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Abstract

The rapid and accurate identification of toxic
chemicals is critical for saving lives in emergency
situations. However, first-responder systems such as
WISER typically require a large number of inputs
before a chemical can be identified. To address this
problem, we used networks to visualize and analyze
the complex relationship between toxic chemicals
and their symptoms. The results explain why current
approaches require a large number of inputs and
help to identify regularities related to the co-
occurrence of symptoms. This understanding
provides implications for the design of future first-
responder systems, with the goal of rapidly
identifying toxic chemicalsin emergency situations.

Introduction

Toxic chemicals pose a universal threat to humans i
situations ranging from bioterrorism to pesticide
exposure. In emergency situations such as 9/1fe the
is a critical need for the rapid and accurate
identification of toxic chemicals to reduce harm to
large numbers of humans.

To address this need, several organizations have
constructed extensive evidence-based databases (e.g
Haz-Mag available from the National Library of
Medicine [NLM]) that relate toxic chemicals to aeut
symptoms and properties. Furthermore, there have
been attempts to develop devices that make sueh dat
accessible to first-responders. For example, NLK! ha
developed theWireless Information System for
Emergency Responders (WISE®R which accepts
inputs such as acute symptoms. After each inpat, th
system automatically constructs a database quedy, a
responds with a set of chemicals that satisfy the
current set of inputs. As more inputs are receitiegl,

set of chemicals narrows to enable the first-redpon
identify a toxic chemical.

While such systems provide easy access to a
database, how effective can they be for pinpoinéing

! http://hazmap.nim.nih.gov/
2 http://wiser.nlm.nih.gov/

toxic chemical in an emergency situation?
Toxicologists and public health experts have often
reported that acute symptoms and/or properties of
toxic chemicals are notoriously non-specific [2,4].
For exampleacute dyspnea (difficulty breathing) is a
symptom caused by a wide range of chemicals (not to
mention other health conditions such ragocardial
ischemia or asthma). Therefore, if a first responder
enters such non-specific symptoms in WISER, the
returned set of chemicals might be too large to be
useful. Unfortunately little is known about the caik
relationship of toxic chemicals and their symptdms
know whether current approaches are useful or if
there might be more powerful ways to assist in the
identification of toxic chemicals.

We begin by describing how we estimated the
number of symptoms it would take a WISER user to
input into the system in order to identify a cheathic
We then discuss how we used networks to visualize
and analyze the relationship between chemicals and
symptoms within the WISER database. The analysis
rapidly revealed how symptoms relate to chemicals,
and suggested approaches for designing first-
responder systems that are better suited to the dat
We conclude with a discussion of the network
approach for analyzing data, and future research to
help improve the rapid identification of toxic
chemicals in emergency situations.

Identifying Toxic Chemicals:
Symptoms Doesit Take?

How Many

The WISER system and database is one of the most
extensive datasets that relate toxic chemicalstibea
symptoms. We therefore analyzed this database to
estimate how many symptoms it takes to identify a
toxic chemical.

The WISER database (version 2.45) consisted of 390
toxic chemicals, 79 acute symptoms classified in 10
categories (e.g., neurological), and 65 properties
classified in 8 categories (e.g., odor). The incof

chemicals into the WISER database is determined
annually by a team of chemists. Information about
each selected chemical is extracted from Hazardous
Substances Data Bank (HSDB) (which contains
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Figure 1.The estimated number of chemicals returne
WISER for different numbers of symptoms follows
power law. The analysis estimates that it takesrdfiore
symptoms to uniquely identify a chemical.

extensive information about toxic chemicals tardete
to researchers) and inputted into the WISER dawbas
(targeted to first-responders).

Because of its target audience and context of daen
use, the WISER database neither contains the
probability of the association between a chemicdl a
symptom, nor classes of chemicals.

We estimated the number of chemicals returned by
WISER for a particular numbeN] of symptoms as
follows. (1) We randomly chose a chemical from the
database, randomly selectdidof its symptoms, and
calculated the number of chemicals that matched all
symptoms. (2) The above step was repeated 200
times, and used to derive the mean number of
matching chemicals foN symptoms. Note that the
selection of the symptoms, while random, was always
based on an existing chemical. This “bootstrap
sampling” from the distribution of symptoms captire
the co-occurrences of symptoms and closely
approximates how symptoms are selected in realistic
situations.

Figure 1 shows a plot that estimates the mean numbe
of chemicals returned by WISER based on an
increasing number of symptoms. As shown, the
analysis estimates that it takes on average about 4
symptoms to uniquely identify a chemical. Whilesthi

method takes into consideration the co-occurreifice o
symptoms, it does not take into account real-world
variables such as errors in symptom detection and
input selection (and therefore is a conservative
estimate). One could argue that a first-respondsr m

be able to decide which chemicals are presenten th

emergency situation by inspecting a small set (e.g.
10) and eliminating most based on contextual
information or prior knowledge. However, even in
such a scenario it still takes 14 symptoms to marro
the set to 10 chemicals.

