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Abstract

In this paper, we show that there is a relationship between two important matching mechanisms: the
Top Trading Cycles mechanism (TTC mechanism proposed by Abdulkadiroglu and Sonmez, 1999)
and the Top Trading Cycles and Chains mechanism (TTCC mechanism proposed by Roth, Sonmez,
and Unver, 2004). Our main result is that when a specific chain selection rule proposed by Roth et al.
is used, these two mechanisms are equivalent. While the equivalence is relevant for one specific case
of the TTCC mechanism, it is a particularly interesting case since it is the only version identified by
Roth et al. to be both Pareto-efficient and strategy-proof.
© 2005 Elsevier Inc. All rights reserved.

JEL classification: C71; C78; D71; D78

Keywords: Mechanism design; Core; Indivisible goods; Matching

1. Introduction

Various types of matching mechanisms have been proposed to solve real-life market
design problems. In Abdulkadiroglu and Sonmez [1], the house allocation problem with
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existing tenants is formulated as a one-shot discrete resource allocation and exchange prob-
lem where all the agents obtain their final allocations simultaneously. To efficiently solve
this static one-sided matching problem, Abdulkadiroglu and Sonmez modified Gale’s Top
Trading Cycles (TTC) algorithm which is used to find the unique core allocation in the
context of housing markets [6,3]. The variant of TTC mechanism in [1] was proved to be
individually rational, strategy-proof, and Pareto-efficient. Hereafter we refer to this version
of the TTC mechanism as “A&S TTC” mechanism. 2

The Top Trading Cycles and Chains (TTCC) mechanism was proposed by Roth et al.
[4] to solve a dynamic matching problem—the kidney exchange problem. In this problem,
some agents may not obtain instant allocations, and instead they get into a queue waiting
for desirable items that may become available in the future. Roth et al. proposed to model
the waiting queue as a “waitlist option”. That is, those who get on the queue are seen as
obtaining a waitlist option rather than an instant allocation of real items. Thus Roth et al.
were able to consider an instance of this dynamic problem and solve that instance with a
static mechanism—TTCC. “Chains” are added to the algorithm (hence the second “C” in the
TTCC mechanism) and six “chain selection rules” were proposed to be implemented under
the TTCC mechanism. Different chain selection rules reflect different policy objectives and
generate different theoretical properties for TTCC. 3

From a modeling perspective, the house allocation and the kidney exchange problems are
different from each other, and the mechanisms that were proposed to solve these problems
are different. However, there are obvious similarities between A&S TTC and TTCC. In this
paper we prove that when TTCC is implemented with a specific chain selection rule—chain
selection rule e in [4], these two are equivalent algorithms. We state the result formally as
follows:

Proposition 1. The Top Trading Cycles and Chains mechanism implemented with chain
selection rule e in [4] (i.e., TTCC mechanism as proposed by Roth et al. [4] to solve the kidney
exchange problem), and the A&S Top Trading Cycles mechanism (i.e., TTC mechanism as
proposed by Abdulkadiroglu and Sonmez [1] to solve the house allocation problem with
existing tenants) are equivalent mechanisms; chain selection rule e specifies that when
multiple chains co-exist, one chooses the chain starting with the highest priority agent and
keeps it in the system. 4

To prove this proposition, we first present a slightly modified version of the kidney
exchange model, followed by an introduction of the TTCC mechanism. In specific, TTCC
is explained with chain selection rule e in [4] and TTCC is implemented with this rule. Then
we introduce a simplified version of the house allocation model in [1] (we call this “A&S

2 Interested readers are referred to Chen and Sonmez [2] for an experimental study on the performance of the
A&S TTC mechanism, and Sonmez and Unver [7] for a proof of equivalence between an extreme case of the A&S
TTC and a core-based mechanism.

3 Wang and Krishna [8] use a variant of the TTCC mechanism to address the timeshare allocation problem.
4 The meaning will become clear when we formally present the Top Trading Cycles and Chains mechanism in

Section 3.
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house allocation model” hereafter), arguing that it is isomorphic to the kidney exchange
model. Lastly we explain how the mechanism in [1] (i.e., the A&S TTC mechanism) works
and show the equivalence between the TTCC mechanism implemented with rule e and the
A&S TTC mechanism. The last section of this paper is a conclusion of our results.

