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SPEAKER: WEI HO

ABSTRACT. Unedited live-texed notes from the first meeting of the algebraic K-theory
seminar at UMich, Winter 2015. Note taker was Cameron Franc.

1. K0 OF A RING

LetR be an associative ring with a unit. Recall that a (left)R-module is projecitve
if there exists a module Q such that P ⊕Q is free. Equivalently, for every diagram

P

��
M // N

with M → N surjective, there exists a map P → M making a commutative triangle.
Equivalently, Ext1R(P, •) = 0.

The set of isomorphism classes of finitely generated projective R-modules has
the structure of an abelian monoid under direct sum. Then K0(R) is the group
completion of this monoid. That is, it is the free-abelian group on the isomor-
phism classes of finitely generated projective R-modules mod the obvious relations:
[P ⊕Q]− [P ]− [Q]. It is not hard to check that [P ] = [P ′] in K0(R) if and only if there
exists a finitely generated projective R-module Q such that P ⊕ Q ∼= P ′ ⊕ Q. Even
more conretely, this is equivalent to having P ⊕Rn ∼= P ′ ⊕Rn for some n ≥ 0.

Example 1. If R is a local ring then K0(R) = Z since finitely generated projective
R-modules are free.

Example 2. If R is a PID then K0(R) = Z by the classification of finitely generated
modules over a PID.

Example 3. If R is a Dedekind domain then K0(R) = Z⊕Cl(R). To see this, note that
a finitely generated projective module over R breaks up into a direct sum of fractional
ideals (prove this by induction). Next note that I1⊕I2 ∼= R⊕I1I2, so that if P is finitely
generated and projective, P ∼= Rn−1 ⊕ I for some ideal I. This decomposition yields
the decomposition of K0(R).

Example 4. Eilenberg-Mazur Swindle: LetR∞ be an infinitely generated free module.
If P ⊕Q ∼= Rn then

P ⊕R∞ ∼= (P ⊕Q)⊕ (P ⊕Q)⊕ · · · = R∞

Thus, if we allow non-finitely generated modules then we obtain a trivial K0.

We record the following properties:
• K0 is a covariant functor from rings to abelian groups;
• it respects finite direct products and filtered direct limits.
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2. K0 OF AN EXACT CATEGORY

Definition 5. An exact category is a pair (C, E) where C is an additive category that is
a full subcategory of an abelian category A, and E is the family of sequences in C of
the form 0→ B → C → D → 0 that are exact in A. Further, we assume that if B and
D lie in C, then C is also in C (that is, C is closed under extensions). We’ll usually say
C is an exact category unless we wish to specify the exact sequences in E .

Definition 6. Let C be a small exact category. Then K0(C) is the abelian group gener-
ated by the objects of C, and with relations given by the exact sequences.

Example 7. Let C be the category of finitely generated projective R-modules con-
tained in the category of all R-modules. Then K0(C) = K0(R) because exact se-
quences of projective modules split.

Example 8. Let X be a quasi-projective scheme over a commutative ring R. Then one
is interested in K0(VB(X)) = K0(X), where VB(X) is the exact category of vector
bundles on X, which is a full subcategory of the category of quasicoherent modules
on X.

Remark 9. If X is a noetherian scheme, then let G0(X) = K0(Coh(X)). There exists
a morphism

K0(X)→ G0(X)

called the Cartan homomorphism, which Serre proved is an isomorphism when X is
regular and quasiprojective over a noetherian ring.

Example 10. One can show that K0(P
1) = Z2. More generally, there is a surjective

map

rk⊕ det : K0(X)→ H0(X,Z)⊕ Pic(X)

which is an isomorphism for nonsingular curves.

3. K1 OF A RING

As above, R is an associative ring with unit.

Definition 11. First define GL(R) = lim−→GLn(R) where GLn(R) → GLn+1(R) is de-
fined by g 7→

(
g 0
0 1

)
. Then K1(R) ..= GL(R)/[GL(R),GL(R)].