Given the large number of symptoms required to
identify one (or even 10 chemicals), the current
approach of constructing a simple database query to
return all relevant chemicals does not appear to be
practical for the rapid identification of a toxic
chemical in emergencies. This motivated us to
analyze why it takes so many symptoms to identify a
chemical, and to discover regularities about the
relationship between chemicals and symptoms that
could be used to develop more effective search
methods.

Using Networks to Analyze the Reationship
between Toxic Chemicals and Symptoms

Standard statistical techniques suchdesributions

and cumulative frequencies collapse data in different
ways to provide an overall understanding of thedat
However, such techniques are not designed to
represent which specific chemicals cause which
specific symptoms, therefore potentially concealing
important regularities in relationships. To undansk
such regularities between classes of information,
networks are increasingly being used in a wide @ang
of domains [3]. A network is a graph consisting of
nodes and edges; nodes represent one or more types
of entities (e.g., chemicals or symptoms), and sdge
between the nodes represent a specific relationship
between the entities (e.g., a symptom is caused by
chemical). Figure 2 shows a bi-partite network (vehe
edges exist only between two different types of
entities) of toxic chemicals and the symptoms they
are known to cause.

Networks have two advantages for analyzing complex
relationships. (1) They represent a particular
relationship between different nodes and therefore
can reveal, for example, regularities in how specif
chemicals are connected to specific symptoms. (2)
They can be rapidly visualized and analyzed using a
toolbox of network algorithms. For example, Fig@re
shows how theSpring layout algorithm [1] helps to
visualize chemicals and symptoms. The algorithm
simulates placing springs between connected nodes,
and a weakly repulsive force between nodes that are
not connected. As shown, the result is that chdmica
that have similar symptoms (e.g.DDT and
methoxychlor in the upper left-hand corner of Figure
2) are placed close to each other, and close to the
symptoms that mention them. Given these
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Figure 2. A bi-partite network (automatically gested by theSpring algorithm [1]) showing the relationghibetween 39
chemicals (solid nodes) and 79 symptoms (white sjodée size of the nodes is proportional to thgesdhat connect to time
Therefore common symptoms have large nodes, wheaisasymptoms have smaller nodes.

advantages, we explored whether networks could be
used to understand the relationship between
chemicals and symptoms.

Analysis of the Relationship between Toxic
Chemicals and Symptoms

To understand the relationship between chemicals
and symptoms, we performed two network analyses:
(1) Analysis of thevi-partite network shown in Figure

2 to understand why it takes so many symptoms to
identify a chemical. (2) Analysis of ane-mode
projection of the above network to examine the co-
occurrence of symptoms. The analyses led to insight
for the design of future first-responder systems.

1. Bi-partite network analysis. Why does it take 40
symptoms to identify a chemical ?

The bi-partite network shown in Figure 2 was
constructed and analyzed usiPgjek (version 1.17) a
network visualization and analysis tool. As disedss
earlier, the bi-partite network shows the explicit
relationship between the 390 chemicals and the 79
symptoms they cause. Furthermore, besides showing
the relationship between the chemicals and symptoms
through the connecting edges, the size of a node is
proportional to itsdegree (number of edges that
connect to that node). Therefore, the larger a hode
the more edges it shares with other nodes.

The bi-partite network visualization revealed two
critical patterns related to symptoms and chemicals

(1) There are 59 commonly-occurring symptoms in
the center of the network, while 20 rare symptomes a
placed around the periphery. For exampleyro:
headache (a) is in the center of the graph with 257
edges each connected to a chemical. In conBarst
hearing loss (b) is on the far left periphery with only

7 edges. Therefore, the mean degree of symptoms is
large, and there is a large range in degrees
(Mean=154.73, SD=106.97).

(2) The chemicals form a ring around the 59
symptoms in the center. Chemicals close to therinne
set of symptoms cause many symptoms compared to
chemicals in the outer ringor example, the chemical
Hydrochloric Acid (c) has 47 symptoms, whereas the
chemical Ethylphenyldichlorosilane (d) has 17
symptoms. Therefore, the mean degree of chemicals
is small, and there is a small range in degreesawhe
compared to symptoms. (Mean=31.34, SD=10.53).

The above network structure in which there are many
chemicals (in the ring) with similar degree, and a
relatively smaller number of symptoms (in the cente
with high degree, results in a high overlap in the
number of symptoms for most chemicals. This can be
seen in the high density of edg¢sesulting in a gray

3 Edge density (number of actual edges / number of

possible edges) = 0.396. This is high comparetie¢cetige
density of most large networks that have been andly
which typically ranges from almost zero to 0.1 [3Edge
density for a fully connected network = 1.0).
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mass of indistinguishable edges) between the
chemicals in the ring, and the symptoms in thearent

The above result provides an explanation for the
power law curve in Figure 1. The curve has its shap
because after the first few symptoms have helped to
rapidly distinguish between chemicals that have
widely different symptoms (leading to the steeianhi
drop), there are fewer and fewer symptoms left to
discriminate between many chemicals with highly
overlapping symptoms (leading to the long tail). If
however, the overlap between chemicals was not
high, one could expect the curve to drop rapidig, b
have a shorter tail.