2. Kidney exchange model

The kidney exchange model in [4] consists of:

1. a finite set of item–agent pairs 5 {(i1, a1), . . . , (in, an)} {We denote IP as the set of all
items from the item–agent pairs, i.e., IP = {i1, . . . , in}};

2. a finite set of n at-large items IA = {w1, w2, . . . , wn};
3. for each agent ak (k ∈ {1, . . . , n}), a strict preference relation Rk over IP ∪ IA, such that

for all the agents:
(i) w1�w2�w3� · · · �wn, and (ii) ∀x ∈ IP , x�wn ⇒ x�wj (j ∈ {1, 2, . . . , n − 1}),
and ∀y ∈ IP , y ≺ w1 ⇒ y ≺ wl (l ∈ {2, 3, . . . , n}).
In words, in this model there are n agents (kidney recipients or patients), each endowed

with one indivisible item (his donor’s kidney). We made a slight modification to the original
model by explicitly introducing n at-large items (i.e., items that are not paired up with agents
at the beginning—{w1, w2, . . . , wn}), representing the waitlist options that are available to
the patients. These can be interpreted as the first waitlist option to be allocated by the
procedure, the second to be allocated, etc. Please note that the number of waitlist options
is equal to the number of patients so that all of them can get into the waiting queue if they
choose to do so. Each patient ak has a strict preference relation Rk over all the items. We
assume that (i) all agents strictly prefer w1 to w2, w2 to w3, …, wn−1 to wn, and (ii) for
all agents these at-large items are ranked as a block one after another, so that TTCC can
be implemented smoothly using this model. 6 Assumption (i) makes sure that w1 is always
allocated before w2, w2 before w3, etc., because for any agent a lower indexed waitlist
option is always preferred to a higher indexed waitlist option. Assumption (ii) is necessary
because all these waitlist options actually represent the same thing—getting on the waiting
queue to wait for an ideal item that shows up in the future. Conceptually there should not
exist any item z ∈ IP such that wl−1 ≺ z ≺ wl (l ∈ {2, 3, . . . , n}), i.e., no one will strictly
prefer item z to the waitlist option and strictly prefer waitlist option to item z at the same
time. This whole setting is equivalent to the original kidney exchange model where there is
only one waitlist option w, which is allowed to be assigned to multiple agents.

The outcome is a matching of items to agents such that

1. each agent is assigned one item in IP ∪ IA, and
2. each item can only be assigned to one agent.

5 To make the isomorphism between the two models easier to identify, we replace a few terms in the original
kidney exchange model with more general terms. Thus, the term “agent” represents “kidney recipient” or “patient”,
and the term “item” represents “donor’s kidney”.

6 We thank an anonymous reviewer for offering this observation.
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3. TTCC mechanism

TTCC is a procedure consisting of multiple rounds. Items are matched to agents based
on identified “cycles” and “chains” [4]. In each round:

• each agent points at an item in IP ∪ IA, and
• each item in IP points at the agent that it belongs to.

Given the pointing of the agents and the items, a cycle is defined as an ordered list of
item–agent pairs (i′1, a′

1, i
′
2, a

′
2, . . . , i

′
j , a

′
j ) such that:

• item i′1 points at agent a′
1,

• agent a′
1 points at item i′2,

• : :
• item i′j points at agent a′

j , and
• agent a′

j points at item i′1.

Since each item in IP points at a unique agent and each agent points at a unique item,
if two or more than two cycles coexist, no two cycles can ever intersect, implying that if a
cycle is removed from the system, other coexisting cycles are not affected at all.

A chain is defined as an ordered list of item–agent pairs (i′1, a′
1, i

′
2, a

′
2, . . . , i

′
j , a

′
j ) such

that:

• item i′1 points at agent a′
1,

• agent a′
1 points at item i′2,

• : :
• item i′j points at agent a′

j , and
• agent a′

j points at wl (l ∈ {1, 2, . . . , n}).

