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1. Convergence of Betti numbers

The purpose of this note is to outline a proof of the following.

Theorem 1.1 (Luck, 1994). Let X be a finite CW complex with univer-
sal cover X̃, and let Γm,m = 1, 2, . . . be normal finite index subgroups
of Γ = π1(X) such that Γm+1 E Γm and ∩Γm is the trivial group. Then
for any p, the normalized p-th Betti numbers of Xm = X̃/Γm converge:
the limit

lim
m→∞

bp(Xm)

[Γ : Γm]

exists, where bp(Xm) = dimHp(Xm,C).

In fact the limit is the much studied p-th L2-Betti number of X.
Luck’s Theorem answered a question of Gromov. That the limsup is
at most the L2-Betti number was previously established by Kazhdan.

In this note we will try to see in an elementary way why this limit
exists. The reader should look elsewhere for more general and pow-
erful statements, as well as for context and applications. The author
consulted the following sources while preparing this note.

• Luck’s original article “Approximating L2-invariants by their
finite-dimensional analogues.”
• Pansu’s “Introduction to L2 -Betti numbers.”
• Chapter 8 on Lp-cohomology in Gromov’s “Asymptotic Invari-

ants of Infinite Groups.”
• Luck’s book “L2-Invariants: Theory and Applications to Ge-

ometry and K-Theory.”
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2. From Betti numbers to traces

Consider the cellular cochain complex of X̃. For each p, there are
infinitely many p-cells in X̃, but only finitely many Γ orbits of p-cells.
Indeed, if X has np many p-cells, then as a C[Γ] module the space of

p-cells in X̃ is C[Γ]np . The differential ∂p from p-cells to (p+ 1)-cells is
given by a np+1 by np matrix Bp with entries in Z[Γ]. (The fact that
the entires are in Z[Γ] and not just C[Γ] will be important.)

The cochain complex of Xm has C-modules C[Γ/Γm]np , and the dif-
ferentials ∂p,m can be described by the same matrices Bp with entries

in Z[Γ] as for X̃. Using the usual Rank-Nullity Theorem for C-vector
spaces we see that

bp(Xm) = dim ker ∂p,m − np−1[Γ : Γm] + dim ker ∂p−1,m.

Thus it suffices to fix p and show that

dim ker(∂p,m : C[Γ/Γm]np → C[Γ/Γm]np+1)

[Γ : Γm]

converges as m→∞, and this exactly what we will do.
The kernel of ∂p,m is equal to that of gm = ∂∗p,m∂p,m. Note gm is self-

adjoint, and hence there is a well-defined orthogonal projection onto
the kernel of gm. The dimension dim ker(∂p,m) is given by the trace of
this projection.

This projection is, by basic linear algebra, a polynomial in gm. How-
ever, this polynomial depends on m. The first key idea of the proof
is to approximate dim ker(∂p,m) by the trace of a polynomial p not de-
pending on m in gm. The next section will explain why the limiting
behavior as m→∞ of traces of fixed polynomials in gm is accessible.

3. C[Γ]-trace

Recall that all the ∂p,m can be represented by the same matrix Bp

with coefficients in Z[Γ]. Thus all the gm can be represented by B∗pBp,

where (B∗p)i,j = (Bp)j,i and
∑
cγγ =

∑
cγγ

−1. (It isn’t important what
the formula for this matrix is, just that there is an expression that is
independent of m.)

Define the C[Γ]-trace of an element of C[Γ] to be the coefficient of
the identity group element, and the C[Γ]-trace of a matrix with entries
in C[Γ] to be the sum of the traces of its diagonal elements. So

trC[Γ]

(∑
γ∈Γ

cγγ

)
= ce and trC[Γ](B

∗
pBp) =

∑
i

trC[Γ](B
∗
pBp)i,i.
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The following lemma is the only place that we use that the Γn are
normal subgroups of Γ.

Lemma 3.1. For any fixed polynomial P , and for m large enough
depending on P ,

tr(P (gm)) = trC[Γ]

(
P (B∗pBp)

)
[Γ : Γm].

The proof works for any matrix with coefficients in C[Γ].

Proof. Let S ⊂ Γ be a finite set so that all entries of P (B∗pBp) are
linear combinations of elements of S. Pick m large enough so that
S ∩ Γm = {e}. For any γ ∈ S, γ 6= e, the normality of Γm in Γ implies
that the left multiplication action of γ on C[Γ/Γm] has zero trace. This
is simply the fact that if

γγ0Γm = γ0Γm then Γmγ
−1 = γ0Γmγ

−1
0 = Γm.

Contributions to tr(P (gm)) thus come from constant terms in the
diagonal. Each such constant term c acts on all of C[Γ/Γm] by multi-
plication by c, thus contributing c[Γ : Γm] to the trace. �

4. Picking polynomial approximations

Recall that if T is any linear transformation with eigenvalues λi
(counted with multiplicity), and P is any polynomial, then

tr(P (T )) =
∑

P (λi).

