CLASSICAL K-THEORY

SPEAKER: WEI HO

ABSTRACT. Unedited live-texed notes from the first meeting of the algebraic K-theory seminar at UMich, Winter 2015. Note taker was Cameron Franc.

1. K_0 of a ring

Let *R* be an associative ring with a unit. Recall that a (left) *R*-module is *projective* if there exists a module *Q* such that $P \oplus Q$ is free. Equivalently, for every diagram

$$\begin{array}{c} P \\ \downarrow \\ M \longrightarrow N \end{array}$$

with $M \to N$ surjective, there exists a map $P \to M$ making a commutative triangle. Equivalently, $\operatorname{Ext}^{1}_{R}(P, \bullet) = 0$.

The set of isomorphism classes of finitely generated projective R-modules has the structure of an abelian monoid under direct sum. Then $K_0(R)$ is the group completion of this monoid. That is, it is the free-abelian group on the isomorphism classes of finitely generated projective R-modules mod the obvious relations: $[P \oplus Q] - [P] - [Q]$. It is not hard to check that [P] = [P'] in $K_0(R)$ if and only if there exists a finitely generated projective R-module Q such that $P \oplus Q \cong P' \oplus Q$. Even more conretely, this is equivalent to having $P \oplus R^n \cong P' \oplus R^n$ for some $n \ge 0$.

Example 1. If *R* is a local ring then $K_0(R) = \mathbf{Z}$ since finitely generated projective *R*-modules are free.

Example 2. If *R* is a PID then $K_0(R) = \mathbf{Z}$ by the classification of finitely generated modules over a PID.

Example 3. If *R* is a Dedekind domain then $K_0(R) = \mathbb{Z} \oplus Cl(R)$. To see this, note that a finitely generated projective module over *R* breaks up into a direct sum of fractional ideals (prove this by induction). Next note that $I_1 \oplus I_2 \cong R \oplus I_1 I_2$, so that if *P* is finitely generated and projective, $P \cong R^{n-1} \oplus I$ for some ideal *I*. This decomposition yields the decomposition of $K_0(R)$.

Example 4. Eilenberg-Mazur Swindle: Let R^{∞} be an infinitely generated free module. If $P \oplus Q \cong R^n$ then

$$P \oplus R^{\infty} \cong (P \oplus Q) \oplus (P \oplus Q) \oplus \dots = R^{\infty}$$

Thus, if we allow non-finitely generated modules then we obtain a trivial K_0 .

We record the following properties:

- K_0 is a covariant functor from rings to abelian groups;
- it respects finite direct products and filtered direct limits.

```
Date: January 19, 2015.
```

SPEAKER: WEI HO

2. K_0 of an exact category

Definition 5. An *exact category* is a pair $(\mathcal{C}, \mathcal{E})$ where \mathcal{C} is an additive category that is a full subcategory of an abelian category \mathcal{A} , and \mathcal{E} is the family of sequences in \mathcal{C} of the form $0 \rightarrow B \rightarrow C \rightarrow D \rightarrow 0$ that are exact in \mathcal{A} . Further, we assume that if B and D lie in \mathcal{C} , then C is also in \mathcal{C} (that is, \mathcal{C} is closed under extensions). We'll usually say \mathcal{C} is an exact category unless we wish to specify the exact sequences in \mathcal{E} .

Definition 6. Let C be a small exact category. Then $K_0(C)$ is the abelian group generated by the objects of C, and with relations given by the exact sequences.

Example 7. Let C be the category of finitely generated projective R-modules contained in the category of all R-modules. Then $K_0(C) = K_0(R)$ because exact sequences of projective modules split.

Example 8. Let *X* be a quasi-projective scheme over a commutative ring *R*. Then one is interested in $K_0(VB(X)) = K_0(X)$, where VB(X) is the exact category of vector bundles on *X*, which is a full subcategory of the category of quasicoherent modules on *X*.

Remark 9. If X is a noetherian scheme, then let $G_0(X) = K_0(Coh(X))$. There exists a morphism

$$K_0(X) \to G_0(X)$$

called the *Cartan homomorphism*, which Serre proved is an isomorphism when X is regular and quasiprojective over a noetherian ring.

Example 10. One can show that $K_0(\mathbf{P}^1) = \mathbf{Z}^2$. More generally, there is a surjective map

$$\operatorname{rk} \oplus \det \colon K_0(X) \to H^0(X, \mathbf{Z}) \oplus \operatorname{Pic}(X)$$

which is an isomorphism for nonsingular curves.

3. K_1 of a ring

As above, R is an associative ring with unit.

Definition 11. First define $\operatorname{GL}(R) = \varinjlim_{n \to \infty} \operatorname{GL}_n(R)$ where $\operatorname{GL}_n(R) \to \operatorname{GL}_{n+1}(R)$ is defined by $g \mapsto \begin{pmatrix} g & 0 \\ 0 & 1 \end{pmatrix}$. Then $K_1(R) := \operatorname{GL}(R)/[\operatorname{GL}(R), \operatorname{GL}(R)]$.