With any chain (i′1, a′
1, i

′
2, a

′
2, . . . , i

′
j , a

′
j ), we will refer to the pair (i′j , a′

j ) as the head
and the pair (i′1, a′

1) as the tail.
We are now ready to describe the TTCC mechanism in its general form. Given the

agents’stated preferences, the TTCC mechanism finds the outcome of the matching problem
through the following procedure:

1. In each round of the TTCC algorithm:

(i) based on her stated preferences, each agent ak who has not been assigned an item
points at the best remaining unassigned item in IP ∪ IA,

(ii) each remaining agent who has been assigned an item continues to point at her
assignment, and

(iii) each remaining unassigned item in IP points to its owner.

2. Given the pointing in Step 1, there is either a cycle, or a chain; or both. At this step (Step
2), allocations associated with cycles are made:
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(i) Proceed to Step 3 if there are no cycles. Otherwise, locate one cycle 7 and assign to
each agent in the cycle the item that she points at. The assignment is final for these
agents. Remove all the agents and items in the cycle from the system.

(ii) If every agent has been assigned an item, go to Step 4. Otherwise, go back to
Step 1.

3. Each remaining item–agent pair initiates a chain. Since multiple chains may co-exist:

(i) Select only one of the chains with a pre-defined chain selection rule. The assignment
is final for the agents in the selected chain. In addition to selecting a chain, the chain
selection rule also determines whether the selected chain is removed immediately
or remains in the procedure.

(ii) If every agent has been assigned an item, go to Step 4. Otherwise, go back to Step
1 to start the next round of allocation.

4. Remove all the chains (if there are any). The algorithm ends.

Intuitively, TTCC works in the following manner. It starts with agents’stated preferences.
In each round of the algorithm, each agent who has not been assigned an item simply
indicates (by “pointing”) which one is her favorite among the remaining items. Given
the “pointing” of the agents and the items, the algorithm identifies a cycle in the system
and allocates items to agents in the cycle according to their “pointing”. After the cycle is
removed, the algorithm repeats from the first step because new cycles may form due to the
“re-pointing” of agents and items. This process repeats until no cycle exists in the system.
(Note that at this point all the agents and the items involved in the cycles have been removed
from the system.)

Now each remaining agent initiates a chain, which, by our design, involves the lowest
index at-large item among all the remaining at-large items. Since multiple chains may
coexist, a chain selection rule is needed to pick a unique chain in a certain round. In [4],
Roth et al. proposed several potential chain selection rules, among which chain selection
rule e— choose the chain starting with the highest priority agent and keep it in the system—
is particularly interesting since it is the only rule proposed in [4] that makes TTCC both
Pareto-efficient and strategy-proof. 8 Given a fixed priority list of the agents, in step 3(i) of
TTCC, chain selection rule e requires that the unique chain whose tail is the highest priority
agent (among the remaining agents) be chosen, and every agent in the selected chain obtain
what they point at. Note that this selected chain is not removed from the system right away,
so that the item at the tail (which belongs to the highest priority agent) becomes available
for other agents in following rounds. After this step, the next round begins and the algorithm
again repeats from the first step. TTCC ends when every agent gets an assignment from the
set IP ∪ IA.

7 Recall that since cycles never intersect, when multiple cycles coexist, removing any one of them does not
influence the others. Moreover, the order in removing cycles does not have any effect on the final outcome of the
system.

8 Other chain selection rules proposed by Roth et al. [4] include: Choose minimal chains and remove them;
choose the longest chain and keep it; choose the chain starting with the highest priority agent and remove it, etc.
In a more recent paper, Roth et al. [5] consider the more constrained case of pairwise kidney exchanges with 0–1
preferences and present constrained-efficient mechanisms that are strategy-proof.
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We now proceed by presenting a simplified version of the A&S model, which is iso-
morphic to the above described kidney exchange model. Then we will see how A&S TTC
can generate exactly the same outcome by changing “chains” into “cycles” so that they are
identifiable by the A&S TTC mechanism.