Here we wish to approximate the dimension of the kernel of gm. Since
gm = ∂∗p,m∂p,m, all its eigenvalues are non-negative, but if we want to
get a good approximation, we need to make sure the contributions of
the non-zero eigenvalues are not too significant. (The non-negativity of
the eigenvalues, or even the fact that they are real, is not an important
point.) To do this it is crucial to bound independently of m the size of
the eigenvalues, which we do via operator norm.

Lemma 4.1. There exists K > 0 so that ‖gm‖ < K for all m.

Proof. This follows from the fact that, independently of m, all the gm
can be described by multiplication by the matrix B∗pBp. You can give
an explicit K in terms of the coefficients of this matrix. �

Let Pλ,ε to be any polynomial (illustrated on the next page) that
is between 1 and 1 + ε on [0, λ], is between 0 and 1 + ε on [λ, λ +
ε], and is between 0 and ε on [λ + ε,K]. (Such polynomials exist
by the Stone-Weierstrass Theorem.) This polynomial is intended to
be a good approximation for the characteristic function of [0, λ], and
tr(Pλ,ε(gm)) is intended to approximate the sum of the dimensions of
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eigenspaces with eigenvalue at most λ. The point is to pick λ small,
because ultimately we want only the zero eigenspace, and ε small, so
that the error is small.

The result of applying Lemma 3.1 to Pλ,ε is that, for all m large
enough, the sum of dimensions of the eigenspaces with eigenvalue less
than λ, divided by [Γ : Γm], is approximately independent of m. Mak-
ing ε small reduces the error, but we must still account for the difference
between eigenvalues less than λ and eigenvalues equal to 0. (The num-
ber of eigenvalues in (λ, λ+ ε) is also a source of error above, but this
is also handled by the following lemma, which can be applied for λ+ ε
as well as λ.)

Lemma 4.2. Let T be any square d by d integer matrix of operator
norm at most K. Then the sum of the dimensions of the eigenvalues
in (0, λ), divided by the dimension d, goes to zero as λ→ 0 uniformly
in d.

Proof. The product of all non-zero eigenvalues is equal to one of the
terms of the characteristic polynomial. Since the matrix is integral,
this product is at least 1 in absolute value. If there are r eigenvalues in
(0, λ), we get λrKd−r ≥ 1, so λrKd ≥ 1 (we can assume K > 1), and

r log λ+ d logK ≥ 0.

Thus

r/d ≤ logK/(− log λ).

Since − log λ→∞ as λ→ 0 this gives the result. �

Now, if λ is small enough, and ε is small enough, we see that the
value of tr(Pλ,ε)/[Γ : Γm] is both a good approximation for dim ker(gm)
as well as eventually constant in m, giving the result.
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More precisely,

tr(Pλ,ε(gm))− dim ker(gm)

[Γ : Γm]

is bounded above by a constant times ε, plus (1 + ε) times the func-
tion of λ of the previous lemma that goes to zero as λ → 0. Since
tr(Pλ,ε(gm)) is eventually constant in m, this shows that the sequence
(dim ker(gm))/[Γ : Γm] is Cauchy, and Luck’s Theorem is proved. (For-
mally: In the definition of Cauchy, you are given some arbitrarily small
constant. You pick λ, ε so that the error in the display math above is
less than that constant over 2. Then you use m large enough so that
tr(Pλ,ε(gm)) does not depend on m.)

5. The limit

We have that

lim
m→∞

tr(Pλ,ε(gm))

[Γ : Γm]
= trC[Γ](Pλ,ε(B

∗
pBp)),

where Bp is the matrix for the differential ∂p for the cochain complex

of X̃. Thus

lim
m→∞

dim ker(gm)

[Γ : Γm]
= lim

ε→0,λ→0
trC[Γ](Pλ,ε(B

∗
pBp)).

Instead of considering B∗pBp as an operator from C[Γ]np to itself, we

can consider it as an operator on `2[Γ]np , where as usual `2[Γ] denotes
the set of

∑
cγγ with

∑
|cγ|2 < ∞. This is a so-called Hilbert mod-

ule, which is simply a nice (in a technical sense) Hilbert space with
an isometric action Γ. For bounded Γ equivariant operators on this
Hilbert module there is a notion of trace, which coincides with trC[Γ]

for Pλ,ε(B
∗
pBp).

This theory is sufficiently well behaved that the traces of Pλ,ε(B
∗
pBp)

converge to the trace of the projection onto the kernel of B∗pBp, which
is the kernel of ∂p. The trace of this projection is by definition the von
Neumann dimension of the kernel. Thus the limit of bp(Xm)/[Γ : Γm]
is the p-th L2-Betti number of X, which can be defined as the von
Neumann dimension of the p-th (reduced) L2-cohomology of X.

We will not enter into the theory of dimension here, except to say
that dimension is always the trace of a projection, and to give the
following example. If Γ = Z, then the set of bounded Γ-equivariant
operators on `2(Γ) is, via Fourier transform, equal to L∞(S1), and the
trace is given by integration against Haar measure.


