TRANSCENDENCE DEGREE

ALEX WRIGHT

1. INTRODUCTION

We can describe the size of a field extension E/F using the idea of
dimension from linear algebra.

[E : F] =dimp(F)
But this doesn’t say enough about the size of really big field extensions.
[F(z1) : F| = [F(z1,...,2,) : F] =00

So we will define a new notion of the size of a field extension E/F,
called transcendence degree. It will have the following two important
properties.

tr.deg(F(zy,...,xn)/F) =n
and if F/F is algebraic,
tr.deg(E/F) =0
The theory of transcendence degree will closely mirror the theory of

dimension in linear algebra.

2. REVIEwW oF FIELD THEORY

Definition. o € FE is algebraic over I C FE if there is a non zero
polynomial p(x) € F[z] such that p(a) = 0. E/F is said to be algebraic
if all o € E are algebraic over F.

Recall that o € F is algebraic iff there is an intermediate field F' C
L C E such that o € L and [L : F] < occ.

Lemma. If ay,...,a, € E are algebraic over F' then
[F(o,..yay) @ F] < 00
and E/F is an algebraic extension.

It is in fact also true that if «;,7 € I are infinitely many elements
contained in some extensions F of F', and each «; is algebraic over F,
then F(oy :i € I)/F is algebraic. We will use this fact latter on.
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Theorem. If K/L and L/M are algebraic extensions, then K/M is
algebraic too.

Proof. Take o € K. Pick p(x) = ag + ... + a,a™ € L{z]|,p(z) # 0 so
that p(a) = 0. Now « is algebraic over M (ay, ..., a,) But, by the KLM
Theorem and the previous lemma,

[M(«, ag, ..., ap) : M]
[M(a, ag, ..., an) = M(ag, ..., a,)][M(ag, ..., a) : M|
n[M(ag, ..., a,) : M]

o
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so « 1s contained in a finite degree extension of M. Hence « is algebraic
over M. Since every element of K is algebraic over M, by definition
K /M is algebraic.

3. ALGEBRAIC (IN)DEPENDENCE
Let E/F be a field extension, and S C E.

Definition. S is algebraically independent over F' if for all non zero
polynomials p(xq, ..., x,) € Flxy, ..., z,], and s1, ..., s, € S (all distinct),
we have p(s1,...,8,) # 0. S is algebraically dependent over F if it is
not algebraically independent.

Example (1). If E/F is an algebraic extension and o € E then {a}
18 algebraically dependent.

Example (2). In F(xy,...,x,)/F, {z1,...,x,} is algebraically indepen-
dent.

Lemma. If S C E s algebraically independent, then S is mazimal iff
E is algebraic over F(S).

Proof. If a is algebraic over F(S), then a satisfies some non zero
polynomial equation with coefficients in F(S).

Po(S1y -y Sn) - D1(S1,.ry Sn)a - P81 ey sn)am
qo(815 - 50)  qu(51,.,80) Gm (51, -+ Sn)
Here the p; € Flxy,...,x,], and $1,...,5, € S. Clearing denominators

we get that o satisfies
70(S1yees Sn) + oo + T (S1, ey Sp )™ =0

where 1o = Poq1q2---Gm € Flx1,...;x,] ete. Thus S U {a} is not alge-
braically independent. This proves that if E/F(S) is algebraic, then S
is mazimal. (We cannot add any o € E to it.)

=0
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Conversely, suppose S is maximal. Take o« € E,;a ¢ S. S U {a}
18 not algebraically independent, so we can find a non zero polynomial
p € Flxg,x1,...,x,] and s1,...,s, € S such that p(a, sy, ...,s,) = 0.
Since S is algebraically independent, o must actually appear in this
expression. Grouping powers of a we get

P, S1y -0y 8n) = Do(S1, o0y Sn) + oo+ P (81, oy Sp)™ =0
Thus « is algebraic over F(S). This shows that all o ¢ S are algebraic
over F(S). Of course all « € S are also algebraic over F(S). Thus
E/F(S) is algebraic.
Lemma. Let A be a set. If E/F has an algebraically independent set
of cardinality |A| then F(x, : o € A) can be embedded into E.

Proof. Let S = {s, : a« € A} be an algebraically independent subset of
E of cardinality |A|. We can define a map
¢:Flry:a€ Al - E

by saying ¢|r is the identity and ¢(x4) = Sq. Since S is algebraically
independent, the kernel of ¢ is trivial, and ¢ is an injection. Thus we
can take

P(Tays s Tay) d(p)
d: Fx, : A — E: —
(o€ 4) q(Tay, s Tan)  9(q)

as the desired injection of F (x4 : o € A) into E.

We will end up defining the transcendence degree of E/F' as the
size of an algebraically independent subset of E. To prove this is well
defined, we need to prove the following result, which mirrors the proof
that the size of a vector space basis is unique.

Theorem (Exchange Lemma). Let E/F be a field extension. If E is
algebraic over F(ay, ..., a,), and {by, ..., by} is an algebraically indepen-
dent set, then m < n.