4. A&S house allocation model

The model we present here is slightly different from the A&S house allocation model
in [1]. We choose to use this simplified version of the A&S model so that the proof of our
proposition is clear and straightforward. 9

The model consists of:

1. a finite set of item–agent pairs 10 {(i1, a1), . . . , (in, an)} {We denote IP as the set of all
items from the item–agent pairs, i.e., IP = {i1, . . . , in}};

2. a finite set of n at-large items IA = {w1, w2, . . . , wn};
3. for each agent ak (k ∈ {1, . . . , n}), a strict preference relation Rk over IP ∪ IA, such that

for all the agents:
(i) w1�w2�w3� · · · �wn, and (ii) ∀x ∈ IP , x�wn ⇒ x�wj (j ∈ {1, 2, . . . , n − 1})

∀y ∈ IP , y ≺ w1 ⇒ y ≺ wl (l ∈ {2, 3, . . . , n}).
In words, again we have n agents (applicants), each endowed with one indivisible item

(the house). There are n at-large items—{w1, w2, . . . , wn}, which represent the vacant
houses that are available to the applicants in the allocation process. Each agent ak has a
strict preference relation Rk over all the items. This whole setting is a special (simpler)
version of the original A&S house allocation model, where there is another set of new
applicants who do not own any houses at the beginning of the algorithm. Besides, in the
original A&S model the number of at-large items (vacant houses) can be different from
the number of applicants—but here they are the same. Also, we impose restrictions (i) and
(ii) on applicants’ preference structure. Please note that these slight modifications not only
do not influence the application of A&S TTC to the model, but also make our proof more
straightforward.

Quite obviously, this house allocation model is isomorphic to the earlier kidney exchange
model that we presented in Section 2.

5. A&S TTC mechanism

Given the above model, we now use A&S TTC mechanism to solve the matching prob-
lem. A&S TTC is also an algorithm consisting of multiple rounds. Similar to TTCC with
chain selection rule e, it starts with a fixed priority list of the agents and the agents’ stated
preferences.

9 We thank two anonymous reviewers for making this suggestion.
10 Here the term “agent” represents “applicant”, and “item” represents “house”.
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5.1. Round 1

Define the set of available items for the first round to be IA. Each agent ak points at her
favorite item in IP ∪IA. Each item in IP points at the agent that it belongs to. Each available
item points at the agent with highest priority. Since the numbers of agents and items are
finite, there is at least one cycle. 11 The procedure will remove cycles one at a time as they
form.

Case 1: When there exists a cycle that does not include an available item (i.e., the cycle is
formed by agent–item pairs only), we choose this cycle and make allocations accordingly.
(There could be multiple cycles that do not include an available item, in which case we
simply pick one of them. 12 ) Every agent who participates in this cycle is assigned the item
that she points at and removed from the system with her assignment.

Note: If there is such a cycle under A&S TTC, the same cycle would have formed under
TTCC, since in the first round under both algorithms each agent points at her favorite item
and each item in IP points at its owner. Moreover, we would have made the same allocation
and removed the cycle under TTCC.

Case 2: If such a cycle (i.e., cycle formed by agent–item pairs only) does not exist then
there is a unique cycle. 13 In particular this cycle includes w1 and the highest priority agent.
A&S TTC identifies this unique cycle, assigns every agent in the cycle the item that she
points at, and removes the agent with her assignment. However, the item that was owned by
the highest priority agent remains since it is not in the cycle and it has not been assigned to
any agent. This item is added to the set of available items for Round 2. All available items
that are not removed (i.e., w2, . . . , wn) remain in the set of available items. If there is at
least one remaining agent then we go to the next round.

Note: The unique cycle identified in Case 2 would have formed as a chain under the
TTCC algorithm, and in particular, it is the chain selected by rule e in step 3(i). w1 would
be the first waitlist option assigned to one of the agents. The only difference is that the
selected chain would have been kept in the system under TTCC (with rule e) while this
cycle is removed under A&S TTC. This, however, does not generate any difference in final
outcomes because the only reason for keeping the selected chain under TTCC is to make
use of the unassigned item at the “tail” of the chain in later rounds. (Recall that all the
assignment associated with the chain is final although the agents and items remain in the
system.) The unassigned item at the tail of the chain is exactly the item that is added to
the set of available items under A&S TTC. Therefore, keeping the whole chain and fixing
the assignments of involved agents (in TTCC with rule e) is equivalent to removing the
cycle but adding the unassigned item to the set of available items (in A&S TTC).