Note that $K_1(R)$ is an abelian group. It satisfies the following universal property: every homomorphism $GL(R) \to A$ factors through $K_1(R)$. As with K_0 , the association $R \mapsto K_1(R)$ is functorial.

In order to understand $K_1(R)$ it's useful to get a grip first on the commutator subgroup of $\operatorname{GL}(R)$. Define $E_n(R) \subseteq \operatorname{GL}_n(R)$ to be the group generated by the elementary matrices $e_{ij}(r)$ where $r \in R$, $i \neq j$, and $e_{ij}(r)$ is the usual matrix with all entries 0 save for the (i, j)th, which contains r, and the diagonal entries, which are 1. Set $E(R) = \varinjlim_n E_n(R)$. This is the same as the group generated by the images of the $e_{ij}(r)$ in $\operatorname{GL}(R)$.

Lemma 12 (Whitehead). One has E(R) = [GL(R), GL(R)].

Proof. First show that E(R) = [E(R), E(R)] by proving the same thing for $E_n(R)$ for $n \ge 3$ using a bunch of identities which we'll write down:

$$e_{ij}(r)e_{ij}(s) = e_{ij}(r+s)$$
$$[e_{ij}(r), e_{kl}(s)] = \begin{cases} 1 & j \neq k, i \neq l \\ e_{ik}(rs) & i \neq k. \end{cases}$$

If $A, B \in GL_n(R)$ then

$$\begin{pmatrix} ABA^{-1}B^{-1} & 0\\ 0 & 1_n \end{pmatrix} = \begin{pmatrix} AB & 0\\ 0 & (AB)^{-1} \end{pmatrix} \begin{pmatrix} A^{-1} & 0\\ 0 & A \end{pmatrix} \begin{pmatrix} B^{-1} & 0\\ 0 & B \end{pmatrix}.$$

For any $M \in \operatorname{GL}_n(R)$,

$$\begin{pmatrix} M & 0 \\ 0 & M^{-1} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ M^{-1} - 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ M - 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -M^{-1} \\ 0 & 1 \end{pmatrix}$$

and each of these is in $E_n(R)$. So $K_1(R) = GL(R)/E(R)$.

Definition 13. Define $SL(R) = \lim_{n \to \infty} SL_n(R)$.

One has $GL(R) = SL(R) \not R^{\times}$ and there is a determinant map det: $K_1(R) \to R^{\times}$. Define $SK_1(R)$ to be the kernel of this map.

Example 14. If *F* is a field then $K_1(F) = F^{\times}$. To see this, note that Dickson showed $SL_n(F) = [GL_n(F), GL_n(F)]$ in 1899 except for two specific cases. Or, use elementary row operators to show $E_n(F) = SL_n(F)$ for all $n \ge 1$.

Example 15. In 1941, Dieudonne proved that if D is a division ring then $K_1(D) = D^{\times}/[D^{\times}, D^{\times}]$. This isomorphism is given by the so-called Dieudonne determinant $GL(D) \to (D^{\times})/[D^{\times}, D^{\times}]$.

Example 16. Since GL commutes with products, one can show $K_1(R_1 \times R_2) = K_1(R_1) \oplus K_1(R_2)$.

Example 17. One has $GL(R) \cong GL(M_n(R))$ so that $K_1(R) \cong K_1(M_n(R))$.

Example 18. Bass-Milnor-Serre proved that if *R* is euclidean or a maximal order in a number field *K*, then $SK_1(R) = 0$ and $K_1(R) = K^{\times}$.

Given $a, b \in R$ with (a, b) = 1, choose b and c so that ad - bc = 1. Then let [a, b] denote the class of $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in $SK_1(R)$. This is well-defined and one has the relations

•
$$[a,b] = [b,a]$$
,

•
$$[a, b] = 1$$
 for all $b \in R$ if $a \in R^{\times}$,

•
$$[a_1a_2, b] = [a_1, b][a_2, b]$$

• [a,b] = [a+rb,b] for all $r \in R$.

These symbols generate $SK_1(R)$ under certain conditions (e.g. R is noetherian of dimension ≤ 1 , plus more).

4. K_2 of a ring

Definition 19. Let *R* be an associataive unital ring and let $n \ge 3$ be an integer. The Steinberg group $St_n(R)$ is generated by symbols $x_{ij}(r)$ with $1 \le i \le j \le n$, $r \in R$,

modulo the relations $x_{ij}(r)x_{ij}(s) = x_{ij}(r+s)$ and

$$[x_{ij}(r), x_{kl}(s)] = \begin{cases} 1 & j \neq k, i \neq l, \\ x_{ij}(rs) & j = k, i \neq l, \\ x_{kl}(-sr) & j \neq k, i = l. \end{cases}$$

There exists a map ϕ_n : $\operatorname{St}_n(R) \to E_n(R)$ sending $x_{ij}(r)$ to $e_{ij}(r)$. Define $\operatorname{St}(R) = \lim \operatorname{St}_n(R)$. There is a natural map $\phi = \lim \phi_n$: $\operatorname{St}(R) \to E(R)$. Set $K_2(R) = \ker \phi$.