Proof. b, is algebraic over F(ay, ...,a,). So there is a non-zero polyno-
mial p such that p(by,aq, ...,a,) = 0. by must appear somewhere in the
polynomial, so must some a;. Without loss of generality, we can assume
ay appears in p(by,ay, ...,a,). So ay is algebraic over F(by,aq, ..., a,).
Now F(by,aq, ...,a,) is algebraic over F(by,aq, ...,a,), and E is alge-
braic over F(by, ay, ..., a,), so E must be algebraic over F(by,as, ..., a,).
Once we have that E is algebraic over F(by,...,by, Gri1, ..., ap), we
again “exchange” an a; for a b;. b1 is algebraic over the field
F(by,...;bp, api1, ..., ay). So there is a non-zero polynomial p such that
p(b1, ..y bri1, Grit,y .oy an) = 0. Since the b;’s are algebraically indepen-
dent, one of the a,s must appear in this expression. By re-numbering
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we can get that a,1 appears in this expression. Hence again we will get
that E is algebraic over F(by,...,by41, 042, ..., a,). When this process
terminates we see that E is algebraic over F(by,...,b,) (or, if m < n,
F(by,...,bm, Gmy1,y -y ap) ). Hence m < n.

Corollary. If E/F has a mazimal, finite, algebraically independent set
{81, ..., 8} then any other maximal algebraically independent set also
has size n.

Proof. E is algebraic over F(sy, ..., s,). So by applying the lemma, we
see that any other maximal algebraically independent set has at most
n elements. And if {t1,....,tm} is another mazimal algebraically inde-
pendent set, by applying the lemma on F(ty,...,t,,) we get that n < m.
Thus m = n.

In fact it is true that if E/F has two maximal algebraically indepen-
dent sets S and 7" then | S| = |T'|. This is analogous to the fact that the
cardinality of a vector space basis is unique, even when it is infinite.
The proof of this fact is difficult, and we will not need this result. The
interested reader can find a proof in Hungerford’s Algebra, page 315.

Theorem. Every extension E/F has a mazimal algebraically indepen-
dent subset.

Proof. This is the same proof that every wvector space has a basis.
If E/F s algebraic, § is a mazximal algebraically independent subset.
Otherwise, look at S, set of algebraically independent subsets of E. If
C is a chain of increasing sets in S, then UC € S. Hence by Zorn’s
Lemma, & has a mazimal element S. S is a maximal algebraically
independent set.

This same proof in fact can be adapted to prove the following.

Theorem. FEvery algebraically independent subset T of E can be ex-
tended to a transcendence base of E/F /

Proof. Set S as the set of algebraically independent subsets of E that
contain T and proceed as above.

This fact should be compared with the fact that in Linear Algebra,
every linearly independent set can be extended to a basis.
TRANSCENDENCE DEGREE

Definition. A mazimal algebraically independent subset S C E s
called a transcendence base for E/F.
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So by an earlier lemma, S is a transcendence base for E/F iff S is
algebraically independent and E is algebraic over F'(.S).

This should be compared to the statement that S is a basis for a
vector space V iff the vectors of S are linearly independent and S
spans V.

Definition. The transcendence degree of E/F is the size of a tran-
scendence base. It is denoted tr.deg(E/F).

Example. tr.deg(Q(v/2)/Q) =0
Example. tr.deg(F(xq,...,x,)/F)=n

Definition. An extension E/F is called purely transcendental if it has
a transcendence base S such that E = F(S5).

Example. F(x1,...,2,)/F is purely transcendental but Q(v/2,z)/Q is
not (why?).

Theorem. Every field extension E/F is a purely transcendental ex-
tension followed by an algebraic extension.

Proof. Take a transcendence base S for E/F. Then F(S)/F is purely
transcendental and E/F(S) is algebraic.

Theorem. Let E/F be a field extension. Suppose S C E and E is
algebraic over F(S), then there is a transcendence base T for E/F
withT C S.

Proof. Let T be a mazimal algebraically independent subset of S. Ev-
ery element of S is algebraic over F(T), so F(S) is algebraic over
F(T). E is algebraic over F(S), so in fact we have that E is algebraic
over F(T).

This is similar to how we can find a vector space basis in any spanning
set. We now have so many comparisons between transcendence degree
and dimension that we can create the following table.

Dimension Transcendence Degree

S is linearly independent S is algebraically independent

S spans E E is algebraic over F'(5)

Every vector space has a basis | Every extension has a transc. base

There are many applications of transcendence bases. A classic is the
following.

Theorem. Q[zy, ..., z,| is not isomorphic to Q[xy, ..., x] if n # m.
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Proof. If these two rings were isomorphic, their fraction fields would
also be isomorphic.

Q(z1, .oy n) = Qa1 ooy )
The field on the left has transcendence degree n, and the one on the

right has transcendence degree m, so these fields can be isomorphic
only if m = n.

Transcendence degree can also be used to show that C has proper
sub-fields which are isomorphic to C. (In contrast, there are no proper
sub-fields of R which are isomorphic to R.) And more surprisingly,
transcendence degree can be used to show that any algebraically closed
field of cardinality |C| is in fact isomorphic to C. The theory of tran-
scendence degree is also used to prove that you can extend certain field
homomorphism to larger fields.
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