11 Here a cycle does not have to be an ordered list of item–agent pairs. Instead, consistent with [1], it is defined
as an ordered list of agents and items (j1, j2, . . . , jk) where j1 points at j2, j2 points at j3, . . . , and jk points at
j1. In specific, one of the components in this list of agents and items can be one of the available items.

12 Similar to TTCC, under A&S TTC the coexisting cycles never intersect. Thus the order of removing cycles
does not affect final outcomes.

13 Recall that we assume for all agents, their preference over at-large items is such that w1�w2�w3� · · · �wn.
Therefore, if any at-large item is in a cycle in round 1, it has to be w1. In this case, this is the only cycle that
involves an at-large item, and the highest priority agent is also part of the cycle.
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5.2. Round t

The set of available items for Round t is defined at the end of Round t −1. Each remaining
agent points at her favorite item among the unassigned items in IP ∪ IA. Each item in
remaining item–agent pairs points at the agent it belongs to. Each available item points at
the agent with highest priority among the remaining agents. There is at least one cycle. At
this point:

Case 1: If multiple cycles co-exist, choose a cycle without any available item in it. Every
agent in this cycle is assigned the item that she points at and removed from the system with
her assignment.

Case 2: If such a cycle does not exist then there is a unique cycle. In particular this cycle
includes the highest priority agent (among the remaining agents) and one of the available
items. This available item is either the lowest index at-large item among the remaining
at-large items, or an item that was originally owned by an agent but was added to the set
of available items in an earlier round. A&S TTC identifies this unique cycle, assigns every
agent in the cycle the item that she points at, and removes the agent with her assignment.
The item that was owned by the highest priority agent is added to the set of available items
for Round t + 1. All available items that are not removed remain available. If there is at
least one remaining agent then we go to the next round.

Note: In Round 1, A&S TTC and TTCC (with rule e) make exactly the same assignment.
Therefore, for both algorithms Round 2 starts with the same set of remaining agents and
the same set of unassigned items. Given the newly-defined sets, we repeat the procedure
which again gives the same assignment under the two mechanisms. By repetition we know
A&S TTC and TTCC (with rule e) generate the same outcome.

Intuitively, by viewing waitlist options as available items and letting them point at the
highest priority agent, A&S TTC algorithm can identify not only all the cycles formed by
agent–item pairs (as TTCC does), but also the unique “chain” that is selected by chain
selection rule e in [4]. This guarantees that A&S TTC mechanism and TTCC mechanism
generate the same outcome given a fixed list of priority of the agents and the agents’ stated
preferences.

6. Conclusions

As concluding remarks, we emphasize that TTCC and A&S TTC are equivalent only
when chain selection rule e in [4] is used for picking chains under TTCC. TTCC can be
implemented with a variety of other chain selection rules and our results do not carry over
for these other rules.

We prove the equivalence between A&S TTC and TTCC simply by viewing the waitlist
option w as at-large items that can be assigned to agents and generalizing the concept of
cycles so that A&S TTC can identify the selected chains as well. Thus, we show that the
A&S TTC algorithm can be used to handle a problem with waitlist options, which need
to be solved by TTCC otherwise. In addition, since it has been well established that A&S
TTC as a matching mechanism is individually rational, Pareto-efficient and strategy-proof,
these theoretical properties automatically transfer to TTCC with chain selection rule e. This
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is consistent with the theoretical findings of [4] where Roth et al. show these properties to
hold for TTCC when rule e is used.

Theoretically, our work establishes the link between two important matching mecha-
nisms: the A&S Top Trading Cycles mechanism and the Top Trading Cycles and Chains
mechanism. While the equivalence observed is relevant for one specific case of the TTCC
mechanism, it is a particularly interesting case since it is the only version identified by
Roth et al. [4] to be both Pareto-efficient and strategy-proof. Research on both problems is
clearly of significant practical importance. We believe our result has important theoretical
and applied mechanism design implications.
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