While the bi-partite graph revealed why it takes so
many symptoms to identify a chemical, it concealed
the specific co-occurrence pattern between the
symptoms. To reveal the co-occurrence between
symptoms, we constructedoae-mode projection of

the bi-partite network to analyze patterns in toe c
occurrence of symptoms.

2. One-made projection analysis: How do symptoms
co-occur?

As large networks with many edges can get visually
complex, there exist many methods to transform the
data in order to uncover hidden relationships. One
such method is thene-mode projection of a network,
which in our case removes all chemical nodes and
adds edges between symptom nodes that are caused
by the same chemical. For example, if the chemical
DDT causesdema and vomiting, then the one-mode
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regularities in the co-occurrence of 79 [sgms.

projection will remove theDDT node, and add an
edge between theedema and vomiting nodes.
Furthermore, if these two symptoms are connected to
another chemical, the weight of the edge between
them increases. The edge weight therefore represent
how many times a pair of symptoms co-occurs. The
resulting Spring layout places symptom nodes close
to each other if they have high co-occurrence, and
spaces them far apart if they have low co-occueenc

Figure 3 shows a one-mode projection of the network
in Figure 2. The network reveals two regulariti@s.
There is a densely connected set of high degree
symptom nodes in the center that frequently co4occu
with each other (the edges are so dense that they
cannot be seen individually). This set containsob7

the 59 symptoms that were in the core of Figur@p.
Rare symptoms in the periphery of the network tend
to co-occur with the common symptoms in the center,
but infrequently with other rare symptos

Discussion

The bi-partite network and the one-mode projection
together provided answers for two questions. (1yWh
does it take 40 symptoms to identify a chemical? The
analysis revealed that this is because of the high
overlap of symptoms between most chemicals. (2)
How do symptoms co-occur? The analysis revealed

* The network therefore exhibits almost naegree

correlation [3] (Pearson’s correlation = 0.008) between
pairs of nodes, when taking into account the edgjgws.



that a core set of common symptoms are densely
connected to each other, and rare symptoms co-occur
with common symptoms but infrequently with each
other.

The above observations do not appear to be un@ue t
WISER. Our preliminary analysis of symptoms and
health conditions in other datasets (e.g., Collathos

on Health and the Environment Toxicant & Disease
Database), suggest that they have network propertie
similar to WISER. We therefore explored
implications of our network analysis for the desajn
future systems to help search such datasets.
Implications for
Systems

Designing  First-Responder

The results of our network analyses suggested a
multi-input approach to help first-responders to
rapidly identify chemicals. This approach will
provide three different ways to select a symptom:

1. Select from a static set of symptoms presemtex i
hierarchy (as is currently provided by WISER). This
approach is suitable if the user knows the exactena
of a symptom, and can rapidly identify its location
the hierarchy. However, as our analysis has shown,
selecting symptoms which are then converted into a
database query is not the most efficient method to
identify a chemical.

2. Select from a dynamically generated list of
symptoms (using a dynamic binary search tree [BST]
algorithm) ranked by the ability of a symptom to
eliminate close to half of the remaining chemicals.
This approach is suitable if the user wishes tadigp
narrow the set of chemicals, based on suggestions
from the system. Our initial experiments using &BS
suggest that it can substantially reduce the nuraber
symptoms to identify a chemical. This might be
because of the confluence of network propertied suc
as low degree correlation and high edge density, a
hypothesis that needs to be tested in future relsear

3. Select from a dynamically generated list of
symptoms ranked by co-occurrence of already
selected symptoms. This approach can be used to
check which symptoms should be co-occurring with
the ones that have been selected, and was suggested
by the co-occurrence patterns of symptoms. Selectio
from a list of co-occurring symptoms is not desidne

to reduce the number of symptoms, but rather to
provide useful feedback for the first-responder.

Future research should determine whether the above
multi-input approach (each with different tradesff
provides improvements over the current WISER
approach, and if it can be useful for other dataset

Summary and Future Research

Given the critical importance of rapidly identifgn
toxic chemicals by first-responders, we investigate
the relationship of chemicals and their symptoms in
two steps. First, we analyzed how many symptoms on
average it would take to identify a unique chemical
using the current WISER system developed by NLM.
The analysis revealed a conservative estimate of 40
more chemicals. Because such a high number
appeared impractical in emergencies, in our second
step, we analyzed the relationship between chesnical
and symptoms using networks. The analysis revealed
a high overlap in the symptoms between chemicals,
and co-occurrence patterns in the symptoms. These
results led to insights about how to design future
systems that could help first-responders rapidly
identify toxic chemicals.

The network analysis tools we have demonstrated are
only a small subset of those available. In our ritu
research, we will apply a broader range of network
analysis methods to WISER and other public health
databases. Furthermore, the WISER database has
other chemical properties, such as color and odor,
which no doubt figure in the identification of
chemicals and therefore will be a focus of our
attention in future analysis and design. The use of
networks, as demonstrated in this preliminary study
should therefore lead to new regularities about the
data that can be exploited, with the goal of hgjpm

the rapid identification of chemicals and other
determinants of acute and chronic symptoms.
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