrm{St}(R) \rightarrow E(R) \rightarrow 0
$$

is the universal central extension of $E(R)$. Thus $K_{2}(R)=H_{2}(E(R), \mathbf{Z})$.

5. Products

If R is a commutative ring then one has a product map $K_{0}(R) \otimes_{\mathbf{z}} K_{0}(R) \rightarrow K_{0}(R)$, and similarly for $K_{1}(R)$ and $K_{2}(R)^{1}$. One even has a map

$$
K_{1}(R) \otimes_{K_{0}(R)} K_{1}(R) \rightarrow K_{2}(R)
$$

Map $g \otimes h \mapsto\{g, h\}$ as follows. First, suppose that $\alpha, \beta \in E(R)$ commute. Then define a product $\alpha \star \beta \in K_{2}(R)$ by setting $\alpha \star \beta=[\tilde{\alpha}, \tilde{\beta}]$ where $\tilde{\alpha}, \tilde{\beta}$ are lifts of α and β in $\mathrm{St}(R)$. Now regard $g \in \mathrm{GL}_{n}(R)$ and $h \in \mathrm{GL}_{m}(R)$. Then define

$$
\{g, h\}=\left(\begin{array}{ccc}
g \otimes 1_{m} & 0 & 0 \\
0 & g^{-1} \otimes 1_{m} & 0 \\
0 & 0 & 1_{m n}
\end{array}\right) \star\left(\begin{array}{ccc}
1_{n} \otimes h & 0 & 0 \\
0 & 1_{m n} & 0 \\
0 & 0 & 1_{n} \otimes h^{-1}
\end{array}\right)
$$

[^0]Theorem 23 (Matsumoto). Let F be a field. Then $K_{2}(F)$ is the free abelian group on the symbols $\{a, b\}$ with $a, b \in F^{\times}$subject to the relations

$$
\begin{aligned}
\left\{a_{1} a_{2}, b\right\} & =\left\{a_{1}, b\right\}\left\{a_{2}, b\right\}, \\
\{a, b\} & =\{b, a\}^{-1}, \\
\{a, 1-a\} & =1 .
\end{aligned}
$$

That is, $K_{2}(F) \cong F^{\times} \otimes F^{\times} /\langle a \otimes(1-a)\rangle$.
Corollary 24. One has $K_{2}\left(\mathbf{F}_{q}\right)=1$.
Proof. Let x be a generator of \mathbf{F}_{q}^{\times}. If q is even then $\{x, x\}=\{x,-x\}=1$. If q is odd then $\left\{x, x x^{\frac{q-1}{2}}\right\}=\{x,-x\}=1$. So $\{x, x\}$ has order 1 or 2 by skew symmetry. The set $\mathbf{F}_{q}^{\times}-\{1\}$ is invariant under $z \mapsto 1-z$. It contains $\frac{q-1}{2}$ nonsquares and $\frac{q-3}{2}$ squares. Thus, there exists a nonsquare z such that $1-z$ is also nonsquare. Write $z=x^{i}$ and $1-z=x^{j}$ for odd i and j. Then one checks that $1=\{z, 1-z\}=\{x, x\}^{i j}=\{x, x\}$ since $i j$ is odd.

Remark 25. Milnor K-theory is defined using the tensor algebra and the Steinberg symbols. For a field F one checks that $K_{0}^{M}(F)=\mathbf{Z}, K_{1}^{M}(F)=F^{\times}$and $K_{2}^{M}(F)=$ $K_{2}(F)$.
Remark 26. The theorem of Merkurjev-Suslin says that $K_{2}(F) / n K_{2}(F)$ is the n-torsion in the Brauer group of F.

[^0]: ${ }^{1}$ The existence of these maps is not obvious, although if one realizes $K_{1}(R)$ as K_{0} of projective modules along with an automorphism, then the product in K_{1} is given by tensor product.