Note thatK1(R) is an abelian group. It satisfies the following universal property:
every homomorphism GL(R)→ A factors through K1(R). As with K0, the association
R 7→ K1(R) is functorial.

In order to understand K1(R) it’s useful to get a grip first on the commutator
subgroup of GL(R). Define En(R) ⊆ GLn(R) to be the group generated by the ele-
mentary matrices eij(r) where r ∈ R, i 6= j, and eij(r) is the usual matrix with all
entries 0 save for the (i, j)th, which contains r, and the diagonal entries, which are 1.
Set E(R) = lim−→n

En(R). This is the same as the group generated by the images of the
eij(r) in GL(R).

Lemma 12 (Whitehead). One has E(R) = [GL(R),GL(R)].
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Proof. First show that E(R) = [E(R), E(R)] by proving the same thing for En(R) for
n ≥ 3 using a bunch of identities which we’ll write down:

eij(r)eij(s) = eij(r + s)

[eij(r), ekl(s)] =

{
1 j 6= k, i 6= l

eik(rs) i 6= k.

If A, B ∈ GLn(R) then(
ABA−1B−1 0

0 1n

)
=

(
AB 0
0 (AB)−1

)(
A−1 0
0 A

)(
B−1 0
0 B

)
.

For any M ∈ GLn(R),(
M 0
0 M−1

)
=

(
1 0

M−1 − 1 1

)(
1 1
0 1

)(
1 0

M − 1 1

)(
1 −M−1

0 1

)
,

and each of these is in En(R). So K1(R) = GL(R)/E(R). �

Definition 13. Define SL(R) = lim−→ SLn(R).

One has GL(R) = SL(R)×|R× and there is a determinant map det : K1(R)→ R×.
Define SK1(R) to be the kernel of this map.

Example 14. If F is a field then K1(F ) = F×. To see this, note that Dickson showed
SLn(F ) = [GLn(F ),GLn(F )] in 1899 except for two specific cases. Or, use elementary
row operators to show En(F ) = SLn(F ) for all n ≥ 1.

Example 15. In 1941, Dieudonne proved that if D is a division ring then K1(D) =
D×/[D×, D×]. This isomorphism is given by the so-called Dieudonne determinant
GL(D)→ (D×)/[D×, D×].

Example 16. Since GL commutes with products, one can show K1(R1 × R2) =
K1(R1)⊕K1(R2).

Example 17. One has GL(R) ∼= GL(Mn(R)) so that K1(R) ∼= K1(Mn(R)).

Example 18. Bass-Milnor-Serre proved that if R is euclidean or a maximal order in a
number field K, then SK1(R) = 0 and K1(R) = K×.

Given a, b ∈ R with (a, b) = 1, choose b and c so that ad− bc = 1. Then let [a, b]

denote the class of
(
a b
c d

)
in SK1(R). This is well-defined and one has the relations

• [a, b] = [b, a],
• [a, b] = 1 for all b ∈ R if a ∈ R×,
• [a1a2, b] = [a1, b][a2, b]
• [a, b] = [a+ rb, b] for all r ∈ R.

These symbols generate SK1(R) under certain conditions (e.g. R is noetherian of
dimension ≤ 1, plus more).

4. K2 OF A RING

Definition 19. Let R be an associataive unital ring and let n ≥ 3 be an integer. The
Steinberg group Stn(R) is genereated by symbols xij(r) with 1 ≤ i � j ≤ n, r ∈ R,
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modulo the relations xij(r)xij(s) = xij(r + s) and

[xij(r), xkl(s)] =


1 j 6= k, i 6= l,

xij(rs) j = k, i 6= l,

xkl(−sr) j 6= k, i = l.

There exists a map φn : Stn(R) → En(R) sending xij(r) to eij(r). Define St(R) =
lim−→ Stn(R). There is a natural map φ = lim−→φn : St(R)→ E(R). Set K2(R) = kerφ.

