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Contaminant distribution in sediment particles

• Sediment contains sand, silt, clays, 
charcoal, wood, char, coal, & 
shells

• Coal petrography analyses identify 
carbonaceous particles

• Where are PCBs and PAHs located 
at the particle-scale?
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Hunters Point Sed (63-250 µm) coal charcoal coke



Distribution of PCB/PAH in sediments

Three sites show 5-7% wt. lighter 
density carbonaceous matter 
(coal/charcoal/wood)

PCBs and PAHs associated with 
lighter density fraction (60-90%)

Lesson:
Over time PCBs [and PAHs] 
preferentially accumulate in 
coal/charcoal/coke where they are 
strongly bound and less bioavailable

See:
Ghosh et al., 2000, ES&T, 34, 1729-1736
Ghosh et al., 2001, ES&T, 35, 3468-3475
Talley et al., 2001, ES&T, 36, 477-483.
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Sediment-water partitioning of phenanthrene

Cs = Caq . Koc . foc
Need to identify sediment component(s) that have 
major influence on contaminant availability



Clam absorption efficiency: controlled 
particle feeding

•Track 3H-BaP and 14C-2,2’,5,5’    
PCB through a clam

•Feed 8 hours

•Depurate 4 days

•Analyze clam tissue and feces

FecesSiphons



Absorption efficiency: PCB/PAH on 
granular carbon is not absorbed by clams
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PCB bioavailability control
•The bioavailability of PCBs, 

depends on sorbent particle.

•Natural carbonaceous 
particles sequester PCBs, 
reduce bioavailability

•Alter PCB bioavailability by 
introducing strongly sorbing
carbonaceous particles.

•New strategy for sediment 
management using in situ 
stabilization

PCB

PCB

Sediment carbonaceous particles 
Other sediment particles containing PCBs
Introduced activated carbon particles



Sediment sampling at Hunters Point

• PCB hot spot in San Francisco Bay
• Samples collected from intertidal zone in south basin



Sediment-sorbent contact 

• Sediment-sorbent contact 
experiments to assess 
effect of particle size, 
dose, and contact time on 
PCB availability

• Sorbent dose: 2x TOC
• Sorbent size: 100-250 µm 

& 63-100 µm 
• Contact time: 1 month & 

6 months



Bioaccumulation and chronic bioassays

Macoma balthica
Indigenous bivalve

Neanthes arenaceodentata
Infaunal deposit feeding 

polycheate worm

Leptocheirus
plumulosus

Estuarine amphipod



PCB bioaccumulation reduction
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1 mo. GAC contact:
• Macoma: 69%
• Leptocheirus: 70%
• Neanthes: 82%

6 mo. GAC contact:
• Leptocheirus: 75%
• Neanthes: 87 %

Effect manifested quickly under optimum mixing and 
benefit not lost with time
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Aqueous equilibrium conc. reduction 

• 87% reduction with 1 mo. contact
• 92% reduction with 6 mo. contact 
• More efficient reduction for lower 

chlorinated PCBs

Alum-flocculation to remove 
colloids

Ghosh et al., ES&T 2000
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Rates of PCB desorption and adsorption
• PCB desorption rate decreases with 

increasing PCB chlorination

• Rates of PCB desorption from 
sediment are slow and may control 
overall mass transfer rates to GAC

• Initial PCB adsorption rates into 
GAC not significantly affected by 
PCB chlorination

• Rates of PCB adsorption into GAC 
from water is 2 orders of magnitude 
faster than desorption rates. 

Desorption: Sediment water

Adsorption: Water GAC



Significant findings 

• PCBs are transferred from sediment to GAC
• GAC - treatment reduces:

1. PCB bioaccumulation: clam, worm, amphipod
2. Aqueous PCB concentration
3. PCB uptake in SPMD
4. PCB flux from sediment

• Important ‘weight of evidence’



Field testing challenges: 

• Inter-tidal zone is exposed for a 
few hours during low tide

• Sediments are very soft and 
deployment of heavy equipment 
is difficult

• Need to minimize sediment 
resuspension and mobilization

• Need to evenly distribute the 
carbon with good mixing in the 
top 12 inches



Technical description

• Field test at Hunters Point inter-tidal zone
• GAC mixed will be mixed into upper layer using different 

technologies
• Deployments appropriate for Hunters Point
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Main goals of field testing
• Select appropriate carbon deployment methods in the 

field

• Evaluate the degree of mixing of GAC practically 
achievable

• Measure PCB bioavailability reduction in the field

• Measure PCB mobility reduction in the field

• Assess the erosion potential of sediments mixed with 
GAC. 

• Assess technology cost and transition to full-scale 
demonstration



Field Equipment for Carbon Mixing in 
Sediment

Injection System
(Williams Environmental)

Aquamog: underwater rototiller
(Aquatic Environment)



Demonstration/validation issues

• Reduce PCB uptake in test benthic organisms
• Reduce PCB aqueous concentrations



Proposed ESTCP demonstration area
PCB concentration range:
400-1100 µg/kg

Possible impact of proposed technology
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Current and Proposed Research Direction
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and microbial 
dechlorination
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