CLASSICAL K-THEORY
SPEAKER: WEI HO

ABSTRACT. Unedited live-texed notes from the first meeting of the algebraic K-theory
seminar at UMich, Winter 2015. Note taker was Cameron Franc.

1. K, OF A RING

Let R be an associative ring with a unit. Recall that a (left) R-module is projecitve
if there exists a module @) such that P @ Q) is free. Equivalently, for every diagram

P

|

M —N

with M — N surjective, there exists a map P — M making a commutative triangle.
Equivalently, Exty(P,e) = 0.

The set of isomorphism classes of finitely generated projective R-modules has
the structure of an abelian monoid under direct sum. Then Ky(R) is the group
completion of this monoid. That is, it is the free-abelian group on the isomor-
phism classes of finitely generated projective R-modules mod the obvious relations:
[P @ Q] —[P] — [Q]. It is not hard to check that [P] = [P] in K,(R) if and only if there
exists a finitely generated projective R-module () such that P & Q = P’ & (). Even
more conretely, this is equivalent to having P & R" = P’ & R" for some n > 0.

Example 1. If R is a local ring then K((R) = Z since finitely generated projective
R-modules are free.

Example 2. If R is a PID then K(R) = Z by the classification of finitely generated
modules over a PID.

Example 3. If R is a Dedekind domain then K((R) = Z& Cl(R). To see this, note that
a finitely generated projective module over R breaks up into a direct sum of fractional
ideals (prove this by induction). Next note that [, &1, = R® 1,15, so that if P is finitely
generated and projective, P = R"~! & I for some ideal I. This decomposition yields
the decomposition of Ky(R).

Example 4. Eilenberg-Mazur Swindle: Let R> be an infinitely generated free module.
If P® Q= R™then

POR*=Z(PoQ)d(PoQ)d---=R™
Thus, if we allow non-finitely generated modules then we obtain a trivial K.

We record the following properties:

e K is a covariant functor from rings to abelian groups;
e it respects finite direct products and filtered direct limits.
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2. K, OF AN EXACT CATEGORY

Definition 5. An exact category is a pair (C,£) where C is an additive category that is
a full subcategory of an abelian category .4, and £ is the family of sequences in C of
the form 0 — B — C — D — 0 that are exact in .A. Further, we assume that if B and
D lie in C, then C is also in C (that is, C is closed under extensions). We’ll usually say
C is an exact category unless we wish to specify the exact sequences in £.

Definition 6. Let C be a small exact category. Then K, (C) is the abelian group gener-
ated by the objects of C, and with relations given by the exact sequences.

Example 7. Let C be the category of finitely generated projective R-modules con-
tained in the category of all R-modules. Then K,(C) = Ky(R) because exact se-
quences of projective modules split.

Example 8. Let X be a quasi-projective scheme over a commutative ring R. Then one
is interested in Ky (VB(X)) = Ky(X), where VB(X) is the exact category of vector
bundles on X, which is a full subcategory of the category of quasicoherent modules
on X.

Remark 9. If X is a noetherian scheme, then let Go(X) = Ky(Coh(X)). There exists
a morphism

called the Cartan homomorphism, which Serre proved is an isomorphism when X is
regular and quasiprojective over a noetherian ring.

Example 10. One can show that Ky(P') = Z2 More generally, there is a surjective
map

rk @ det: Ko(X) — H°(X,Z) ® Pic(X)

which is an isomorphism for nonsingular curves.

3. K, OF A RING

As above, R is an associative ring with unit.

Definition 11. First define GL(R) = @GLn(R) where GL,(R) — GL,+1(R) is de-
fined by g — (7). Then K;(R) := GL(R)/[GL(R), GL(R)].

Note that K (R) is an abelian group. It satisfies the following universal property:
every homomorphism GL(R) — A factors through K (R). As with K|, the association
R — K, (R) is functorial.

In order to understand K;(R) it’s useful to get a grip first on the commutator
subgroup of GL(R). Define E,(R) C GL,(R) to be the group generated by the ele-
mentary matrices e;;(r) where » € R, i # j, and e;;(r) is the usual matrix with all
entries 0 save for the (7, j)th, which contains r, and the diagonal entries, which are 1.
Set E(R) = lim | E,(R). This is the same as the group generated by the images of the

€Z'j<7”) in GL(R)
Lemma 12 (Whitehead). One has E(R) = [GL(R), GL(R)].
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Proof. First show that E(R) = [E(R), E(R)] by proving the same thing for F,, (R) for
n > 3 using a bunch of identities which we’ll write down:

eij(r)eij(s) = ey(r + s)
() x(s)] = {1 v i
If A, B € GL,(R) then
(ABA—lB—l o) _ (AB 0 ) (A—l o) (3—1 0)
0 ,) " \o aB*)Lo 4)\ o B)
For any M € GL,(R),
(M 0)_( 1 0)(1 1)(1 0)(1 —M—l)
0 M1t \M1t-11 01 M—-1 1 0 1 ’
and each of these is in F,,(R). So K;(R) = GL(R)/E(R). O
Definition 13. Define SL(R) = lim SL,(R).

One has GL(R) = SL(R) %¥R* and there is a determinant map det: K;(R) — R*.
Define SK;(R) to be the kernel of this map.

Example 14. If I is a field then K, (F) = F*. To see this, note that Dickson showed
SL,(F) = [GL,(F), GL,(F)] in 1899 except for two specific cases. Or, use elementary
row operators to show E,,(F) = SL,(F) for all n > 1.