There exists an exact sequence

$$1 \to K_2(R) \to \operatorname{St}(R) \to \operatorname{GL}(R) \to K_1(R).$$

One can show:

Theorem 20. The group $K_2(R)$ is the center of St(R). In particular, $K_2(R)$ is abelian.

Proof. If $x \in Z(\operatorname{St}(R))$ then $\phi(x) \in Z(E(R))$, so $x \in \ker \phi$. Let $x \in K_2(R)$, so that $x \in \operatorname{St}(R)$ and $\phi(x) = 1$. Note that for all elements $y \in \operatorname{St}(R)$ we have $\phi([x,y]) = 1$. Choose a large n such that x can be written as a word in $x_{ij}(r)$ s with i, j < n. Then for all $y = x_{kn}(s)$ with k < n, the Steinberg relations give allow one to write [x, y] as a word in $x_{in}(r)$ s for i < n. But the subgroup generated by the $x_{in}(r)$ s wth i < n maps *injectively* by ϕ into E(R). Since $\phi([x, y]) = 1$, it follows that [x, y] = 1. Hence x commutes with all $x_{kn}(s)$ s with k < n. An analogous argument allows one to show that x commutes with $x_{ij}(s)$ with both i, j < n. This is enough to show that x commutes with everything (make n even larger if necessary).

Example 21. One can show $K_2(\mathbf{Z}) = \mathbf{Z}/2\mathbf{Z}$, $K_2(\mathbf{Z}[\sqrt{-7}]) = \mathbf{Z}/2\mathbf{Z}$, $K_2(\mathbf{Z}[i]) = 1$, and there are a bunch of other examples in the literature. But in general it's pretty hard to compute $K_2(R)$.

Remark 22. The extension

$$0 \to K_2(R) \to \operatorname{St}(R) \to E(R) \to 0$$

is the universal central extension of E(R). Thus $K_2(R) = H_2(E(R), \mathbf{Z})$.

5. PRODUCTS

If *R* is a *commutative* ring then one has a product map $K_0(R) \otimes_{\mathbf{Z}} K_0(R) \to K_0(R)$, and similarly for $K_1(R)$ and $K_2(R)^1$. One even has a map

$$K_1(R) \otimes_{K_0(R)} K_1(R) \to K_2(R)$$

Map $g \otimes h \mapsto \{g, h\}$ as follows. First, suppose that $\alpha, \beta \in E(R)$ commute. Then define a product $\alpha \star \beta \in K_2(R)$ by setting $\alpha \star \beta = [\tilde{\alpha}, \tilde{\beta}]$ where $\tilde{\alpha}, \tilde{\beta}$ are lifts of α and β in St(R). Now regard $g \in GL_n(R)$ and $h \in GL_m(R)$. Then define

$$\{g,h\} = \begin{pmatrix} g \otimes 1_m & 0 & 0\\ 0 & g^{-1} \otimes 1_m & 0\\ 0 & 0 & 1_{mn} \end{pmatrix} \star \begin{pmatrix} 1_n \otimes h & 0 & 0\\ 0 & 1_{mn} & 0\\ 0 & 0 & 1_n \otimes h^{-1} \end{pmatrix}$$

¹The existence of these maps is not obvious, although if one realizes $K_1(R)$ as K_0 of projective modules along with an automorphism, then the product in K_1 is given by tensor product.

Theorem 23 (Matsumoto). Let F be a field. Then $K_2(F)$ is the free abelian group on the symbols $\{a, b\}$ with $a, b \in F^{\times}$ subject to the relations

$$\{a_1a_2, b\} = \{a_1, b\} \{a_2, b\}$$
$$\{a, b\} = \{b, a\}^{-1},$$
$$\{a, 1 - a\} = 1.$$

That is, $K_2(F) \cong F^{\times} \otimes F^{\times} / \langle a \otimes (1-a) \rangle$.

Corollary 24. One has $K_2(\mathbf{F}_q) = 1$.

Proof. Let x be a generator of \mathbf{F}_q^{\times} . If q is even then $\{x, x\} = \{x, -x\} = 1$. If q is odd then $\{x, xx^{\frac{q-1}{2}}\} = \{x, -x\} = 1$. So $\{x, x\}$ has order 1 or 2 by skew symmetry. The set $\mathbf{F}_q^{\times} - \{1\}$ is invariant under $z \mapsto 1 - z$. It contains $\frac{q-1}{2}$ nonsquares and $\frac{q-3}{2}$ squares. Thus, there exists a nonsquare z such that 1 - z is also nonsquare. Write $z = x^i$ and $1 - z = x^j$ for odd i and j. Then one checks that $1 = \{z, 1 - z\} = \{x, x\}^{ij} = \{x, x\}$ since ij is odd.

Remark 25. Milnor *K*-theory is defined using the tensor algebra and the Steinberg symbols. For a field *F* one checks that $K_0^M(F) = \mathbb{Z}$, $K_1^M(F) = F^{\times}$ and $K_2^M(F) = K_2(F)$.

Remark 26. The theorem of Merkurjev-Suslin says that $K_2(F)/nK_2(F)$ is the *n*-torsion in the Brauer group of *F*.