There exists an exact sequence

1→ K2(R)→ St(R)→ GL(R)→ K1(R).

One can show:

Theorem 20. The group K2(R) is the center of St(R). In particular, K2(R) is abelian.

Proof. If x ∈ Z(St(R)) then φ(x) ∈ Z(E(R)), so x ∈ kerφ. Let x ∈ K2(R), so that
x ∈ St(R) and φ(x) = 1. Note that for all elements y ∈ St(R) we have φ([x, y]) = 1.
Choose a large n such that x can be written as a word in xij(r)s with i, j < n. Then
for all y = xkn(s) with k < n, the Steinberg relations give allow one to write [x, y]
as a word in xin(r)s for i < n. But the subgroup generated by the xin(r)s wth i < n
maps injectively by φ into E(R). Since φ([x, y]) = 1, it follows that [x, y] = 1. Hence
x commutes with all xkn(s)s with k < n. An analogous argument allows one to
show it commutes with all xnk(s). Then relations also allow one to show that x
commutes with xij(s) with both i, j < n. This is enough to show that x commutes
with everything (make n even larger if necessary). �

Example 21. One can show K2(Z) = Z/2Z, K2(Z[
√
−7]) = Z/2Z, K2(Z[i]) = 1, and

there are a bunch of other examples in the literature. But in general it’s pretty hard
to compute K2(R).

Remark 22. The extension

0→ K2(R)→ St(R)→ E(R)→ 0

is the universal central extension of E(R). Thus K2(R) = H2(E(R),Z).

5. PRODUCTS

IfR is a commutative ring then one has a product mapK0(R)⊗ZK0(R)→ K0(R),
and similarly for K1(R) and K2(R)

1. One even has a map

K1(R)⊗K0(R) K1(R)→ K2(R)

Map g⊗h 7→ {g, h} as follows. First, suppose that α, β ∈ E(R) commute. Then define
a product α ? β ∈ K2(R) by setting α ? β = [α̃, β̃] where α̃, β̃ are lifts of α and β in
St(R). Now regard g ∈ GLn(R) and h ∈ GLm(R). Then define

{g, h} =

g ⊗ 1m 0 0
0 g−1 ⊗ 1m 0
0 0 1mn

 ?

1n ⊗ h 0 0
0 1mn 0
0 0 1n ⊗ h−1


1The existence of these maps is not obvious, although if one realizes K1(R) as K0 of projective modules
along with an automorphism, then the product in K1 is given by tensor product.
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Theorem 23 (Matsumoto). Let F be a field. Then K2(F ) is the free abelian group on
the symbols {a, b} with a, b ∈ F× subject to the relations

{a1a2, b} = {a1, b}{a2, b},
{a, b} = {b, a}−1,

{a, 1− a} = 1.

That is, K2(F ) ∼= F× ⊗ F×/〈a⊗ (1− a)〉.

Corollary 24. One has K2(Fq) = 1.

Proof. Let x be a generator of F×q . If q is even then {x, x} = {x,−x} = 1. If q is odd
then {x, xx q−1

2 } = {x,−x} = 1. So {x, x} has order 1 or 2 by skew symmetry. The set
F×q − {1} is invariant under z 7→ 1 − z. It contains q−1

2
nonsquares and q−3

2
squares.

Thus, there exists a nonsquare z such that 1 − z is also nonsquare. Write z = xi and
1 − z = xj for odd i and j. Then one checks that 1 = {z, 1 − z} = {x, x}ij = {x, x}
since ij is odd. �

Remark 25. Milnor K-theory is defined using the tensor algebra and the Steinberg
symbols. For a field F one checks that KM

0 (F ) = Z, KM
1 (F ) = F× and KM

2 (F ) =
K2(F ).

Remark 26. The theorem of Merkurjev-Suslin says thatK2(F )/nK2(F ) is the n-torsion
in the Brauer group of F .