Example 15. In 1941, Dieudonne proved that if D is a division ring then K;(D) =
D> /[D*,D*|. This isomorphism is given by the so-called Dieudonne determinant
GL(D) — (D*)/[D*, D*].

Example 16. Since GL commutes with products, one can show K;(R; X Rs) =
Ki(Ry) ® K1(Rs).

Example 17. One has GL(R) = GL(M,(R)) so that K,(R) = K,(M,(R)).

Example 18. Bass-Milnor-Serre proved that if R is euclidean or a maximal order in a
number field K, then SK;(R) = 0 and K,(R) = K*.

Given a,b € R with (a,b) = 1, choose b and ¢ so that ad — bc = 1. Then let [a, b]
denote the class of (CCL b) in SK;(R). This is well-defined and one has the relations

d
e [a,b] = [b,al,
e [a,b]=1forallbe Rifa € R*,
[ ] [alag,b] = [al,b] [ag,b]
e [a,b] =[a+rbb]forallr € R.

These symbols generate SK;(R) under certain conditions (e.g. R is noetherian of
dimension < 1, plus more).

4. K5 OF A RING

Definition 19. Let R be an associataive unital ring and let n > 3 be an integer. The
Steinberg group St, (R) is genereated by symbols z;;(r) with 1 <i < j <n,r € R,
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modulo the relations z;;(r)z;;(s) = z;;(r + s) and

1 J#Fki#L
[2ij(r), zi(s)] = § wi(rs)  j=ki#l,
wp(—sr) j#ki=1L

There exists a map ¢,: St,(R) — E,(R) sending z;;(r) to e;;(r). Define St(R) =
ligStn(R). There is a natural map ¢ = lim ¢, : St(R) — E(R). Set Ky(R) = ker ¢.

There exists an exact sequence
1 = K3(R) — St(R) — GL(R) — K;(R).
One can show:
Theorem 20. The group K»(R) is the center of St(R). In particular, K»(R) is abelian.

Proof. If x € Z(St(R)) then ¢(z) € Z(E(R)), so x € ker¢. Let z € Ky(R), so that
x € St(R) and ¢(x) = 1. Note that for all elements y € St(R) we have ¢([z,y]) = 1.
Choose a large n such that x can be written as a word in z;;(r)s with i, j < n. Then
for all y = x4,(s) with £ < n, the Steinberg relations give allow one to write [z, 3]
as a word in z;,(r)s for i < n. But the subgroup generated by the z;,(r)s wth i < n
maps injectively by ¢ into E(R). Since ¢([z,y]) = 1, it follows that [z,y] = 1. Hence
x commutes with all z,(s)s with £ < n. An analogous argument allows one to
show it commutes with all z,,(s). Then relations also allow one to show that z
commutes with z;;(s) with both i, j < n. This is enough to show that  commutes
with everything (make n even larger if necessary). O

Example 21. One can show Ky(Z) = Z/2Z, Ky(Z[v—7]|) = Z/2Z, K»(Z[i]) = 1, and
there are a bunch of other examples in the literature. But in general it’s pretty hard
to compute K»(R).

Remark 22. The extension
0 — Ky(R) — St(R) —» E(R) = 0
is the universal central extension of F(R). Thus K»(R) = Hy(E(R),Z).

5. PRODUCTS

If R is a commutative ring then one has a product map Ky (R)®zKo(R) — Ko(R),
and similarly for i;(R) and K,(R)'. One even has a map

Ki(R) ®k,(r) Ki1(R) = K2(R)

Map g®h — {g, h} as follows. First, suppose that «, 3 € E(R) commute. Then define
a product a x § € K»(R) by setting a x 5 = [&, ] where &, [ are lifts of « and § in
St(R). Now regard g € GL,(R) and h € GL,,(R). Then define

9@ 1 0 0 L,®h 0 0
{ghy =] 0 g¢'®1L, 0 |x| 0 1l 0
0 0 Ly 0 0 1,®h"

IThe existence of these maps is not obvious, although if one realizes K, (R) as K of projective modules
along with an automorphism, then the product in K, is given by tensor product.
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Theorem 23 (Matsumoto). Let F be a field. Then K,(F)) is the free abelian group on
the symbols {a, b} with a,b € F* subject to the relations
{ajas,b} = {ay,b}{as, b},
{a,0} = {b,a} ™",
{a,1—a} =1
Thatis, Ko(F) = F* @ F* /{(a ® (1 — a)).
Corollary 24. One has K»(F,) = 1.

Proof. Let x be a generator of F. If ¢ is even then {z,2} = {7, —x} = 1. If ¢ is odd
then {z, m’q%l} = {z,—x} = 1. So {z, x} has order 1 or 2 by skew symmetry. The set
Fx — {1} is invariant under z + 1 — z. It contains 21 nonsquares and %> squares.
Thus, there exists a nonsquare z such that 1 — z is also nonsquare. Write z = z* and
1 — z = 27 for odd i and j. Then one checks that 1 = {z,1 — 2z} = {z,2}¥ = {z, 2}
since ij is odd. O

Remark 25. Milnor K-theory is defined using the tensor algebra and the Steinberg
symbols. For a field F' one checks that K} (F) = Z, KM(F) = F* and K} (F) =
Ky (F).

Remark 26. The theorem of Merkurjev-Suslin says that K»(F)/nK,(F') is the n-torsion
in the Brauer group of F.



